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Abstract Wilsonian effective theories exploit hierarchies of scale to simplify the
description of low-energy behaviour and play as central a role for gravity as for the
rest of physics. They are useful both when hierarchies of scale are explicit in a grav-
itating system and more generally for understanding precisely what controls the size
of quantum corrections in gravitational systems. But effective descriptions are also
relevant for open systems (e.g. fluid mechanics as a long-distance description of sta-
tistical systems) for which the ‘integrating out’ of unobserved low-energy degrees
of freedom complicate a straightforward application of Wilsonian methods. Obser-
vations performed only on one side of an apparent horizon provide examples where
open system descriptions also arise in gravitational physics. This chapter describes
some early adaptations of Open Effective Theories (i.e. techniques for exploiting
hierarchies of scale in open systems) in gravitational settings. Besides allowing the
description of new types of phenomena (such as decoherence) these techniques also
have an additional benefit: they sometimes can be used to resum perturbative expan-
sions at late times and thereby to obtain controlled predictions in a regime where
perturbative predictions otherwise generically fail.
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1 Open systems and gravity as a medium

Nature comes to us with a riot of scales: from the smallest known subatomic par-
ticles out to the observable universe as a whole. Because we do not yet know how
Nature works at all scales a central question asks how badly unknown physics can
interfere with predictions for physics we think we do understand. Wilsonian effec-
tive field theories (EFTs) are important because (at least so far) they provide the
only known answer to this question.

They do so by quantifying how physics at a high energy M contributes to ob-
servables at a low energy E. A central result shows that most of the high-energy
details only enter into low-energy observables suppressed by powers of the small
ratio E/M, and furthermore shows why these can be captured order-by-order in
E/M – for all low-energy observables – as effective couplings within some form of
a local Wilsonian action, or Hamiltonian

Heff =
∫

d3x∑
s

cs Os(x) . (1)

Here the effective couplings cs are often proportional to M4−ds
s where ds is the scal-

ing dimension of the local effective interaction operator Os(x) that is built using
only fields φ(x) that represent the low-energy states.

In the normal treatment much discussion goes into how to compute the effective
couplings cs and interactions Os(x) that are generated by particular types of known
high-energy physics, taking for granted the existence of an appropriate Heff. This is
usually reasonable to do because the rules of quantum mechanics guarantee some
sort of a Hamiltonian must exist, basically because energy conservation ensures that
states that start at low energy remain at low energy (and so their evolution must
be describable using the low-energy basis of field operators φ ). The uncertainty
principle then ensures that the low-energy effects of virtual high-energy states are
local in time – at least order-by-order in E/M – from which (at least for relativistic
systems) locality in space usually also follows. (See e.g. [1] for an extensive review).

The theory of Open Quantum Systems (see for example [2]) provides the gen-
eral framework for describing situations where only a subset of states are observed
within a wider quantum system, and because of this one might expect EFTs to
closely resemble open systems. This turns out not to be true. In particular it is in
general not true that an effective Hamiltonian can capture how unobserved degrees
of freedom influence others that we do measure.

EFTs turn out to be a very special case where measured and unmeasured degrees
of freedom are distinguishable from one another by the eigenvalues of a conserved
charge (the value of their energy, plus possibly other conserved quantities), and this
plays a crucial role when inferring the existence of an effective Hamiltonian. For
general open systems the measured and unmeasured degrees of freedom can both
have similar energies and can exchange information and mutually entangle, making
the evolution of any observed subsector usually more complicated. This difference is
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why open systems can exhibit rich phenomena like thermalization and decoherence
not normally seen in a simple Wilsonian low-energy/high-energy split.

For quantum gravity the relative richness of open systems compared to Wilsonian
evolution is not just an academic point. This is because the existence of horizons
can famously prevent low-energy degrees of freedom from interacting (and being
measured) by other low-energy degrees of freedom. The description appropriate
for such situations is necessarily open and this is partly why horizons can have
surprising quantum implications.

Because near-horizon systems are open, their effective description can differ
from standard Wilsonian reasoning and it is worth exploring what this can mean.
This involves exploring how predictions are made for open systems and identifying
the differences from the standard Wilsonian approach. Since some steps differ from
standard Wilsonian practice, special attention must be paid to the domain of validity
for the approximations that are used. Of particular interest are features of Wilsonian
intuition (such as locality) that might not generalize to open systems more broadly.

This chapter summarizes some of those issues, but also describes how the sys-
tematic study of open systems brings a welcome bonus that is interesting in its own
right: it provides a method for dealing with ‘secular-growth’ problems often faced
by quantum systems in gravitational fields. Secular growth is the gravitational ver-
sion of something that is also generic elsewhere in physics:1 perturbative predictions
break down at sufficiently late times because there is always a time for which

U(t) = e−i(H0+Hint)t
/
' e−iH0t(1− iHintt) (2)

no matter how small Hint is compared with H0. As we review below, one of the
reasons for using open-system tools is they can sometimes allow reliable late-time
predictions to be made even when Hintt is order unity, even if the only available
calculations rely on perturbing in Hint.

Such tools are particularly important when drawing late-time inferences about
quantum systems in gravitational fields because intuition about these systems is of-
ten based on simple examples that interact only with the background gravitational
field and do not self-interact. It is tempting to think that this intuition should remain
reliable in the presence of self-interactions because these self-interactions might be
chosen as small as one wants. But smaller couplings only really delay when pertur-
bation theory fails, rather than remove its failure altogether. So more robust means
for making prediction are required when late-time behaviour is important. Quantum-
gravitational problems for which late-time evolution is crucial include black-hole
information loss and some issues of eternal inflation.

This chapter summarizes some early steps that have been taken applying open-
system techniques to gravity (for other preliminary applications in particle physics
and gravity respectively, see [3] and [4]), usually with late-time evolution specifi-
cally in mind. We do so from a purely personal perspective with the goal of laying
out the conceptual framework as clearly as we can, rather than trying to survey ex-

1 Scattering of wave packets of particles is one of the few physical questions where late-time
interactions need not be a problem because packet separation itself turns off late-time interactions.
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haustively everything that has been done. We inevitably will have missed describing
some gems within the literature along the way, and apologize in advance – both to
the authors and to you, the reader – for doing so.

1.1 Open quantum systems

The generic open-system problem restricts attention to a subset of observables lying
within some sector A within the full system’s Hilbert space. The goal is to compute
how these observables evolve in time, including in particular how this is influenced
by their interactions with all of the other unmeasured degrees of freedom.

For the reasons alluded to above, one usually does not seek to construct a uni-
versal Heff that captures the influence of all unmeasured degrees of freedom. One
instead sets up and solves a master equation that describes the time-evolution of the
state of the measured subsystem, and uses this to predict how measurements evolve.

To see how this works, suppose the Hilbert space for the quantum system of
interest contains two sectors, A and B, and measurements are only performed in
sector A (the ‘system’) while sector B (the ‘environment’) remains unmeasured. For
simplicity consider the case where the full system’s Hilbert space can be written as
a product of states in sector A and those in B, so a basis of states in the full system
can be decomposed as

|a,b〉= |a〉⊗ |b〉 . (3)

Observables involving only sector A are hermitian operators that can be written

OA = OA⊗ IB with matrix elements 〈a,b|OA|a′,b′〉= 〈a|OA|a′〉δbb′ . (4)

The focus in what follows is on describing the evolution of the system’s state, as
described by its density matrix

ρ̂ := ∑
I

pI |I〉〈I| := ∑
ab

pab |a,b〉〈a,b| , (5)

where pI = pab is the probability to find the system in state |I〉 = |a,b〉. As usual,
the sum over mutually exclusive probabilities must give one so Tr ρ̂ = ∑I pI = 1. A
‘pure’ state corresponds to the special case where the system’s state |ψ〉 is precisely
known and so

ρ̂ = |ψ〉〈ψ| (pure state) . (6)

Condition (6) being true for some (normalized) state |ψ〉 is equivalent to the condi-
tion ρ̂2 = ρ̂ and because all probabilities satisfy 0≤ pab ≤ 1 this is also equivalent
to the condition Tr ρ̂2 = Tr ρ̂ = 1. When ρ̂2 6= ρ̂ the state is said to be ‘mixed’ and
there is no |ψ〉 for which (6) is true.

Expectation values for observables are computed using ρ̂ by evaluating2

2 The ‘hat’ symbol is meant to emphasize that the operator is written in Schrödinger picture.
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〈Ô〉= ∑
I

pI〈I|Ô|I〉= Tr(ρ̂ Ô) . (7)

Within the Schrödinger picture this acquires a time-dependence through the time-
dependence of ρ̂(t), which is described by the evolution equation

i∂t ρ̂ =
[
H , ρ̂

]
, (8)

where H is the system’s Hamiltonian. Eq. (8) is equivalent to the usual Schrödinger
evolution i∂t |ψ(t)〉= H|ψ(t)〉 for a pure state satisfying (6).

Assuming the initial condition ρ̂(t = t0) = ρ̂0, eq. (8) is formally solved by

ρ̂(t) = Û(t, t0) ρ̂0 Û∗(t, t0) , (9)

where hermiticity of H ensures Û(t, t0) = exp[−iH(t−t0)] is unitary, and so satisfies
Û(t, t0)Û∗(t, t0) = 1. Furthermore Û(t, t1)Û(t1, t0) = Û(t, t0) while

i∂tÛ(t, t0) = H Û(t, t0) with initial condition Û(t0, t0) = I . (10)

So far this is all bog-standard quantum mechanics. The ‘open-system’ part of the
story starts once we assume the only observables of interest have the form (4), ex-
pressing that they probe only sector A.

For open systems the goal is to understand how measurements restricted to sector
A evolve in a way that refers as much as possible only to the measured sector A. A
key tool to this end is the ‘reduced’ density matrix, defined by tracing the full density
matrix over the unmeasured sector B:

ρ̂A := trB ρ̂ so 〈a| ρ̂A |a′〉= ∑
b
〈a,b| ρ̂ |a′,b〉 . (11)

This is useful because it defines an operator that acts only in sector A whose time
evolution completely determines the time-dependence of measurements of type (4)
that also act only in sector A, as may be seen from expressions like

〈ÔA〉 := Tr
[
ρ̂(t)ÔA

]
= ∑

aa′
∑
b
〈a,b| ρ̂ |a′,b〉〈a′| ÔA |a〉= trA

[
ρ̂A(t) ÔA

]
. (12)

In principle the evolution of ρ̂A is obtained by taking the trace of (8) over sector
B and integrating the result. In practice this is not so useful because the right-hand
side of the resulting equation depends on the entire density matrix ρ̂ (including what
the environmental sector is doing) rather than just being a function of ρ̂A. Happily,
this is a problem that has been solved in some generality, as is possible because both
the Liouville evolution (8) and the projection from ρ̂ onto ρ̂A are linear operations
on the space of density matrices. One must set up and solve the evolution equation
for the state of the environment and use this to eliminate the environment from the
expression for ∂t ρ̂ .

