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Abstract
This article summarizes part of the research related to the

structured laser beam (SLB) properties focused on align-
ment. The SLB has the potential to be used as a reference
line. This is due to SLB features such as a very clear spot
in the center of the beam, a sharp boundary of the central
spot, low divergence of the central spot (practically mea-
sured value 10 µrad) and theoretically infinite range (tested
over several hundred meters). However, the environment
(the non-homogeneous distribution of the refractive index)
affects the trajectory of the SLB, which is then a general
curve. A new approach based on numerical simulations
was used to investigate this phenomenon. A method gen-
eralizing the diffraction integral was developed to trace ac-
curately any optical beam in a non-homogeneous environ-
ment. This solution offers in principle a better accuracy
than the Eikonal equation used for ray tracing because it
allows evaluating the position of the optical beam center
with methods based on the analysis of the optical intensity
transverse distribution. The propagation of the complex
amplitude in the longitudinal direction can generally not
be described by the Eikonal equation, but the generalized
diffraction integral attains this goal. The article compares
the trajectories of a SLB calculated using both the Eikonal
equation and the generalized diffraction integral. It de-
scribes the differences between these two approaches and
identifies conditions under which these differences are neg-
ligible in an inhomogeneous environment. Furthermore,
the influences of different types of environmental non ho-
mogeneities on the SLB trajectory are discussed.

INTRODUCTION
For the purpose of alignment, special forms of optical

beams, so-called non-diffracting optical beams such as the
Bessel beam (BB), have recently been used [1][2][3]. How-
ever, the use of BB has the disadvantage of a limited range.
Under standard conditions, the longitudinal range does not
exceed 20 m. This practically makes the BB unusable for
long-range metrology.

However, a new type of optical beam was discovered,
the so called Structured Laser Beam (SLB) [4]. The advan-
tages of this beam lie in its cheap and simple generation and
theoretically unlimited longitudinal range, which was prac-
tically tested over several hundred metres. Thus, it seems
to be a suitable candidate for a high precision long range
alignment system, for example, in the domain of particle
accelerators. It is expected that under ideal conditions in a
vacuum, SLB will propagate in a perfectly straight line

This article is about the influence on the SLB straight-
ness of non-ideal conditions of propagation. Non-ideal

conditions in this case mean a non-homogeneous distri-
bution of the refractive index, which in this case is given
by a non-homogeneous temperature distribution. The re-
sults presented in this paper are based on numerical sim-
ulations of optical beam propagation. For this purpose, it
was necessary to create a new method that allows this type
of simulations. Existing methods such as the Eikonal equa-
tion or Ray tracing used in plasma physics only trace rays
and do not allow the calculation of the distribution of the
beam’s optical intensity in the transverse plane at a given
distance. The new method, later referred to as the Gener-
alized Diffraction Integral (GDI), allows the calculation of
the optical intensity in the transverse plane and therefore
allows the application of beam center detection algorithm.
In principle, differences in beam center detection are ex-
pected when using either ray tracing methods or GDI.

Three different models of propagation medium were
considered during the simulations. In the first model, only a
linear temperature change in the vertical axis y was consid-
ered, and the gradient was zero in the other axes. The gen-
eral temperature distribution in the second and third models
is based on data from measurements made in the Transfer
Tunnel 1 (TT1) and in the LHC tunnel at CERN. Both mod-
els assume a zero gradient in the horizontal axis x.

Figure 1: Longitudinal profile of the optimal GB. Dashed
red curves indicate the radius of GB.

For simulations presented in this work only two differ-
ent types of optical beams have been considered on a 200 m
long alignment window. One of the optical beam is a Gaus-
sian beam (GB) with a wavelength of λ = 632.8 nm opti-
mized on the alignment window. The process of finding the
optimal GB is described in [5] and the longitudinal profile
of this GB is shown in the Figure 1. The second type of
optical beam which is used is a SLB and is generated by an
optical arrangement with an exit lens aperture of the same
size as the exit lens aperture of the collimator for the opti-
mal GB as referred in [5]. Longitudinal profile of the SLB
field amplitude is visualised in the Figure 2.



Figure 2: Longitudinal profile of the SLB field amplitude
obtained from numerical simulations.

