CERN Accelerating science

Article
Report number arXiv:2210.10787 ; CERN-TH-2022-168 ; TIF-UNIMI-2022-20
Title A quantum analytical Adam descent through parameter shift rule using Qibo
Author(s) Robbiati, Matteo (Milan U. ; INFN, Milan ; CERN) ; Efthymiou, Stavros (Technol. Innovation Inst., UAE) ; Pasquale, Andrea (Milan U. ; INFN, Milan ; Technol. Innovation Inst., UAE) ; Carrazza, Stefano (Milan U. ; INFN, Milan ; CERN ; Technol. Innovation Inst., UAE)
Publication 2022-11-13
Imprint 2022-10-19
Number of pages 6
Note 6 pages, 2 figures, presented in 41st International Conference on High Energy physics - ICHEP2022
In: PoS ICHEP2022 (2022) pp.206
In: 41st International Conference on High Energy Physics (ICHEP 2022), Bologna, Italy, 6 - 13 Jul 2022, pp.206
DOI 10.22323/1.414.0206
Subject category hep-ph ; Particle Physics - Phenomenology ; quant-ph ; General Theoretical Physics
Abstract In this proceedings we present quantum machine learning optimization experiments using stochastic gradient descent with the parameter shift rule algorithm. We first describe the gradient evaluation algorithm and its optimization procedure implemented using the Qibo framework. After numerically testing the implementation using quantum simulation on classical hardware, we perform successfully a full quantum hardware optimization exercise using a single superconducting qubit chip controlled by Qibo. We show results for a quantum regression model by comparing simulation to real hardware optimization.
Copyright/License preprint: (License: arXiv nonexclusive-distrib 1.0)
publication: © 2023-2025 The author(s) (License: CC-BY-NC-ND-4.0)



Corresponding record in: Inspire


 Zapis kreiran 2023-01-26, zadnja izmjena 2024-09-18


Cjeloviti tekst:
2210.10787 - Download fulltextPDF
document - Download fulltextPDF