To this end define the super-operator P to act on a general operator O by
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P(O) := trB(O)⊗ρB . (13)

Here ρB is a density matrix that characterizes the state of sector B (the environment)
that is specified in more detail later. Because trBρB = 1 it follows that P is a pro-
jection operator: P2 = P . It also satisfies P(ρA⊗ρB) = ρA⊗ρB and so P does
nothing if it acts on a density matrix for which sectors A and B are uncorrelated.
Finally, P[ρ̂(t)] = ρ̂A(t)⊗ ρB, where ρ̂A(t) = trBρ̂ is the reduced density matrix
whose time-evolution we seek.

Because P is a projection super-operator, the same is also true for its comple-
ment Q := 1−P: i.e. Q satisfies Q2 = Q and PQ = QP = 0. In this same
language time evolution is also described by a linear super-operator, since (8) can
be written ∂t ρ̂ = Lt(ρ̂) where

Lt(O) :=−i
[
H,O

]
. (14)

The evolution of P(ρ̂) and Q(ρ̂) with time is easily found by projecting the evolu-
tion equation (8) using P and Q. Using P(∂t ρ̂) = ∂tP(ρ̂) and P+Q = 1 allows
(8) to be rewritten as the pair of equations

∂tP(ρ̂) = P(∂t ρ̂) = PLt(ρ̂) = PLtP(ρ̂)+PLtQ(ρ̂) (15)
and ∂tQ(ρ̂) = Q(∂t ρ̂) = QLt(ρ̂) = QLtP(ρ̂)+QLtQ(ρ̂) .

Now comes the main point: the second of these equations can be used to eliminate
Q(ρ̂) from the right-hand side of the first equation, thereby obtaining an evolution
equation that involves only P(ρ̂). This solves our problem of setting up an evo-
lution equation for the reduced matrix ρ̂A to the extent that we can use P(ρ̂) as a
proxy for ρ̂A, and these indeed would agree at an initial time t0 if the initial state
were assumed to be uncorrelated:

ρ̂(t0) = ρ̂A(t0)⊗ρB . (16)

In general the evolution of P(ρ̂(t)) = ρ̂A(t)⊗ρB does not agree with that of ρ̂(t)
because for P(ρ̂) the environment (sector B) does not evolve. But ρ̂ and P(ρ̂)
nonetheless by construction agree with one another once sector B is traced out and
so agree on time dependence for observables acting only in A.

Because eqs. (15) are linear they can be solved fairly explicitly. If we define the
super-operator G (t,s) as the solution to ∂tG (t,s) = QLtG (t,s) with initial condi-
tion G (t, t) = 1 then G (t,s) is given explicitly by

G (t,s) = 1+
∞

∑
n=1

∫ t

s
ds1 · · ·

∫ sn−1

s
dsn QLs1 · · ·QLsn

= 1+
∞

∑
n=1

1
n!

∫ t

s
ds1 · · ·

∫ t

s
dsn T

[
QLs1 · · ·QLsn

]
, (17)
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where T denotes time-ordering of the QLsi . This allows the solution for Q[ρ̂(t)]
with initial condition Q[ρ̂(t0)] = Q(ρ̂0) to be written

Q[ρ̂(t)] = G (t, t0)Q(ρ̂0)+
∫ t

t0
dsG (t,s)QLsP[ρ̂(s)] , (18)

as can be verified by explicit differentiation, using ∂tG (t,s) =QLtG (t,s). Inserting
this into the first of eqs. (15) gives the desired evolution equation for P(ρ̂)

∂tP[ρ̂(t)] = PLtP[ρ̂(t)]+PLtG (t, t0)Q(ρ0)+
∫ t

t0
dsK (t,s)[ρ̂(s)] , (19)

where K (t,s) = PLtG (t,s)QLsP . The second term on the right-hand side van-
ishes for the uncorrelated initial condition ρ0 = ρ̂(t0) = ρ̂A(t0)⊗ρB since this satis-
fies P(ρ0) = ρ0 and so Q(ρ0) = 0.

Eq. (19) is an integro-differential master equation – initially due to Nakajima and
Zwanzig [5, 6] – that contains the same information for sector A as does the original
evolution equation (8). It is also typically no easier to solve. Its main virtue is that
ρ̂(t) only appears in it through the combination P[ρ̂(t)] and so it expresses ∂t ρ̂A

directly in terms of ρ̂A itself.
The final result is most useful when the interaction between sectors A and B can

be treated perturbatively. To this end we write

H = H0 +V̂ with H0 = HA +HB (20)

and switch to the interaction picture so O(t) = eiH0(t−t0)Ô e−iH0(t−t0), so that state
evolution is controlled only by V (t) = eiH0(t−t0)V̂ e−iH0(t−t0), which we expand in a
basis of operators

V (t) = ∑
n

An(t)⊗Bn(t) . (21)

In interaction picture the evolution superoperator becomes Lt(O) = −i[V (t) ,O]
and (19) can be fruitfully expanded in powers of V (t).

For our later purposes it suffices to work only to second order in V , in which
case the kernel becomes K 'K2 =PLtQLsP . Choosing an uncorrelated initial
condition for the interaction-picture density matrix, ρ(t0) = ρA(t0)⊗ ρB, eq. (19)
reduces to the following approximate expression

∂t ρA(t) = −i∑
n

[
An(t),ρA(t)

]
〈〈 Bn(t) 〉〉

+(−i)2
∑
mn

∫ t

t0
ds

{[
Am(t),An(s)ρA(s)

]
〈〈δBm(t)δBn(s)〉〉 (22)

−
[
Am(t),ρA(s)An(s)

]
〈〈δBn(s)δBm(t)〉〉

}
+O(V 3) ,
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which introduces the notation 〈〈(· · ·)〉〉= trB[(· · ·)ρB] for averages over sector B and
δB :=B−〈〈B 〉〉. The implications of this equation when applied to gravitating systems
are explored at some length below.

So far the discussion has been general, but perhaps puzzling to find in a review
volume on effective field theory. We next introduce a hierarchy of scales since this
lies at the root of the simplicity that EFT methods exploit. In the present instance
it is more useful to express this hierarchy in the time domain (rather than energy)
and so we now assume sector B includes ‘fast’ degrees of freedom relative to a
set of slower variables that are of interest in sector A. In particular, we assume the
correlation functions 〈〈δBn(t)δBm(s)〉〉 fall to zero once t− s is much larger than a
characteristic time-scale, τc. A useful hierarchy arises if τc is much smaller than the
time scale tA over which the evolution of ρA(t) is sought.

Under these assumptions eq. (22) becomes approximately local in time because
the rest of the integrand varies much more slowly than 〈〈δBn(t)δBm(s)〉〉 near s = t
and so can be Taylor expanded about s = t, with the logic that contributions of
successive terms to the integral should be suppressed by powers of τc/tA. Once this
is done ρA(t) (and its derivatives) can be factored out of the integral. In this case the
evolution equation for ρA simplifies to

∂t ρA '−i
[
∑
n

An 〈〈Bn 〉〉+∑
mn

hmnAmAn,ρA

]
+∑

mn
γmn

[
An ρAAm−

1
2
{AmAn,ρA}

]
, (23)

where the coefficients and operators on the right-hand side are all evaluated at a the
same time, t, as for the left-hand side and{

γmn :=Cmn +C∗nm

hmn := 1
2i (Cmn−C∗nm)

with Cmn(t) :=
∫ t

t0
ds 〈〈δBm(t)δBn(s)〉〉 , (24)

where hermiticity of the Bn’s implies γ∗nm = γmn and h∗nm = hmn.
This is precisely the equation we would have obtained if the sector-B correlation

function were approximately local in time,

〈〈δBm(t)δBn(s)〉〉 'Cmn(t)δ (t− s) , (25)

An approximate master equation of this type is called a Lindblad — or GKSL
(Gorini, Kossakowski, Sudarshan, Lindblad) — equation [7, 8]. The hermiticity and
positivity of γmn is crucial for ensuring that ρA remain hermitian and non-negative
for all t, as is required for its eigenvalues to carry a probability interpretation.

Eq. (23) is much easier to work with than (22) because it is Markovian in the
sense that ∂t ρA(t) depends only on other variables at time t and not on the entire
history of evolution prior to this time. We next expand on why this property also can
be useful for extending to later times the predictions of perturbation theory.
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1.2 Late-time failure of perturbative methods

As mentioned earlier, whenever a system interacts with a persistent environment
it is generic that perturbative methods eventually fail to accurately capture time-
evolution: exp[−i

∫
V dt] eventually differs significantly from 1− i

∫
V dt. Yet we are

often able to make reliable late-time predictions anyway, even when
∫

V dt is or-
der unity. In §2.2 we provide a few examples where this kind of ‘secular growth’
of perturbative corrections actually arise in gravitational settings, but for now we
just briefly review when and why this is possible, and argue why an evolution like
eq. (23) can sometimes give reliable late-time predictions despite being derived from
(22) (whose utility in the far future generically breaks down).

1.2.1 Radioactive decay

Radioactive decay is instructive in this context because it provides a well-understood
example where the apparent breakdown of perturbation theory at late times can be
circumvented. Consider therefore an unstable parent particle that spontaneously de-
cays (perhaps through the weak interactions) into a collection of daughter particles:
P→ D1 +D2 + · · · . In the simplest situations such decays can be computed pertur-
batively and arise – in the absence of a conservation law that forbids the decay –
due to the existence of a nonzero matrix element 〈D1,D2, · · · |V |P〉 ∼O(g) for some
coupling g� 1. Standard expressions give the differential decay rate

dΓ ∝ |〈D1,D2, · · · |V |P〉|2 = O(g2) , (26)

showing that decays first arise at second order in the interaction responsible.
More subtle is the justification for the (survival) probability for a parent particle

not to decay, that follows the well-known exponential decay law,

p(t) = e−Γ (t−t0) . (27)

Eq. (27) is experimentally verified to hold for times much longer than the decay’s
mean lifetime, τ = 1/Γ , and so for times Γ (t− t0)� 1. Given that Γ is computed
only to order g2 how can (27) be regarded as more accurate than the strictly pertur-
bative result

p(t)' 1−Γ (t− t0)+ · · · , (28)

once t− t0 >∼ τ?
Exponential decays arise whenever the survival probability p(t) is a solution to

dp
dt

=−Γ p . (29)

Although this evolution equation is consistent with (28) it has a broader domain of
validity because it relies only on the likelihood of decays in any short interval dt
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being independent of decays in any other time windows. The value of Γ appearing
in the exponential can be extracted from (28) because it agrees with (29) for small
times, but once this is done the solutions to (29) can be trusted for much longer
times (see Fig. 1).

