Početna stranica > A quantum analytical Adam descent through parameter shift rule using Qibo |
Article | |
Report number | arXiv:2210.10787 ; CERN-TH-2022-168 ; TIF-UNIMI-2022-20 |
Title | A quantum analytical Adam descent through parameter shift rule using Qibo |
Author(s) | Robbiati, Matteo (Milan U. ; INFN, Milan ; CERN) ; Efthymiou, Stavros (Technol. Innovation Inst., UAE) ; Pasquale, Andrea (Milan U. ; INFN, Milan ; Technol. Innovation Inst., UAE) ; Carrazza, Stefano (Milan U. ; INFN, Milan ; CERN ; Technol. Innovation Inst., UAE) |
Publication | 2022-11-13 |
Imprint | 2022-10-19 |
Number of pages | 6 |
Note | 6 pages, 2 figures, presented in 41st International Conference on High Energy physics - ICHEP2022 |
In: | PoS ICHEP2022 (2022) pp.206 |
In: | 41st International Conference on High Energy Physics (ICHEP 2022), Bologna, Italy, 6 - 13 Jul 2022, pp.206 |
DOI | 10.22323/1.414.0206 |
Subject category | hep-ph ; Particle Physics - Phenomenology ; quant-ph ; General Theoretical Physics |
Abstract | In this proceedings we present quantum machine learning optimization experiments using stochastic gradient descent with the parameter shift rule algorithm. We first describe the gradient evaluation algorithm and its optimization procedure implemented using the Qibo framework. After numerically testing the implementation using quantum simulation on classical hardware, we perform successfully a full quantum hardware optimization exercise using a single superconducting qubit chip controlled by Qibo. We show results for a quantum regression model by comparing simulation to real hardware optimization. |
Copyright/License | preprint: (License: arXiv nonexclusive-distrib 1.0) publication: © 2023-2025 The author(s) (License: CC-BY-NC-ND-4.0) |