
Resummation Scales and the Assessment of Theoretical Uncertainties in
Parton Distribution Functions a

V. Bertone1, G. Bozzi2,3 and F. Hautmann4,5,6
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We discuss perturbative solutions of renormalization group equations, and propose the use of
resummation scale techniques in assessing theoretical uncertainties on the extraction of parton
distribution functions from data.
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Many applications of Quantum Chromodynamics (QCD) to precision calculations for high-
energy collider physics involve the perturbative solution of renormalization group equations
(RGEs). It has long been known that, at any given order of perturbation theory, the differences
between RGE solutions obtained by methods which are equivalent up to formally subleading
orders provide a significant source of theoretical uncertainty on predictions for physical observ-
ables.

In the literature of calculations based on QCD resummation, these uncertainties are com-
monly taken into account by a variety of different techniques, which appeal to the principle
of introducing so-called resummation scales, of the order of the hard momentum-transfer scale
of the process but otherwise arbitrary, and setting criteria to let them vary and evaluate the
corresponding variation in the theoretical prediction.

In several other common applications of QCD to collider physics, on the other hand, resum-
mation scale variations are not performed. A notable example is the determination of parton
distribution functions (PDFs) from global fits to experimental data,1,2,3,4,5,6,7 central to virtually
any aspect of hadron collider physics. In this application, RGEs and their perturbative solutions
are used for the evolution of the PDFs themselves and for the evolution of the running coupling.
The fact that RGE theory uncertainties are not included and resummation scale variations are
not performed leads to an underestimate of the uncertainties associated with the extraction of
PDFs from global fits to data.

This point is illustrated in detail in our recent work 8. There, we discuss various aspects
of theory uncertainties from RGE perturbative solutions and propose resummation scale meth-
ods to characterize them. Applying this to deep-inelastic scattering (DIS) structure functions,
we show that resummation scale effects are significant in kinematic regions relevant to PDF
determinations. In this article we summarize some of the results from Ref. 8.

aPresented by F. Hautmann at the 29th Workshop on Deep-Inelastic Scattering and Related Subjects, 2-6 May
2022.
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We consider RGE of the general form

d lnR

d lnµ
(µ, αs(µ)) = γ(αs(µ)) , (1)

where R is a renormalized quantity, function of the strong coupling αs and renormalization scale
µ, and γ is its anomalous dimension, computable as a power series expansion in the coupling
αs.

In Ref.8 we examine several examples, at next-to-leading (NLO) and next-to-next-to-leading
(NNLO) order, and analyze RGE solutions obtained by methods which differ by subleading-
order terms.b To characterize the differences between such solutions, we introduce the evolution
operator G which connects R at two scales µ and µ0, Rµ = G(µ, µ0)Rµ0 , and trace the differences
between solutions back to the fact that, due to subleading orders, one has, for a given µ′,
G(µ, µ0) 6= G(µ, µ′)G(µ′, µ0). We refer to this as perturbative hysteresis 8.

For the application to PDF evolution, R in Eq. (1) is to be thought of as the flavor multiplet
of PDF Mellin moments, and γ as the Mellin transform of DGLAP splitting functions. Besides,
one has an RGE of the form (1) for the running coupling, in which R is proportional to the
coupling αs, and γ to the QCD β function. Hysteresis effects in both these RGEs are analyzed
quantitatively in Ref. 8.

The extraction of PDFs fj(x, µ) from collider data uses factorization formulas relating fj to
physical observables Σ, e.g. DIS structure functions, with the schematic form

Σ(x,Q) =
∑
j

∫
dzHj(z,Q, αs(µR), µF )fj(x/z, µF ), (2)

where Hj are perturbatively computable hard-scattering functions, µF is the factorization scale,
and µR is the renormalization scale. Standard QCD calculations estimate theoretical uncertain-
ties associated with unknown higher orders in Eq. (2) by setting criteria for variations of the
scales µF and µR.