Fig. 1 Perturbation theory gives a survival probability that is linear in t, but does so over a tiny
interval t ∈ [0, t1] for which Γ t � 1. Because the evolution equation for N(t) = p(t)N0 implies
dN/dt is local in time it applies equally well for any interval (tn, tn+1) using perturbative methods,
making its solutions valid over the union of all possible such intervals. The evolution equation
stitches together the perturbative expressions to give the resummed solution N(t)' N(0)e−Γ t out
to very late times.

This is a very powerful line of argument, and when it works it allows working
to all orders in g2t without having to understand all observables at all orders in g.
Use of the leading-order expression Γ ∼ O(g2) when integrating (29) amounts to
resumming all orders in g2t while dropping terms like g4t that involve extra powers
of the interaction V without the corresponding extra powers of t. Integrating (29)
using an order g4 expression for Γ similarly gives a result valid to all orders in g4t
while dropping terms like g6t and so on.

The key to this argument is the derivation of an evolution equation like (29) that
can have broader validity than a straight-up perturbative approach. This is possible
because the evolution equation itself does not make explicit reference to the initial
time, and so could apply equally well for any initial starting point t0. The same argu-
ment would not be expected to be possible using (22), for instance, since although
this equation is derived on very general grounds its right-hand side makes explicit
reference to both t0 and t. It could apply to the evolution given in (23) however –
such as if Cmn defined in (24) were independent of t0 – because this also makes
explicit reference only to physics at time t (and not to quantities like t0).
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1.2.2 Qubit thermalization

To make the above discussion concrete it is useful to examine an explicit example
for which a Lindblad-type equation describes late-time behaviour. We also build in
two features that are useful in some of the examples to follow: they involve thermal
environments and reduced evolution is only sought for a simple two-level system (a
qubit) for which all calculations can be made very explicit.

To this end consider a two-level system (with levels split by energy ω) coupled to
an environment (taken here to be a relativistic real massless scalar field) prepared in
a thermal state with temperature T . The unperturbed Hamiltonian is therefore taken
to be H0 = HA⊗ IB + IA⊗HB where

HA =
ω

2

(
1 0
0 −1

)
and HB =

1
2

∫
d3x

[
(∂tφ)

2 +(∇φ)2
]
. (30)

Massive fields can be treated equally explicitly though involve somewhat more cum-
bersome expressions.

The interaction-picture interaction linking these two systems is assumed to be

V (t) = gα(t)⊗φ [x0, t] (31)

with the field evaluated at the qubit’s (static) position x(t) = x0 and

α(t) =
(

0 0
1 0

)
e−iωt +

(
0 1
0 0

)
eiωt (32)

involves the qubit’s raising and lowering operators in the interaction picture. The
dimensionless coupling g� 1 is assumed small enough to justify perturbative meth-
ods. Putting ω into H0 rather than V and working with non-degenerate perturbation
theory assumes ω to be much larger than any perturbative field-induced shift in
qubit energies, a condition made more explicit in (45) below.

The field φ is prepared in an initial thermal state

ρB =
1
Z

exp
[
−βHB

]
, (33)

with temperature T = 1/β and Z = trB[exp(−βHB)] and so its Wightman function
W (x, t;x′, t ′) := 〈〈φ(x, t)φ(x′, t ′)〉〉 can be explicitly evaluated at coincident spatial
points x = x′ = x0. For a massless scalar field this gives

W (s) :=W (x0, t + s;x0, t) =−
1

4β 2
[

sinh(πs/β )− iε
]2 , (34)

where ε→ 0+ at the end of the calculation. Notice that W (s) falls off exponentially
once s� β/π and diverges like 1/s2 as s→ 0.

Substituting these expressions into the Nakajima-Zwanzig equation (22) and
eliminating ρ↓↓ and ρ↓↑ using tr ρ = 1 and ρ = ρ† shows the diagonal and off-
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diagonal components of ρA evolve independent of one another at O(g2),

∂ρ↑↑
∂ t

= g2
∫ t

−t
ds W (s)e−iωs−4g2

∫ t

0
ds Re[W (s)] cos(ωs)ρ↑↑(t− s) , (35)

and

∂ρ↑↓
∂ t

= −2g2
∫ t

0
ds Re[W (s)]eiωs

ρ↑↓(t− s) (36)

+2g2 e2iωt
∫ t

0
ds Re[W (s)]e−iωs

ρ
∗
↑↓(t− s) ,

where we assume uncorrelated initial conditions ρ(t = 0) = ρ0⊗ρB with ρ0 (so far)
unspecified.

If we choose the initial condition ρ0 = |↓〉〈↓| then both ρ↑↑ and ρ↑↓ are at most
O(g) and so can be dropped on the right-hand side if we strictly work only to O(g2).
The resulting expressions reduce to ∂tρ↑↓ <∼ O(g3) and

∂ρ↑↑
∂ t
' g2

∫ t

−t
ds W (s)e−iωs , (37)

showing how the interaction with the thermal field starts to occupy the qubit’s
excited state. Because W (s) is exponentially peaked around s = 0 with width β

the right-hand side of this equation quickly approaches the t-independent constant
g2R(ω) for t� β , where

R(ω) =
∫

∞

−∞

dsW (s)e−iωs =
1

2π

ω

eβω −1
. (38)

Integrating (37) to obtain ρ↑↑(t) then gives the characteristic linear dependence on
t that signals a breakdown of perturbation theory at times t >∼ τp := [g2R(ω)]−1.
Notice that this breakdown occurs at a time depending sensitively on βω , with τp '
2πβ/g2 when βω � 1 and τp ' (2π/g2ω)eβω when βω � 1.

To learn the behaviour of ρA(t) for t ∼ τp we return to equations (35) or (36).
Progress can be made if the rest of the integrand varies only over times very long
compared with the support of W (τ), in which case we can expand terms like

α(t− s)ρab(t− s)' α(t)ρab(t)− s
[
∂t

(
α ρab

)]
s=0

+ · · · , (39)

and integrate the result term by term. Here α(t) is the interaction-picture matrix
appearing in (31) whose presence is responsible for oscillatory factors involving
e±iωt . In particular, the combination α ρab can only vary slowly over times of order
β if βω � 1, which we henceforth assume.

Dropping all but the first term of the expansion (39) in (35) and (36) leads to
Markovian evolution of the form of (23), which for ρ↑↑ and ρ↑↓ becomes
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∂ρ↑↑
∂ t
' g2R0

[
1−2ρ↑↑(t)

]
, (40)

and
∂ρ↑↓

∂ t
'−g2R0

[
ρ↑↓(t)+ e2iωt

ρ
∗
↑↓(t)

]
, (41)

with R0 = (2πβ )−1 the βω � 1 limit of the function R(ω) given in (38). Because
(40) makes no reference to the initial time, its domain of validity is broader than
straight-up perturbation theory would be, allowing its solutions to be trusted at later
times through the same reasoning as used above for exponential decays.

Integrating leads to the solutions

ρ↑↑(t) =
1
2
+

[
ρ↑↑(0)−

1
2

]
e−t/ξd0 , , (42)

and

ρ↑↓(t) =
[

ρ↑↓(0)+
ig2R0

2ω

(
1− e2iωt

)
ρ
∗
↑↓(0)

]
e−t/ξc0 , (43)

with3

ξc0 = 2ξd0 =
1

g2R0
=

2πβ

g2 . (44)

For small times eq. (42) agrees with the βω → 0 limit of (37) and describes initial
qubit excitation due to the presence of the field. But eqs. (42) and (43) also apply
for t ∼ ξd0 and describe late-time relaxation towards a steady state in which the
qubit becomes completely mixed (more about which below): ρA→ ρ∞ = diag( 1

2 ,
1
2 ).

Notice that the late-time relaxation rate ξd0 differs from the timescale 1/(g2R0) that
describes the early-time perturbative excitation rate out of the ground state – given
by (37) and (38) – even when βω → 0.

We can now better quantify the size of the contributions to (35) and (36) by the
subdominant terms in the expansion (39). These should be suppressed by powers of
either βω/π or β/(πξd0) = 2g2βR0/π ' (g/π)2 and so are indeed negligible for
perturbatively small g provided βω � 1 as well. We may also better quantify the
lower limit on ω alluded to earlier that is required by our use of nongenerate per-
turbation theory (which assumes the effects of V (t) are perturbatively small relative
to HA). This requires ω � g2R0 ' g2/(2πβ ) and so combining all requirements we
find that late-time evolution becomes Markovian and reliably computable within the
regime

1� ωβ � g2

2π
. (45)

In the above treatment predictions acquire corrections as powers of βω once the
higher-order contributions in (39) are included. We note in passing that some of
this ω-dependence can be explored if only the density matrix is Taylor expanded:
ρab(t − s) ' ρab(t)− s∂tρab(t) + · · · without also expanding α(t − s) as in (39).

3 This result turns out to saturate a general upper bound ξc0 < 2ξd0.
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Doing so in (35) modifies (40) to

∂ρ↑↑
∂ t
' g2R−2g2C ρ↑↑(t) , (46)

where R(ω) is given by (38) and the new function C(ω) is defined by

C(ω) :=
∫

∞

−∞

ds
[
Re W (s)

]
cos(ωs) =

ω

4π
coth

(
βω

2

)
. (47)

This does not mean we get to drop the requirement that βω must be small since this
is still required to ensure that subdominant terms of the expansion of ρab(t− s) are
small relative to the leading contribution [9].

The solution to (46) with R and C given by (38) and (47) is

ρ↑↑(t) =
1

eβω +1
+

[
ρ↑↑(0)−

1
eβω +1

]
e−t/ξd , (48)

with

ξd =
1

2g2C(ω)
=

2π

g2ω
tanh

(
βω

2

)
. (49)

We see from this that the late-time evolution of ρA describes thermalization; the
qubit relaxes towards the thermal state

ρth :=

[
1

1+eβω
0

0 1
1+e−βω

]
=

[
e−βω 0

0 1

]
1

1+ e−βω
, (50)

that shares the field’s temperature. ρth is the unique static solution to (46) – and to
(52) below – and so is the state to which solutions relax.