THEORETICAL BACKGROUND, NEW
APPROACH AND METHODOLOGY

In this chapter, known theory for tracing of the light,
namely Eikonal equation and Diffraction integral, are
shortly explained, as well as the new proposed one based on
the generalization of the Diffraction integral aiming at light
tracing. Methodology for beam position detection and for
calculation of refractive index of the environment are also
discussed.

Diffraction integral

Figure 3: Illustration of the diffraction integral principle.

The diffraction integral can be derived from the wave
equation via the transfer function [6]. However, another ap-
proach to its derivation based on Huygens’ principle is pre-
sented below. This approach is more suitable for the subse-
quent generalization of the diffraction integral. The princi-
ple of the diffraction integral is illustrated in the Figure 3.
According to Huygens’ principle, each point of the wave-
front can be considered as a source of spherical waves. This
consideration generally means that every point of the opti-
cal field in the transverse plane is a source of spherical wave
with the phase of the optical field. So, the point [xz, yz]
in the transverse plane at distance z is calculated as the
sum of all contributions from the known field in the trans-
verse plane at the origin. The solid red curve represents the
phase of the optical field in the transverse plane at the ori-
gin, and the dashed red lines represent the perpendicular to
the phase at that point. This principle can be written using

a relation

U(xz, yz, z) =

∫∫ ∞

−∞
U(x, y, 0)

exp(ikr)

r
K(θ)dxdy,

(1)
where U is a complex amplitude of the scalar optical
field, r is a length of the radius vector of the specific spher-
ical wave from point [x, y, 0] to [xz, yz, z] and K(θ) is the
so-called inclination factor. The inclination factor has a
phase and an amplitude. The phase depends on the cosine
of the angle θ, i.e. the angle between the radius vector r⃗ and
the normal vector to the phase, see Figure 3. The amplitude
of the inclination factor is i/λ, so

K(θ) =
i

λ
cos(θ). (2)

After substituting the inclination factor into the equa-
tion (1), the diffraction integral has the form

U(xz, yz, z) =
i

λ

∫∫ ∞

−∞
U(x, y, 0)

exp(ikr)

r
cos(θ)dxdy.

(3)

Eikonal equation and Ray Tracing
The description of light tracing through a non-

homogeneous medium is more complex. It is practically
impossible to solve the wave equation directly over large
distances. Thus, current methods move from a wave con-
cept of optics to a geometric concept of optics, which con-
siders light as rays.

One of the known methods introduces at the level of
wave optics the so called Eikonal S(x, y, z), for which a
given point in space represents the path of a given solu-
tion of the wave equation in a non-homogeneous environ-
ment. Places with a constant value of S represent wave-
fronts. Then, the Eikonal equation [6][7] can be deduced

(∇S)2 = n2. (4)

If the path of the ray s(x, y, z) is introduced, whose tra-
jectory is perpendicular to the wavefront at all points, the
equation (4) can be rewritten into the ray equation

d

ds

(
n
dr⃗

ds

)
= ∇n. (5)

For the solution in the longitudinal direction, i.e. in the
direction of the z axis, it is advantageous to introduce a
substitution as referred in [6][7]

ds = dz

√
1 +

(
dx

dz

)2

+

(
dy

dz

)2

. (6)

This leads to two partial differential equations, which can
be simplified by assuming a small deviation of the beam
from the z axis. Thus

d

dz

(
n
dx

dz

)
≈ ∂n

∂x
,

d

dz

(
n
dy

dz

)
≈ ∂n

∂y
. (7)



The second known method is mainly used in plasma
physics and is based on the description of the quan-
tum of electromagnetic radiation described by Hamilton’s
equations[8]

dx⃗

dt
=

∂H

∂p⃗
,

dp⃗

dt
= −∂H

∂x⃗
, (8)

where the Hamiltonian function H = h̄ω and the momen-
tum p⃗ = h̄k⃗. Since a constant angular frequency ω of the
wave is considered, the wave vector depends on the refrac-
tive index by the relation k⃗ = k⃗0n( ⃗x, y, z), where k0 is the
wave vector in the vacuum. Furthermore, it is possible to
introduce a dispersion relation in the form

Θ(x⃗, ω, k⃗) = k − k0n(x, y, z) = 0, (9)

which is directly related to the spatial distribution of the re-
fractive index and k =

√
(k2x+k2y+k2z). Then by replacing

the time t with the parameter τ , it is possible to arrive at the
equations

dx⃗

dτ
=

∂Θ

∂k⃗
,

dk⃗

dτ
= −∂Θ

∂x⃗
, (10)

where the parameter τ is the geometrical path of the ray,
as described in [8], whose differential is described in the
equation (6).