Ref. 8 observes that theoretical uncertainties on the extraction of PDFs arise both from µF
and µR variations in Eq. (2) and from unknown higher orders in the kernels γ in Eq. (1), and
proposes to take the latter into account by resummation scale techniques. To this end, two
different but essentially equivalent methods are formulated. One is based on expressing the
evolution operator G via the analytic formalism of g-functions, 8 which is frequently applied in
soft-gluon resummation calculations. Schematically, at the k-th order of logarithmic accuracy
NkLL, this is of the form

GNkLL ∼ gNkLL0 (λ) exp

[
k∑
l=0

αls(µ)gl+1(λ)

]
, λ ∼ αs(µ)β0 ln(µ(Res)/µ) , (3)

where the g’s are perturbatively computable functions of the scaling variable λ, and µRes is the
resummation scale. Explicit expressions for the g-functions up to k = 3 are given in Ref. 12.
Another method is based on displacing the argument of the coupling appearing in the pertur-
bative expansion of γ, so as to obtain a new effective anomalous dimension differing from the
previous one by subleading terms. This method is well-suited for numerical evaluations. In

either method, one ends up introducing resummation scales µ
(Res)
PDF for the PDF evolution and

µ
(Res)
αs for the coupling evolution.

As an application, we illustrate the case in which we take Σ in Eq. (2) to be the DIS structure
function F2(x,Q). We perform variations of renormalization and factorization scales, µR and µF ,

and of resummation scales, which we parameterize as µ
(Res)
αs = ξαsQ and µ

(Res)
PDF = ξPDFQ. Fig. 1

bThe examples considered in Ref. 8 are single-logarithmic resummation problems. Similar effects in double-
logarithmic Sudakov problems have been observed e.g. in Refs. 9,10,11.
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Figure 1 – The structure function F2 from Ref. 8 versus x, at NLO and NNLO in perturbation theory, with
the uncertainty bands associated with variations of renormalization and factorization scales, µR and µF , and
resummation scale parameters ξαs and ξPDF. We use MSHT20 PDFs at Q0 = 2 GeV and αs(MZ) = 0.118 as
RGE inputs.

shows results at NLO (left panel) and NNLO (right panel). Resummation scale uncertainties
are observed to be generally non-negligible with respect to the renormalization and factorization
scale uncertainties in the kinematic region considered. In the left hand side panel, we see that
the effect of the resummation scale parameter ξPDF dominates the low-x region while the effect of
the factorization scale µF dominates at the largest x. The right hand side panel illustrates that
the size of the uncertainty bands is reduced at NNLO. The behavior above reflects higher-order
corrections to F2 at small x being dominated by flavor-singlet quark anomalous dimensions.13,14

The results shown in Fig. 1 are for Q = 10 GeV. The importance of resummation scale
effects, relative to that of renormalization and factorization scale effects, increases with Q (and
is eventually becoming relevant for increasing x). To illustrate the behavior of the uncertainty
bands with varying Q, in Fig. 2 we plot the Q-dependence of the relative variation ∆F2/F2. The
ξPDF contribution starts from zero and grows rapidly with Q, remaining sizeable out to large Q
while the µF contribution is largest at low Q and decreases with increasing Q. Analogously, the
µR contribution is important at low Q and decreases with Q, while the ξαs is subdominant at
low Q but becomes relevant at high Q.

The above numerical results indicate that RGE uncertainties are relevant in kinematical
regions which influence current and forthcoming PDF extractions. They will also be relevant
in regions explored at future lepton-hadron colliders 15,16. As the ξPDF contribution remains
significant at large Q, RGE uncertainties are important for high-scale PDF probes such as very
energetic jets and top quarks.

To conclude, we note that the method we have described can be used in processes sensitive to
collinear as well as transverse momentum dependent (TMD)17 distributions. It will be applicable
in extractions both of PDF and of TMD.

Acknowledgment. We warmly thank N. Armesto and the organizers of the 2022 Deep-Inelastic
Scattering Workshop for putting up a very interesting conference and for allowing us to present
these results from remote.
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Figure 2 – Q-dependence of the relative variation ∆F2/F2 for x = 10−2 (top) and x = 10−3 (bottom), at NLO
(left) and NNLO (right), associated with variations of renormalization and factorization scales, µR and µF , and
resummation scale parameters ξαs and ξPDF.
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