A similar story goes through for ρ↑↓, with Taylor expansion of ρ↑↓(t− s) again
removing the history-dependence of eq. (36), but with a few complications. The
complications arise because the equation obtained after Taylor expansion involves a
new function

∆(ω) := 2
∫

∞

0
dsRe[W (s)]sin(ωs) . (51)

as well as the function C(ω) encountered in (47). This new function causes problems
partly because it diverges in the s→ 0 part of the integration region. (The function
C does not similarly diverge because of the Wightman function’s iε factor seen in
eq. (34).) This is an ultraviolet divergence, and because it appears together with the
qubit frequency ω it can be renormalized into the physical frequency: ωR =ω+g2∆ .

The second complication arises because the finite part of ∆ is proportional to ω

in the limit βω � 1 and as a result is systematically smaller in this limit than is
C ∝ β−1, requiring ∆ to be neglected relative to C. If these ∆ -dependent terms are
mistakenly kept then comparing (46) and (52) with the general Lindblad form (23)
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shows that the matrix γmn that results is not positive.4 Careful treatment shows that
the apparent negative eigenvalues are always spurious if one religiously restricts to
the domain of validity of all approximations (as must be the case).

Keeping these points in mind, the resulting leading evolution equation again has
the Lindblad form, (23),

∂ρ↑↓
∂ t
'−g2C ρ↑↓(t)+g2C e2iωt

ρ
∗
↑↓(t) , (52)

with solution

ρ↑↓(t) =
[

ρ↑↓(0)+
ig2C
2ω

(
1− e2iωt

)
ρ
∗
↑↓(0)

]
e−t/ξc , (53)

where ξc = 2ξd and we drop the subscript ‘R’ on ωR.
We learn two general things from this example. First, open systems can exhibit

phenomena not seen in isolated quantum systems, such as the evolution from pure
to mixed states that underlies the processes of decoherence and thermalization. Sec-
ond, although straight-up perturbation in g fails to reliably capture evolution at late
times where g2t cannot be neglected, this failure can under some circumstances be
resummed to give reliable results that are valid to all orders in g2t. In this example
the late-time evolution can be inferred because the full Nakajima-Zwanzig evolution
becomes well-described by an approximate Lindblad equation that expresses how
very slow evolution compared with the environment’s typical correlation time can
become Markovian (and so simpler). Solutions to the resulting Lindblad equation
can be trusted at late times if its perturbative derivation works equally well in any
small time interval.

1.2.3 Secular growth for thermal fields

Although it is generic that secular growth can arise for open quantum systems, does
it actually arise for gravitating systems with horizons? The complete answer to this
is not known because in many systems (such as black holes) the required calcu-
lations have not yet been completely performed. But the oft-remarked similarity
between systems with horizons and thermal systems provides strong circumstantial
evidence that secular growth is as ubiquitous as it is for thermal systems.

This section describes a simple example of this that is useful for the purposes of
later comparison. To this end consider the same real scalar field prepared in a ther-
mal state that was examined above as the environment with which a qubit interacted.
But this time we ignore the qubit sector completely and instead study scalar-field
self-interactions as expressed by the action

4 Similar issues also arise in optics where a laser plays the role of the environment, and is tuned
to a frequency close to ω , which is not small. In these applications a sensible Lindblad form is
instead obtained only after performing a rotating wave approximation that averages over the fast
oscillations. Such steps are not required in the applications considered here.
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S =−
∫

d4x
√−g

[
1
2

gµν
∂µ φ ∂ν φ +

λ

4
φ

4
]
, (54)

with coupling λ chosen to be small and our interest lies in the validity of perturbative
calculations in powers of λ . The gravitational field is included for future purposes
though the appearance of the metric gµν , but in this section we work purely in
flat Minkowski space. In a Hamiltonian formalism this amounts to replacing the
operator HB of (30) with Htot = HB +Hint where the self-interaction term is Hint =
1
4!
∫

d3xλφ 4. In terms of this the field’s thermal state is – c.f. eq. (33):

ρ =
1
Z

exp
[
−βHtot

]
, (55)

with β = 1/T the inverse temperature and Z chosen as usual to ensure Tr ρ = 1.

&%
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sx y

Fig. 2 Feynman graph giving the leading one-loop ‘tadpole’ correction to the scalar propagator.
The result from this graph must be summed with the tree-level two-point counter-term graph.

We seek an example of how secular growth arises for this scalar-field system
and so identify a quantity whose O(λ ) correction is a growing function of time. We
follow [10] and use the Feynman correlation function G(x;y) = 〈T φ(x)φ(y)〉 as our
example, where T denotes time-ordering and the average is taken using the thermal
state (55). To study secular evolution we compute order-λ corrections to G(x,y), and
because we wish time-dependence to be explicit we work in the real-time formalism
computed within the Schwinger-Keldysh (or “in-in”) framework [11, 12].

The leading correction in this case comes from the tadpole graph of Fig. 2. The
loop part of this graph turns out to be position-independent and diverges in the ultra-
violet (UV) in a temperature-independent way. Because it is temperature indepen-
dent the UV divergence can be renormalized in the same way as at zero temperature,
by choosing a mass counterterm to ensure that the renormalized zero-temperature
mass remains zero. Once this is done, evaluation of the loop subgraph within Fig. 2
using the thermal state gives the finite O(λ ) temperature-dependent mass shift

δm2
T =

λT 2

4
=

λ

4β 2 . (56)

Using this self-energy in the remainder of the graph and evaluating the result at
zero spatial separation, y = x leads to the following form in the limit of large time
difference y0− x0 = t:
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Gtad(x0,x;x0 + t,x)' δm2
T Tt

8π
+ · · ·= λT 3t

32π
+ · · · , (57)

where the ellipses denote terms that grow more slowly than linearly for large t.
Behold secular growth: for sufficiently large t the correction to G(x,y) is not small
no matter how small λ is chosen to be.

&%
'$&%
'$

s
s

x y

Fig. 3 Feynman graph giving a subleading two-loop ‘cactus’ correction to the scalar propagator.
Although this is not the only two-loop contribution, it is noteworthy because of the power-law IR
divergences it acquires due to the singularity of the Bose-Einstein distribution at small momenta.

Secular growth is related to (but not identical with) the infrared divergences
that can arise when performing loops because both involve intermediate states with
arbitrarily small frequency. This connection schematically arises because unusual
growth at large times in a correlation function is usually related to singular be-
haviour for the small-frequency part of its Fourier transform, and such singularities
can cause loop integrals to diverge because of contributions near ω = 0. It is useful
to further explore this connection since the resummation method used to handle IR
divergences suggests how secular effects might also be resummed (at least in this
particular example).

Although the graph of Fig. 2 itself is infrared finite when the particles in the
loop are massless, the same is not true for the higher loop ‘cactus’ graph of Fig. 3.
The dangerous part of this graph for small k comes from the two propagators in the
bottom loop which make it diverge logarithmically ∝

∫
d4k/(k2)2 even at zero tem-

perature. By contrast, the bottom loop instead diverges like a power of the IR cutoff
at finite temperature because of the singularity of the Bose-Einstein distribution5

nB(k) = (ek/T −1)−1 ' T/k for k� T contributing a factor

lower loop ∝
λT
ωIR

, (58)

where ωIR is an IR cutoff.
Notice that the zero-temperature limit of the entire graph of Fig. 3 (including

the IR divergent part) precisely cancels with the graph where the upper loop is re-

5 If evaluated in Euclidean signature the more singular behaviour arises because the replacement
of the frequency integral by a Matsubara sum means one integrates only over spatial momenta d3k.
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placed by the mass counter-term once this counterterm is chosen to ensure m2 = 0
at zero temperature. The same cancellation does not also occur at finite temperature
because the counter-term only cancels the zero-temperature part of the top loop’s
contribution.

Having Fig. 3 be proportional to (58) means that frequencies ω ≤ λT contribute
unsuppressed relative to Fig. 2 because the large factor of T/ωIR compensates for
the small factor λ . The same is true for graphs with multiple bubbles added on top
of one another since each extra bubble contributes an additional factor of (58). This
signals a breakdown of perturbative methods since having λ be small no longer
ensures that graphs with additional divergent higher loops come with the penalty of
a small loop-counting parameter, and suggests rethinking the split within the total
Hamiltonian between H0 and Hint to obtain a better-converging expansion.

The particular divergent contributions coming from IR divergent bubble graphs
are indeed famously resummed by moving the temperature-dependent mass into
the unperturbed Hamiltonian – i.e. by adding and subtracting the temperature-
dependent mass shift δm2

T and putting m2 + δm2
T into H0. In this case all inter-

nal lines represent massive states and the new δm2
T = 0 because the self-energy

graphs systematically cancel with the corresponding graphs with the final bubble
replaced by new mass counter-term, a well-known ‘hard-thermal-loop’ resumma-
tion [13, 14].6 This suggests that secular growth might similarly be resummed by
perturbing around the full temperature-dependent mass.

1.3 Influence Functionals

An alternative approach to open systems uses the Feynman-Vernon influence func-
tional [15], which is the path-integral version of the Hamiltonian evolution story told
above for operators (see [2, 16, 17, 18] for textbook descriptions of this technique
and [19] for a non-exhaustive list of their early use in general non-equilibrium and
gravitational settings). One of their advantages is they are easily adapted to focus
directly on correlation functions – as opposed to the reduced density matrix – and
so can often allow one to cut directly to the chase when computing observables.

To make the transition to path integrals we start with the standard expression for
transition amplitudes 〈ϕ1|U(t, t0)|ϕ2〉, where U(t, t0) is the unitary time evolution
operator defined in (10). These have the standard path integral representation

〈ϕ2|U(t, t0)|ϕ1〉 =
∫

ϕ2

ϕ1

Dφ eiS[φ ] (59)

6 Although controlled resummation can be possible for scalars whose mass vanishes at zero tem-
perature, it need not be true in general that the perturbative breakdown associated with IR diver-
gences can always be removed by resumming specific subsets of higher-order graphs. An example
where this does not work arises when the total temperature-dependent mass m2 = m2

0 +δm2
T van-

ishes for some nonzero temperature. This corresponds to arranging the theory to sit at a critical
point, for which it is well-known that mean-field (perturbative) calculations are simply not a good
approximation.
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where S[φ ] is the system’s classical action

S[φ ] =
∫ t

t0
dt ′ L[φ ; t ′] , (60)

and |ϕ j〉 are eigenstates of the Schrödinger-picture field operator φ̂(x), so

φ̂(x)|ϕ j〉= ϕ j(x)|ϕ j〉 , (61)

and for notational clarity the x-dependence of the eigenvalues in eq. (59) is sup-
pressed when used as a label for a bra and ket. The limits of integration indicate
that the integral sums over all configurations whose end points are chosen to be the
specified initial and final eigenvalues: φ(x, t0) =ϕ1(x) and φ(x, t) =ϕ2(x). The path
integral (59) describes the probability amplitude that the system finds itself in the
eigenstate |ϕ2〉 at time t given it began in the eigenstate |ϕ1〉 at the initial time t0.