Generalized diffraction integral

Figure 4: Illustration of the generalized diffraction integral
principle.

In order to be able to calculate the distribution of
the complex amplitude of the optical beam after pass-
ing through the non-homogeneous medium to the desired
transverse plane, a new method has been developed. The
principle of this method generalizes the diffraction integral.
Thus, the size of the radius vector r in the equation (3) is
replaced by the general Optical Path Length (OPL) of the
ray. The effect on the angle θ in the inclination factor is
also non-negligible. This is clearly illustrated in the Fig-
ure 4. Thus, the angle θ is now not calculated as the angle
between the normal vector to the phase and the line con-
necting the points [x, y, 0] and [xz, yz, z], but as the angle
between the normal vector to the phase and the derivative

of the ray at the distance z = 0. Thus, the generalized
diffraction integral can be written by equation

(11)
U(xz, yz, z)

=
i

λ

∫∫ ∞

−∞
U(x, y, 0)

exp(ikOPL)

OPL
cos(θ)dxdy,

with the OPL =
∫
n(x, y, z)ds, where ds is the element

of the ray from equation(6). The problem with this equa-
tion is the necessary knowledge of the trajectory s. This
trajectory is a solution to the systems of partial differential
equations of (7) or (10). Apart from special cases, these
equations do not have an analytical solution and must be
solved numerically. In the general case, the beam trajec-
tory of each contribution of the optical field must be solved
separately, which will significantly increase the calculation
time.

Detection of the Optical beam centre position
In this work 2 types of optical beams, namely GB and

SLB are considered. The precise estimation of the center
position of the two types of beams was done by the same
method. This method uses a known mathematical func-
tion whose parameters are optimized to find the best fit to
the observed optical beam. A Gaussian function is natu-
rally used for the GB. The Bessel function is used for SLB,
which in practice has proven to be very suitable and accu-
rate.

Optical intensity distribution of a GB in the transversal
plane is described by the equation

(12)
IGB(x, y)

= IGB0 exp

(
−4 ln(2)

(x− x0)
2 + (y − y0)

2

FWHM2

)
,

where IGB0 is the optical intensity in the center of the
GB, FWHM is the full width of the GB at half maxi-
mum value of the optical intensity and points x0 and y0 are
the coordinates of the center position of the GB. All four
variables, i.e. IGB , FWHM , x0 and y0 are the parameters
of the optimization process for finding the best fit with the
observed GB.

The function for finding SLB centre position is

IBB(x, y) = IBB0

(
J0

(
kT

√
(x− x0)2 + (y − y0)2

))2

,

(13)

where J0 is a Bessel function of the first kind and zero or-
der. The parameters to be determined with the optimization
process are the optical intensity IBB0 of the analytical BB
in its center, the transversal wave vector kT and the coordi-
nates of the center [x0; y0].

Conversion of environmental conditions to re-
fraction index

The refraction index, as a basic optical parameter of
the environment, generally depends on several variables.



Figure 5: Longitudinal profile of the temperature distribu-
tion with the ray trajectory computed by Eikonal equation.
The color scale represents the differences of the tempera-
ture from the basic value TB = 16°C, so δT = T − TB .

The most important variables are wavelength, temperature,
pressure, humidity and CO2 concentration. The wave-
length of the beam is constant during propagation. In the
range of environmental conditions corresponding to the
present cases, the influence of the temperature variations
on the change of the refractive index value is one order of
magnitude higher than the one due to the pressure gradient.
So, in this study, the model is based on the invariance of
all parameters except temperature. In this work, the model
of real environment is based on temperature measurement
data and constant values are defined for the other parame-
ters, so pressure p = 101325 Pa, fractional humidity h = 0
and CO2 concentration CCO2

= 450 ppm. For the calcula-
tion of the refractive index from the environmental param-
eters a model developed by Philip E. Ciddor [9] have been
used.