This can be turned into a path-integral representation for the density matrix by
noting that the density matrix evolves as ρ̂(t) =U(t, t0) ρ̂0 U∗(t, t0) – c.f. eq. (9) – in
the Schrödinger picture. This ensures its matrix elements can be written as

〈ϕ2|ρ̂(t)|ϕ1〉 = 〈ϕ2|U(t, t0) ρ̂0 U∗(t, t0)|ϕ1〉 (62)
= ∑

ϕ3,ϕ4

〈ϕ2|U(t, t0)|ϕ4〉 〈ϕ4|ρ̂0|ϕ3〉 〈ϕ1|U(t, t0)|ϕ3〉∗

which inserts two resolutions of the identity. Using (59) one finds

〈ϕ2|ρ̂(t)|ϕ1〉 = ∑
ϕ3,ϕ4

∫
ϕ2

ϕ4

Dφ
+
∫

ϕ1

ϕ3

Dφ
− eiS[φ+]−iS[φ−]〈ϕ4|ρ̂0|ϕ3〉 (63)

where the path integration takes place over two independent field variables, la-
belled φ+ and φ−, that satisfy the distinct boundary conditions φ+(x, t) = ϕ2(x),
φ+(x, t0) = ϕ4(x) and φ−(x, t) = ϕ1(x), φ−(x, t0) = ϕ3(x).

Expressions such as (63) are the point of departure for the Schwinger-Keldysh
formalism – or ‘in-in’ or ‘closed-time path’ formalism – used in §1.2.3 to calcu-
late field theoretic quantities like eq. (57) for thermal correlators [20]. For a simple
example of how this works, notice that one can use eq. (63) to write equal-time
correlation functions in terms of the diagonal components of ρ̂ ,

Tr
[
φH(t,x)φH(t,x′)ρ̂0

]
= Tr

[
φ̂(x)φ̂(x′)ρ̂(t)

]
= ∑

ϕ

ϕ(x)ϕ(x′) 〈ϕ|ρ̂(t)|ϕ〉

= ∑
ϕ,ϕ3,ϕ4

ϕ(x)ϕ(x′)
∫

ϕ

ϕ4

Dφ
+
∫

ϕ

ϕ3

Dφ
− eiS[φ+]−iS[φ−]〈ϕ4|ρ̂0|ϕ3〉 , (64)

where Heisenberg picture operators are defined in terms of Schrödinger picture op-
erators by

φH(t,x) =U∗(t, t0)φ̂(x)U(t, t0) . (65)
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In this formalism, one interprets path integrations such as the one in (64) as per-
formed over a deformed time contour which starts at the initial time t0, propagates
out to the later time t (where the boundary conditions in (64) are identified), and
then backwards to the initial time t0, as depicted in Figure 4. The field variable liv-
ing on either branch of the ‘closed-time path’ are treated as independent variables
(φ+ and φ−) as conveyed by earlier formulas.

The Schwinger-Keldysh framework is most useful when one only has informa-
tion about the initial state (i.e. being ignorant of the ‘out’ state) and so is well-
equipped for dealing with non-equilibrium time evolution (generally the case in cos-
mology). It is also useful for time-evolving mixed states (including thermal states7)
since quantum averages can be expressed in terms of expectation values over the
‘doubled’ degrees of freedom — what is useful about this is that it allows one to
use standard techniques of QFT (e.g. Feynman diagrams) in this more complicated
setting.

time•
t0

•
t

•

•

→ →

← ←

φ+

φ−

1

Fig. 4 Depiction of the closed-time path contour. Since only initial data is known (as opposed to
the standard “in-out” situation in scattering calculations), averages like eq. (64) computed via path
integrals start at time t0, flow out to t, and then back to t0. The value of the field on the upper
and lower branches are denoted by φ+ and φ− and are treated as independent variables. In the
literature, the contours are sometimes translated above and below the time axis by a tiny amount
±iε to help with convergence of the path integrations.

For the present purposes, formula (63) becomes most interesting in an open sys-
tems setting when the action S[φA,φB] is a function of system φA and environment φB

degrees of freedom. Using the notation from earlier, this means that the components
of the full density matrix (63) here become instead

〈a2,b2|ρ̂(t)|a1,b1〉 = ∑
a3,a4,b3,b4

∫ a2

a4

Dφ
+
A

∫ b2

b4

Dφ
+
B

∫ a1

a3

Dφ
−
A

∫ b1

b3

Dφ
−
B

× eiS[φ+
A ,φ+

B ]−iS[φ−A ,φ−B ]〈a4,b4|ρ̂0|a3,b3〉 , (66)

where the lower (and upper) end points on the path integrals are fixed at time t0 (and
t) as in (63). When the system and environment interact through an action of the

7 When dealing with thermal states at temperature 1/β , one usually further deforms the contour in
Fig. 4 to include a third piece that points in the imaginary time direction starting at time t0, where
one identifies t0 with t0 + iβ — ultimately this is a manifestation of the Kubo-Martin-Schwinger
(KMS) detailed-balance condition obeyed by thermal correlators [21, 22].
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form
S[φA,φB] = SA[φA]+SB[φB]+Sint[φA,φB] . (67)

for some interaction Sint, then one can trace over the environment to find the ele-
ments of the (Schrödinger-picture) reduced density matrix ρ̂A to get the path-integral
representation

〈a2|ρ̂A(t)|a1〉= ∑
b
〈a2,b|ρ̂(t)|a1,b〉 (68)

= ∑
a3,a4

∫ a2

a4

Dφ
+
A

∫ a1

a3

Dφ
−
A eiSA[φ

+
A ]−iSA[φ

−
A ]+iSIF [φ

+
A ,φ−A ]〈a4|ρA(t0)|a3〉 .

This last expression packages the entire effect of the environment into SIF [φ
+
A ,φ−A ],

called the influence functional, defined by

eiSIF [φ
+
A ,φ−A ] := ∑

b,b3,b4

∫ b

b4

Dφ
+
B

∫ b

b3

Dφ
−
B (69)

× eiSB[φ
+
B ]+iSint[φ

+
A ,φ+

B ]−iSB[φ
−
B ]−iSint[φ

−
A ,φ−B ] 〈b4|ρB|b3〉 .

which assumes an uncorrelated initial condition ρ0 = ρA(t0)⊗ρB, as in (16).
A few comments are in order. In general SIF [φ

+
A ,φ−A ] is composed of interactions

between φ
+
A and φ

−
A (as well as self-interactions for each). This is distinct from the

usual situation in the Schwinger-Keldysh formalism – see eq. (63) – where the ac-
tions for φ

+
A and φ

−
A split apart. There are also unitary and non-unitary contributions

to SIF , and finally the interactions are generally non-local.8 All these ingredients
further drive home the point that effective descriptions for open systems can be very
non-Wilsonian.

In §4.2 we explore in some detail how this works for a toy model of a black hole
that has been devised to be solvable and yet also to capture important open-system
features. We there in particular use the influence functional to obtain an alternative
derivation of a master equation and a stochastic Langevin equation.

2 Applications to Rindler space

We next turn to some simple illustrative applications of these techniques in space-
times with horizons. Applications of Open EFT techniques are still relatively recent
for gravity and we try to choose examples that illustrate current developments.

We do so using applications to Rindler, de Sitter and simple black-hole geome-
tries in turn, starting in this sector with the simplest – Rindler – case. We begin
in each case with simple qubit examples that behave very much like the thermal
system described above and for which the simplicity of the qubit sector allows cal-

8 Non-locality might be especially relevant in discussion of gravitation backgrounds with horizons,
where other types of hypothetical non-local effects are sometimes considered.
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culations to be very explicit and assumptions to be robustly tested. We then describe
illustrative examples of secular growth in more fully field-theoretic systems.

2.1 Accelerated qubit thermalization

We start by considering horizons generated by accelerated motion without a gravi-
tational field. To explore this we use the same flat-space system as described above
in §1.2.2 – a qubit coupled to a massless scalar field – but with two important dif-
ferences: the scalar field is prepared in its (Minkowski) vacuum ρB = |Ω〉〈Ω | (the
T → 0 limit of the above) and the qubit is uniformly accelerated rather than static.

The qubit is a simple two-level accelerated DeWitt-Unruh detector [23, 24],
whose evolution in perturbation theory is well-studied in the literature (at least for
early times). We describe how these early treatments can be extended to give reli-
able predictions at the late times relevant to thermalization to the Unruh temperature
(which lies beyond the domain of validity of the earlier perturbative studies).

The system describing the detector and the quantum field is again described by
the unperturbed Hamiltonian H0 = HA⊗ IB + IA⊗HB, where HB is precisely as given
in (30) but with the qubit Hamiltonian generalized to include the time-dilation asso-
ciated with its motion:

HA = h
dτ

dt
with h :=

ω

2

(
1 0
0 −1

)
(70)

where τ is the proper time dτ2 = −ηµν dxµ dxν evaluated along the qubit’s world-
line xµ = yµ(τ). This means that ω > 0 is the splitting between qubit energy levels
as measured in the rest-frame of the qubit. The complete Hamiltonian is H0 +Hint
where the qubit interaction in Schrödinger picture also contains a time-dilation fac-
tor, with Hamiltonian

Hint = gα̂⊗ φ̂ [y(τ)]
dτ

dt
where α̂ =

(
0 1
1 0

)
. (71)

where the ‘hat’ again denotes a Schrödinger-picture operator and the dimensionless
coupling g� 1 is chosen small enough to justify perturbative methods.

With these choices the free evolution is given by the time-ordered expression

U0(t) = T exp
(
−i
∫ t

0
ds H0

)
= e−ihτ(t)⊗ e−iHBt (72)

and so the interaction-picture interaction Hamiltonian becomes

V (t) = U†
0 (t)HintU0(t) = gφ [y(τ)]⊗α(τ)

dτ

dt
, (73)

where
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α(τ) = eihτ
α̂ e−ihτ =

(
0 0
1 0

)
e−iωτ +

(
0 1
0 0

)
eiωτ . (74)

From here on we proceed precisely as in §1.2.2, so we report only the parts of
the calculation that change. The first change is to choose the field to be prepared in
the Minkowski vacuum |Ω〉 rather than a thermal state, so

ρB = |Ω〉〈Ω | . (75)

This is also the T → 0 limit of the state considered in §1.2.2 and so for a static qubit
situated at x = x0 the Wightman function can be found by taking β → ∞ in (34):

W (s) = 〈Ω |φ(x0,s)φ(x0,0)|Ω〉=−
1

4π2(s− iε)2 , (76)

implying R(ω) = 0 – c.f. eq. (38). Unsurprisingly, stationary qubits that are initially
in their ground state remain there despite coupling to the field if the field is prepared
in its own ground state.

We instead move the qubit along a uniformly accelerated trajectory xµ = yµ(τ)

with yµ(τ) =

[
1
a

sinh(aτ),
1
a

cosh(aτ),0,0
]

(77)

where a > 0 denotes the qubit’s proper acceleration and τ in this parameteriza-
tion denotes proper time along the curve as measured using the Minkowski metric.
A scalar field’s Wightman function evaluated along this worldline is evaluated in
closed-form in [27, 28], and the massless limit of this result is9

W (τ) = 〈Ω |φ [y(τ)]φ [y(0)]|Ω〉=− a2

16π2
[

sinh(aτ/2)− iε
]2 , (78)

which has the thermal form – compare with (34) – with β = 2π/a corresponding to
the usual Unruh temperature.

From here on the calculation follows along very much the same lines as in §1.2.2.
For qubits initially in their ground state and uncorrelated with the field, the leading
rest-frame perturbative excitation rate agrees with earlier predictions [23, 24, 25]:

∂ρ↑↑
∂τ
' g2R(ω) where R(ω) =

ω

2π

1
e2πω/a−1

, (79)

for proper times 2π/a� τ � 2π/(g2a). Although this perturbative result breaks
down at large times, the arguments of §1.2.2 show that evolution is reliably well-
approximated by a Markovian process within the parameter regime (45), which in

9 It can be tempting to rewrite sinh(aτ/2)− iε as sinh[(a(τ− iε)/2] with the reasoning that these
are equivalent because infinitesimal ε > 0 is important only near τ = 0 [27]. Although this reason-
ing is not false for real τ , this replacement can be dangerous where τ is not real because it does not
preserve important properties like the KMS condition mentioned in footnote 7.
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this instance can be written

1� 2πω

a
� g2

2π
. (80)

In this regime the proper-time evolution is given by

∂ρ↑↑
∂τ
' g2R(ω)−2g2C(ω)ρ↑↑(τ) , (81)

with
C(ω) =

ω

4π
coth

(
πω

a

)
. (82)

The late-time solutions are given by (48) and (53) and describe thermalization to the
Unruh temperature with relaxation times in the qubit rest frame given by

ξc = 2ξd =
1

g2C(ω)
=

4π

g2ω
tanh

(
πω

a

)
' 4π2

g2a

{
1+O

[(
πω

a

)2
]}

. (83)

2.2 Secular growth and the Minkowski vacuum

We next turn to a more fully field-theoretic example for which the interaction in-
volves only quantum fields. In particular we show how loop corrections involving a
scalar field prepared in its interacting vacuum in the presence of a self-interaction
1
4! λφ 4 can in some circumstances have the same kinds of secular growth10 in its
propagators as found above for the self-interacting thermal case. In doing so we
will resolve a puzzle: if the Minkowski vacuum can describe thermal physics for
some observers, then why doesn’t bog-standard zero-temperature perturbation the-
ory (with the field prepared in its Minkowski vacuum) also give rise to secular
growth effects and late-time perturbative breakdown?

To understand why, we re-evaluate the graph of Fig. 2 at zero temperature. For
these purposes it is useful to recall that the lowest-order position-space propagator
at zero temperature is (for nonzero scalar mass)

G0(x;y) =
1

4π2
m√

(x− y)2 + iε
K1

[
m
√

(x− y)2 + iε
]
, (84)

where (x−y)2 = ηµν(x−y)µ(x−y)ν is negative for time-like separations and posi-
tive for space-like separations and Kν(z) is a modified Bessel function of the second
kind. The asymptotic form of Kν(z) reproduces the usual massless limit:

G0(x;y) =
1

4π2
1

(x− y)2 + iε
(m = 0) . (85)

10 See also [26].
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For a massive scalar Fig. 2 evaluates to give

Gtad(x;y) =−iΣ(0)
∫ d4 p

(2π)4
eip·(x−y)

(p2 +m2− iε)2 =−δm2

8π2 K0

[
m
√

(x− y)2 + iε
]
,

(86)
where the zero-momentum self-energy is

Σ(0) =−δm2
ct +3iλ

∫ d4k
(2π)4

1
k2 +m2− iε

, (87)

with δm2
ct the mass counter-term that subtracts the UV-divergent part of the integral

and δm2 =−Σ(0) is the UV finite mass shift after renormalization.
In the massless limit this evaluates to

Gtad(x;y) =
δm2

8π2 ln
[
µ

√
(x− y)2 + iε

]
(when m = 0) . (88)

up to a spacetime-independent IR-divergent constant. Here µ is the renormalization
scale for the renormalized coupling λ (µ), whose precise value depends on how this
IR divergence is regulated but plays no role when tracking the dependence of the
result on x− y.

We now evaluate the propagator using coordinates adapted to accelerating ob-
servers, for which the flat metric becomes

ds2 = ηµν dxµ dxν =−(aξ )2dτ
2 +dξ

2 +dy2 +dz2 . (89)

Imagine now choosing both xµ and yµ to both lie along the specific accelerating
world line described by

x = ξ cosh(aτ) and t = ξ sinh(aτ) , (90)

with the other two coordinates (y and z) fixed. We evaluate G(x,y) with x2 = y2

and x3 = y3 and choose a particular Rindler observer – i.e. fixed ξ — on whose
accelerating world-line both xµ and yµ lie (and so are separated purely by a shift in
Rindler time, τ). We choose in particular the specific trajectory ξ = 1/a, for which
Rindler time is also the proper time along the curve and the proper acceleration is a.

The invariant separation between two points separated by proper time τ is then
given by

−(x− y)2 =
4
a2 sinh2

(aτ

2

)
' 1

a2 eaτ

[
1+O(e−2aτ)

]
, (91)

where the final approximate equality gives the asymptotic form when aτ � 1. For
such an observer (with aτ � 1) eq. (88) implies an asymptotic time dependence of
Gtad(τ) of the form

Gtad(τ) =
δm2

8π2 ln
[
µ

√
(x− y)2 + iε

]
' δm2 aτ

16π2 + subdominant . (92)
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What value should be chosen for δm2 in this last expression? As discussed ear-
lier, the tadpole loop diverges in the UV and this divergence is cancelled by the mass
counterterm, leaving a finite residual whose value depends on the renormalization
scheme. A Minkowski observer would effectively choose δm2

M = −ΣM(0) = 0 so
that the unperturbed mass parameter is the physical mass. A punishment for not do-
ing so would be to have IR divergences appear even at zero temperature in graphs
like Fig. 3. A Rindler observer would instead choose a counterterm that ensures
the sum of the counterterm and tadpole graph vanishes if evaluated in the Rindler
ground state11 rather than the Minkowski one, for similar reasons.

The Minkowski observer’s choice sets δm2 = 0 and so (92) gives zero. The
Rinder observer’s choice instead no longer completely cancels the tadpole graph
when it is evaluated in the Minkowski vacuum, and so differs from the Minkowski
choice by a finite amount. A standard calculation using the Rindler vacuum gives
[27, 29, 30, 31, 32, 33]

δm2
a =

λa2

16π2 . (93)

Using this in (92) then gives

Gtad(τ) =
λa3τ

(16π2)2 + subdominant , (94)

which precisely agrees with the thermal result (57) provided we identify temperature
with acceleration in the usual way: T = a/2π .

If the Minkowski observer’s counter-term choice had instead been made then
secular growth would have instead appeared in the Rindler correlation function.
Said differently, secular growth at late Rindler time cannot be avoided for both the
Minkowski and Rindler vacua, and once it is excluded from one vacuum it neces-
sarily appears for the other, and does so in precisely the way that would have been
expected for a thermal state.

3 Applications to de Sitter space

We next turn to the simplest curved-space examples, which involve the de Sitter
and near-de Sitter cosmologies likely to be associated with Dark-Energy dominated
late-time cosmologies or inflationary cosmologies at very early times. de Sitter ge-
ometries are simple in the sense that de Sitter space shares the same number of
isometries as does flat space, despite the presence of curvature. Because of this
symmetry more explicit calculations are known for these geometries than for less
symmetric ones that share the existence of horizons (like black holes).

The geometry of interest is a spatially flat, homogeneous and isotropic metric of
the Friedmann-LeMaitre-Robertson-Walker (FLRW) form

11 The Rindler state is the ground state of the Rindler Hamiltonian, defined as the Poincaré boost
generator that generates translations in Rindler time.
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ds2 =−dt2 +a2(t)dx ·dx = a2(η)
[
−dη

2 +dx ·dx
]

(95)

where the geometry is specified in terms of a time-dependent scale factor a(t), and
for any given a(t) conformal time η and cosmic time t are related by d t = adη . The
nonzero components of the Riemann tensor for this geometry are

R0
i0 j =−qH2gi j and Ri

jkl = H2
(

δ
i
kg jl−δ

i
l g jk

)
(96)

(plus those related to these by permuting indices), where

H(t) :=
ȧ
a

and q(t) :=−aä
ȧ2 =−1+ ε1 where ε1(t) :=− Ḣ

H2 (97)

and overdots (primes) denote d/dt (d/dη). de Sitter space is the special case

a = eHt =− 1
Hη

where H is constant (and so q =−1 and ε1 = 0) , (98)

and for this specific choice the Riemann tensor has the maximally symmetric form
Rµ

νλρ = H2(δ
µ

λ
gνρ −δ

µ

ρ gνλ ).
The quantization of such systems is done semiclassically, with all fields (in-

cluding the metric) split into a classical background plus a quantum fluctuation.
This makes sense if we work within the spirit of effective field theories for gravity
(GREFT), since these allow one to systematically ask when and why such semiclas-
sical methods are justified. See the accompanying chapters in this review for more
about these techniques (and see [34, 35]).