NUMERICAL SIMULATIONS
Three simulations have been performed for different

types of environmental non-homogeneity. On one hand,
an environment with a linear temperature dependence on
the vertical position and a zero temperature gradient in
the other two axes has been considered. The remaining
two models used a temperature distribution based on data
from measurements in the TT1 and LHC tunnels at CERN.
There, a non-zero temperature change in the vertical and
longitudinal axis, and a zero temperature gradient in the
horizontal axis are considered.

1st model, Linear distribution of the temperature
The temperature at any point in this case depends only on

its vertical position along y axis and is given by the relation

T (y) = l1y + l2, (14)

where the coefficients l1 = 1/3 and l2 = 16. So, an al-
titude variation of 3 m results in a temperature change of
1 °C. The longitudinal temperature distribution is shown in
the Figure 5. A longitudinal profile of the SLB is then
shown in the Figure 6. On this picture it is visible that the

Figure 6: Longitudinal profile of the SLB field amplitude
for temperature linearly changing in the vertical axis.

Figure 7: Longitudinal profile of the optimal GB optical
intensity for temperature linearly changing in the vertical
axis.

trajectory computed by Eikonal equation is nearly identi-
cal with the trajectory computed by GDI. The difference is
visualized in the Figure 16. The difference ∆y is linearly
increasing and reaches the values of units of micrometers.
This indicates a great agreement between the Eikonal equa-
tion and the generalized diffraction integral for the linear
dependence of the temperature distribution. An offset of
the SLB trajectory from the reference line is visualised in
the Figure 17. The reference line is the line joining the
start and end points of the trajectory calculated using the
Eikonal equation. The maximum value of the offset is close
to the centre of the alignment window and is nearly equal
to 1.6 mm.

Figure 8: Longitudinal profile of the temperature distribu-
tion with the ray trajectory computed by Eikonal equation.



Figure 9: Longitudinal profile of the temperature distribu-
tion with the ray trajectory in the near vicinity of the ray.

Figure 10: Longitudinal profile of the SLB field amplitude
for temperature distribution based on measurement in TT1
tunel.

The propagation of the optimal GB was also simulated
under the same conditions. The longitudinal profile is
shown in the Figure 7. The differences ∆y at each lon-
gitudinal distance between results from Eikonal equation
and from GDI are visualised in the Figure 16. The offset
of the GB trajectory from the reference line is shown in the
Figure 17.

2nd model, data from real measurement
The data of the temperature distribution used in this

model are based on measurements done in TT1 tunnel. The

Figure 11: Longitudinal profile of the optimal GB optical
intensity for temperature distribution based on measure-
ment in TT1 tunel.

Figure 12: Longitudinal profile of the temperature distribu-
tion with the ray trajectory computed by Eikonal equation.

temperature distribution is shown in the Figure 8 and in-
cludes the ray trajectory computed by Eikonal equation.
Obviously the vertical scale of the picture on the Figure 8
is too large, so the Figure 9 shows the temperature distri-
bution in the near vicinity of the ray. The SLB develop-
ment profile, computed by generalized diffraction integral,
is shown in the Figure 10. The SLB trajectory is, as ex-
pected, more complicated. In this case, the comparison of
trajectories calculated using the Eikonal equation and the
generalized diffraction integral is interesting. The differ-
ences ∆y are visible in the Figure 16 and they exceed the
value 50 µm. The offset of the SLB trajectory from the
reference line is shown in the Figure 17.

The propagation of the optimal GB was also simulated
under the same conditions. The longitudinal profile is
shown in the Figure 11. The differences in each longitu-
dinal distances between results from Eikonal equation and
GDI are visualised in the Figure 16. The offset of the GB
trajectory from the reference line is visualised in the Fig-
ure 17.

3rd model, data from real measurement
The data of the temperature distribution used in this

model are based on the measurement done in LHC at
CERN. The temperature distribution in that case is shown
in the Figure 12. The large scale of the temperature map
makes it impossible to see the details of the beam trajec-
tory. The Figure 13 shows the same temperature map, but

Figure 13: Longitudinal profile of the temperature distribu-
tion with the ray trajectory in the near vicinity of the ray.