A massless scalar field that only couples minimally to gravity within an FLRW
universe satisfies

−�φ =− 1√−g
∂µ

(√−g gµν
∂ν φ

)
= φ̈ +3Hφ̇ − 1

a2 ∇
2
φ

=
1
a2

(
φ
′′+

2a′

a
φ
′−∇

2
φ

)
= 0 (99)

where ∇2 = δ i j∂i∂ j. Particle states for such a field can be labelled using momenta
k because the spatial slices of the geometry are flat (and so translation invariant).

Specializing to de Sitter space and expanding the field in terms of the correspond-
ing creation and annihilation operators

φ(x) =
∫ d3k

(2π)3/2

[
vk(x)ak + v∗k(x)a

∗
k

]
with vk(x) =

uk(η)

a
eik·x , (100)

implies

u′′k +
(

k2− 2
η2

)
uk = 0 , (101)

for which the normalized solutions are
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uk(η) =
1√
2k

(
1− i

kη

)
e−ikη (102)

and so vk(a,x) =
1√
2k3

(
k
a
+ iH

)
ei[(k/aH)+k·x]

(with k := |k|) ensuring the standard commutation relations [ak,a
∗
q] = δ 3(k− q).

The vacuum state |Ω〉 defined by ak|Ω〉= 0 is called the Bunch-Davies vacuum.
For these modes physical momenta p(t) = k/a(t) are time-dependent and fall

monotonically and so for every mode there is a time the after which |p(t)|< H, with
crossover between these regimes (‘horizon exit’) occuring when aH = k. (Equiva-
lently, the sweep from−∞< t <∞ corresponds to−∞<η < 0 with η→ 0 in the far
future and horizon exit occuring when kη = −1.) The modes (102) are oscillatory
in the remote past (when kη �−1) and are chosen to resemble standard flat-space
modes in this regime. Their motion stops being adiabatic after horizon exit, with
(102) showing they stop oscillating (or ‘freeze’) once |kη | � 1.

Explicit expressions for massive mode functions are also known for de Sitter
geometries, though we do not need them in what follows. One result we do use
however is the expression (for a massive scalar field) for the renormalized expec-
tation 〈φ 2(x)〉 = 〈Ω |φ 2(x)|Ω〉 using the Bunch-Davies vacuum in de Sitter space.
This is an ultraviolet divergent quantity and is independent of x for massive fields.
Renormalizing so that it vanishes when H→ 0 leaves a finite and nonzero value for
de Sitter given by

〈φ 2(x)〉= 3H4

8π2m2 . (103)

The divergence of this result as m→ 0 reflects the IR divergence that arises in
this limit, as can be seen directly using the massless mode functions (102):

〈φ 2(x)〉massless =
∫ d3k

(2π)3 |vk(x)|2 =
1

2π2

∫
∞

0

dk
k

(
k3|vk(x)|2

)
(104)

where the second equality uses that |vk(x)|2 is independent of the direction of k. This
expression diverges as k→ 0 due to the small-k behaviour of |vk|2 seen in (102). For
later purposes we remark that if this integral is regulated in the UV by multiplying
by a window function ξΛ [k/a(t)] that discriminates against UV momenta – such as
if ξΛ (z) = 1 for z�Λ and ξΛ (z) = 0 for z�Λ – then

∂t〈φ 2(x)〉massless = Ha∂a

∫ d3k
(2π)3 |vk(x)|2ξΛ (k/a)

= − H
2π2

∫
∞

0
dk

∂

∂k

(
k3|vk(x)|2ξΛ

)
=

H3

4π2 , (105)

and so is infrared finite. This uses that a∂a =−k ∂k when acting on any function of
k/a together with (102) and the properties ξΛ (∞) = 0 and ξΛ (0) = 1. Having 〈φ 2〉
be linear in t makes many of its implications resemble those of a random walk.
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The remainder of this section briefly sketches several applications of Open EFTs
to de Sitter geometries. As in the previous section we first examine the simplest
case of a qubit interacting with a quantum field, and then discuss several more field-
theoretic situations both of which involve the need to resum secular growth.

3.1 Qubit thermalization

One can probe the structure of de Sitter space by again considering a qubit coupled
to a scalar field along the lines of §2.1. The presence of an event horizon — in this
case the de Sitter horizon caused by the ever-expanding nature of the universe —
gives rise to the so-called Gibbons-Hawking temperature TGH = H/(2π). The qubit
again thermalizes to this temperature in much the same way as in earlier sections,
but this example also shows that horizons can capture other features also present
in thermal baths: in this case the phenomenon of ‘critical slowing down’ in which
thermalization becomes very slow when the effective mass of the scalar is tuned to
be very small.

For later convenience we set up the problem in a way that is easy to generalize
to other (e.g. black hole) geometries. To this end we write metric in a slightly more
general form

ds2 =− f (x)dt2 + γ i j(x, t)dxidx j , (106)

for which de Sitter space corresponds to the choices f (x) = 1 and γ i j = e2Htδi j
(when written using cosmic time t). In these coordinates we assume that the qubit
moves along a co-moving trajectory:

yµ(τ) = [t(τ),x(τ)] = [τ,x0] . (107)

We take the scalar quantum field describing the quantum environment to be gov-
erned by the Klein-Gordon Hamiltonian, which using the metric (106) becomes

HB =
1
2

∫
Σt

d3x
√

f γ

[
(∂tφ)

2

f
+ γ

i j
∂iφ∂ jφ +(m2−ξ R)φ 2

]
(108)

with R = 12H2 the Ricci scalar computed using (96) and the integration is over a
spacelike hypersurface Σt of fixed t. We introduce here a non-minimal coupling to
gravity parameterized by the dimensionless coupling ξ , and assume the scalar is
prepared in the Bunch-Davies vacuum |Ω〉.

With these choices the calculation of qubit response proceeds much as before.
The autocorrelations of φ along the qubit worldline are

W (τ) = 〈Ω |φ [y(τ)]φ [y(0)]|Ω〉= 〈Ω |φ(τ,x0)φ(0,x0)|Ω〉 (109)

=
H2( 1

4 −ν2)

16π cos(πν)
2F1

(
3
2
+ν ,

3
2
−ν ;2;1+

[
sinh

(
Hτ

2

)
− iε

]2
)



30 C.P. Burgess and Greg Kaplanek

where 2F1(a,b;c;z) is Gauss’ hypergeometric function and

ν :=

√
9
4
− M2

H2 with effective mass M2 := m2−12ξ H2 . (110)

The late-time behaviour of this correlator is

W (τ) 'W0 e−κτ when κτ � 1 , (111)

where

W0 :=
H2

4π5/2 ieiπν
Γ

(
3
2
−ν

)
Γ (ν) and κ :=

(
3
2
−ν

)
H (112)

with Γ (z) denoting Euler’s gamma function.
If the qubit is prepared in its ground state then the purely perturbative rate with

which it becomes excited gives the standard result for an Unruh-DeWitt detector:
∂τ ρ↑↑ ' g2R(ω) with R(ω) again defined by the first equality in (38), which in this
case evaluates to

R(ω) =
H

4π3 e−πω/H
∣∣∣∣Γ (3

4
+

ν

2
+

iω
2H

)
Γ

(
3
4
− ν

2
+

iω
2H

)∣∣∣∣2 . (113)

This perturbative result again breaks down at late times – applying only when
g2C(ω)τ � 1 where C(ω) is defined by the first equality of (47).

Late-time evolution can again be resummed, at least for time-scales long com-
pared to the characteristic time κ−1 set by the fall-off of environmental correlations
(111). The domain of validity of the late-time Markovian regime turns out to be
more delicate because of the dependence of κ on the effective mass M. ν becomes
imaginary if M >∼ H and

Re κ =
3H
2

. (114)

The Markovian regime ends up being restricted to the parameter regime

1� 2πω

H
� g2

2π
(115)

for reasons similar to the ones given for the uniformly accelerated qubit in (80).
This results in the late-time solutions (48) and (53), describing equilibration with
the Gibbons-Hawking temperature over timescales

ξc = 2ξd =
1

g2C(ω)
' 4π3

g2H

∣∣∣∣Γ (3
4
+

ν

2

)
Γ

(
3
4
− ν

2

)∣∣∣∣−2

. (116)

The behaviour is very different if one instead chooses M/H� 1 (and so ν ' 3
2 ),

since in this limit
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W0 '
3H4

8π2M2 and κ ' M2

3H
. (117)

Both the amplitude and width of the correlation function W (τ) become parametri-
cally large in the limit of small effective mass. Although Markovianity ultimately
applies, it does so (for M/H� 1) only in the more restrictive regime

1� ω

H
� M2

H2 and
M6

H6 � g2 (118)

with relaxation timescales now taking the form

ξc = 2ξd =
1

g2C(ω)
' 4π2M4

9g2H5 . (119)

Notice that ξ � 1/κ in this regime because the domain of validity (118) ensures
the 1/g2 enhancement overwhelms the M/H suppression. The Markovian approxi-
mation is so restrictive in this instance because it requires the width of W (τ) to be
the shortest timescale in the problem, and this means that the enormous timescale
1/κ ' 3H/M2 must be smaller than any of the other scales associated with qubit
evolution (like ξ and 1/ω).

We note in passing that it is also possible to solve explicitly for qubit evolution at
late times even when this evolution is non-Markovian by returning to the Nakajima-
Zwanzig equation (35) and (36). This more cumbersome calculation enlarges the
domain of validity for which resummed late-time evolution can be obtained – for
instance applying in a regime where ω/H � 1 can be either larger or smaller than
M/H� 1, unlike in (118) above (see [36] for details).

3.2 Coarse-grained fields

We close this section with several examples of Open EFT calculations for which
both system and environment are described by fields. Although this gives up the
simplicity of the qubit examples, many of the lessons learned there continue to go
through. In the examples considered we take the observed system to consist of super-
Hubble modes, for which k/a� H, and seek the influence on these due to shorter-
wavelength modes.

We describe ongoing work aimed at two kinds of applications: one outlining the
late-time evolution of the probability distribution for the amplitude of super-Hubble
scalar field modes; the other computing the decoherence rate of field fluctuations
during inflation, initially of a spectator scalar field but eventually for metric fluctu-
ations more generally.

Consider first a spectator scalar field Φ (i.e. one whose energy density is neg-
ligible relative to the energy density responsible for the curvature of the de Sitter
geometry). Expanding about a background configuration: Φ(t,x) = ϕ(t)+ φ(t,x)
on a near-de Sitter metric, the system and environment are defined in terms of short-
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and long-wavelength modes – c.f. eq. (100) – so φ(x) = φsys(x)+φenv(x) with

φsys(x) :=
∫ d3k

(2π)3/2

[
vk(x)ak + v∗k(x)a

∗
k

]
f (k,k∗)

and φenv(x) :=
∫ d3k

(2π)3/2

[
vk(x)ak + v∗k(x)a

∗
k

][
1− f (k,k∗)

]
, (120)

and 0≤ f (k,k∗)≤ 1 a window function that distinguishes ‘short’ from ‘long‘ wave-
lengths relative to a reference k∗.