Figure 14: Longitudinal profile of the SLB field amplitude
for temperature distribution based on measurement in LHC
tunel.

in the near vicinity of the SLB. The trajectory has again
non-trivial shape and the longitudinal profile is shown in
the Figure 14.

The propagation of the optimal GB was also simulated
under the same conditions. The longitudinal profile is
shown in the Figure 15. The differences ∆y at each longi-
tudinal distance between results from Eikonal equation and
GDI are visualised in the Figure 16. The offset of the GB
trajectory from the reference line is shown in the Figure 17.

Figure 15: Longitudinal profile of the optimal GB optical
intensity for temperature distribution based on measure-
ment in LHC tunel.

DISCUSSION OF RESULTS
As part of the evaluation of the results, attention is fo-

cused on two aspects. One is a comparison of both methods
of tracing the trajectory of optical beams. The GDI method
provides very similar results to the Eikonal equation on
scales not smaller than units of millimeters, which is con-
sistent with the theoretical assumption. Non-negligible
differences are observable when reducing the observation
scale to tens of micrometers. This is perfectly visible in
the Figure 16, where the value on the y-axis is the differ-
ence between the value of the trajectory position computed
by Eikonal equation yEik and the value of the SLB center
position detected by fitting method from the optical field
simulated by GDI method yGDI , so ∆y = yEik − yGDI .

Figure 16: Differences ∆y of the vertical positions along
the alignment window between trajectories computed by
Eikonal equation and by GDI in the 3 models (1, 2 and 3 in
the legend). So ∆y = yEik − yGDI .

An interesting fact is that for the first model with a lin-
ear temperature dependence, the largest observed differ-
ence ∆y is very small (approximately 3 µm) and is the
same for the SLB and GB models. In other cases, when the
temperature distribution has a general character, the differ-
ences reach non-negligible values in the order of several
tens of micrometers.

Figure 17: The offsets of the optical beams trajectories
from the reference line computed by GDI in the 3 mod-
els (1, 2 and 3 in the legend). The sign is given by the
relative position of the given point to the reference line on
the vertical axis.

Significantly larger differences ∆y are observed for the
same temperature model with GB than with SLB. In the
second temperature model, the difference ∆y for the GB
even exceeds the value of 200 µm in amplitude at dis-
tance L = 200 m, while difference ∆y for SLB in the same
conditions has an amplitude approximately equal to 53 µm.
The reason for this fact is unclear.

The second aspect discussed is the offset of the actual
trajectory from the expected reference line. Naturally, the
offset values for both types of beam almost overlap in each
model, see Figure 17. The offset was calculated so that
its sign is positive if the actual value of the position of the
optical beam is deviated in the positive direction of the y-
axis from the assumed reference line. On the given dimen-
sional scale, 200 m long alignment window, the deviations



are similar in amplitude and reach values in the order of
lower units of millimeters.

CONCLUSION
A new method for tracing optical fields through non-

homogeneous environments based on the wave principle of
optics has been developed. The traced entity is a complex
amplitude from which the optical intensity is easily calcu-
lated. This provides the possibility to calculate the shape
of any optical beam, unlike existing conventional methods
such as Eikonal equation or Ray tracing. While the tra-
jectory calculated by conventional methods informs about
the assumed position of the centre of the optical beam, GDI
provides the optical intensity distribution on which the cen-
tre position is subsequently detected.

Regardless of the used trajectory calculation method, the
maximum offset from the reference line in realistic condi-
tions was about 3 mm. That shows to the importance to
consider the medium according to the alignment needs.

In the conditions described above, the observed results
show a small, yet noticeable deviation from the trajectory
computed by conventional methods and from the detected
beam center computed by GDI. These deviations generally
increase non-linearly with distance. On a given 200 m long
alignment window, they reach values in the order of tens
of micrometers for SLB and few hundreds of micrometers
for GB, which represents units of percent of the total offset
from the reference line.

This new method is able to help finding the optimal de-
sign in an alignment project using SLB. It will help decid-
ing whether or not it is necessary to propagate the SLB un-
der vacuum, whether or not it is necessary to propagate the
SLB through a tube, what are the free space requirements
around the SLB, etc.
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