For instance if f (k,k∗) =Θ(k∗− k) is a Heaviside step function then the system
consists of those modes whose comoving momentum satisfies k < k∗. (More gen-
erally, smoother choices for f that transition from 0 to 1 over a region k∗− δ <
k < k∗+δ could also be entertained.) All modes with k < k∗ are super-Hubble after
some time t0 where p∗(t0) := k∗/a(t0) < H. Alternatively, it can also be conve-
nient for some purposes to allow f (k,k∗) also to depend on t, such as if the sys-
tem/environment split is defined in terms of physical wavelengths. For instance, if
the system is defined by p(t) < Λ for all t where Λ is a fixed physical scale then
f (k,Λ , t) =Θ [Λa(t)−k]. In such circumstances the derivation given in §1.1 for the
time-evolution of the system density matrix ρA(t) must be revisited to allow for a
time-dependent division between system and environment.

3.2.1 Stochastic inflation

The evidence for the existence of secular effects is clearer for de Sitter geome-
tries because explicit calculations of subleading perturbative effects have been per-
formed. This section summarizes an example, together with the preliminary evi-
dence that the secular growth visible in it can be resummed [37] using the formal-
ism of Stochastic Inflation [38]. The story of how stochastic inflation itself is now
becoming understood as the leading part of a more systematic approximation is the
topic Daniel Green’s chapter [39] in this review.

To this end consider again massless λφ 4 theory, with action as given by (54),
specialized to the FLRW metric (95) with de Sitter scale factor (98). For simplicity
take the stress energy associated with the scalar field to be much smaller than the
value of the cosmological constant responsible for the de Sitter curvature – i.e. a
‘spectator’ field. The consistency of this assumption can be verified ex post facto
by checking that the scalar stress energy in the state of interest is order H4. See
however [40, 41] for the treatment of non-spectator scalars whose stress energy
drives inflation, and [42] for the extension of spectator scalars to include scalar
masses and slow-roll corrections.

O(λ ) corrections have been computed explicitly for 〈φ 2(x)〉 evaluated in the adi-
abatic (Bunch-Davies) vacuum whose mode functions are given in (102). For a mas-
sive scalar field the symmetries of de Sitter space (and the Bunch-Davies vacuum)
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ensure 〈φ 2(x)〉 is independent of x and given by (103) (so is singular12 as m→ 0).
As discussed around eq. (104), this singularity shows up in the massless limit as
an IR divergence in 〈φ 2(x)〉 and depending on how it is regulated13 this can in-
troduce a time-dependence to 〈φ 2〉 in the massless limit. For instance (105) gives
〈φ 2〉 ∝ t = H−1 lna and including O(λ ) corrections turns out to give [37]

〈φ 2(x)〉= H2

4π2 lna
[

1− λ

36π2 ln2 a+ · · ·
]
, (121)

up to an additive constant whose value is regularization dependent but irrelevant for
the time-dependence of the right-hand side. The factor of ln2 a = (Ht)2 multiplying
λ is the secular growth that undermines trust in perturbative methods at late time.

Besides showing the existence of secular growth, this same calculation also pro-
vides evidence that this growth can be controllably resummed. The evidence comes
from comparing the (IR finite) derivative ∂t〈φ 2(x)〉 computed from (121) with the
predictions of Stochastic Inflation [38]. Stochastic Inflation starts with the similarity
between the leading prediction 〈φ 2(t)〉∝ t and the variance of the distance travelled
in a random walk. The proposal is to compute the time evolution of field correlations
on super-Hubble scales by building on this random-walk analogy; by regarding the
approximately position-independent value ϕ taken by the super-Hubble part of the
field to be a random variable in the region of size H−1 surrounding x (a ‘Hubble
patch’). If P(ϕ, t) denotes the probability of it taking the value ϕ at time t then
correlators can be computed using formulae like

〈φ 2n(t)〉=
∫

dϕ ϕ
2n P(ϕ, t) . (122)

The random-walk part of the picture enters when computing the time-dependence
of 〈φ 2n(t)〉, with the time-evolution of P(ϕ, t) taken to be governed by a Fokker-
Planck equation

∂tP =
H3

8π2
∂ 2P
∂ϕ2 +

1
3H

∂

∂ϕ

(
∂V
∂ϕ

P
)
, (123)

as one would expect for a random walk in the presence of a potential V (ϕ). The
second term of the right-hand side of this equation is designed to properly evolve
the mean

∂t〈φ(t)〉=
∫

dϕ ϕ ∂tP(ϕ, t) =−
1

3H
〈V ′(φ)〉 (124)

corresponding to the evolution 3Hφ̇ +V ′(φ) = 0. This is the evolution equation for
φ that would be obtained from (99) if a potential V (φ) were added and if restricted
to the ‘slow-roll’ regime where φ̈ can be neglected.

The first term on the right-hand side of (123) is similarly chosen to reproduce
the leading H3/(4π2) contribution – c.f. eq. (105) – to the rate of change of the
variance. For instance, specializing (123) to V = 1

4! λφ 4 leads to the prediction

12 Notice the same is not true for the energy density since 〈m2φ 2〉 ∼ H4.
13 Introducing a small nonzero mass is an example of a time-independent IR regularization.
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∂t〈φ 2(t)〉=
∫

dϕ ϕ
2

∂tP(ϕ, t) =
H3

4π2 −
λ

9H
〈φ 4〉 . (125)

Ref. [37] sets up the hierarchy of evolution equations for ∂t〈φ 2n(t)〉 implied by (123)
by continuing as above for the specific case V = 1

4! λφ 4, and then solves the resulting
recursion relations. This leads to the more explicit predictions

〈φ 2n(t)〉 = (2n−1)!!
(

H2

4π2 lna
)n [

1− n(n+1)
2

(
λ

36π2

)
ln2 a+ (126)

+
n

280
(35n3 +170n2 +225n+74)

(
λ

36π2 ln2 a
)2

+ · · ·
]
.

This expression agrees – including O(λ ) corrections – with results like (121) for
the evolution of these quantities predicted by explicit field theory calculations. This
suggests that the stochastic formulation captures the long-wavelength part of the
perturbative result, potentially giving insight into how small secular effects evolve.
Furthermore, it does so in a way that seems to give access to the late-time future
towards which the secular evolution ultimately leads. In the stochastic formulation
the evolution describes relaxation towards a static state, whose form can be found
by solving (123) for P∞(ϕ) under the assumption that ∂tP∞ = 0. This leads to

H3

8π2
∂ 2P∞

∂ϕ2 +
1

3H
∂

∂ϕ

(
∂V
∂ϕ

P∞

)
= 0 , (127)

with late-time solution

P∞(ϕ) =C exp
[
−8π2V (ϕ)

3H4

]
. (128)

In the case of a free massive field V = 1
2 m2ϕ2 eq. (128) describes a Gaussian dis-

tribution around mean 〈φ〉= 0 with the correct variance 〈φ 2〉= 3H4/(8π2m2). But
for an interacting potential V = 1

4! λϕ4 eq. (128) instead predicts evolution towards
a very non-Gaussian distribution.

Considerable effort has been devoted to proving that late-time evolution of quan-
tum fields on de Sitter space is well-described by Stochastic Inflation [38, 43, 44],
and in particular how it might emerge more systematically as the leading approxi-
mation for long-wavelength modes within an open-system approach along the lines
used here [45]. Recent efforts have developed diagrammatic arguments to identify
more systematically both how the stochastic limit arises and what its leading cor-
rections are [46]. We defer to Daniel Green’s chapter of this review [39] for a more
expert description of these developments.
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3.2.2 Primordial decoherence

We close this section with a variation on the above themes that describes a more
practical field-theoretic Open EFT calculation. We apply this formalism to compute
the decoherence rate of primordial fluctuations during inflation. More specifically,
we describe the speed with which gravitational self-interactions can allow unseen
short-wavelength metric fluctuations to decohere their observed longer wavelength
cousins that are believed to seed primordial fluctuations within inflationary cos-
mologies (see also [47, 48, 49, 50, 51, 52]).

To this end consider the following single-field inflationary model with inflaton
Φ coupled to gravity with action

S =
∫

d4x
√−g

[
M2

p

2
R− 1

2
gµν

∂µ Φ ∂ν Φ−V (Φ)

]
(129)

where V (Φ) is designed so the classical homogeneous solutions ϕ(t) describe slow-
roll inflation, and so in particular ensure ε1(ϕ) := −Ḣ/H2 ' 1

2 (Mp ∂φV/V )2 �
1. The scalar is not assumed to be a spectator and as a result fluctuations about
the background mix scalar and metric modes. Writing Φ(x, t) = ϕ(t)+φ(x, t) and
expanding the metric

ds2 =−N2dt2 +hi j
(
dxi +Nidt

)(
dx j +N jdt

)
, (130)

standard arguments allows us to write the metric fluctuation to second order as

hi j = a2e2ζ ĥi j with ĥi j = δi j + γi j +
1
2

δ
kl

γikγl j + · · · , (131)

where a(t) is the near-de Sitter scale factor for the background FLRW metric,
det ĥi j = 1 and δ i j∂iγ jk = δ i jγi j = 0.

γi j describes the metric’s tensor perturbations (gravitational waves) while one
combination of φ and ζ describes the metric’s scalar perturbations and the other
combination represents a gauge freedom corresponding to different ways to foliate
the spacetime into time slices. Two convenient gauge conditions are the choices
φ = 0 (co-moving gauge) or ζ = 0 (spatially-flat gauge).

In co-moving gauge the leading (quadratic) part of the action governing fluctua-
tions has the form [53, 54]

(2)S =
∫

dt d3x

{
ϕ̇2

2H2

[
a3

ζ̇
2−a(∂ζ )2

]
+

M2
p

8

[
a3

γ̇
i j

γ̇ i j−a(∂ k
γ

i j)(∂kγ i j)

]}
,

(132)
where spatial indices are raised and lowered using δi j, so (∂ζ )2 = δ i j∂iζ ∂ jζ . This
has the canonical form 1

2
∫

dη [(v′)2 + (v′i j)
2 + · · · ] once rewritten in terms of the

Mukhanov-Sasaki variables
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v(η ,x) = aMp
√

2ε1 ζ (η ,x) and vi j(η ,x) =
1
2

aMpγi j(η ,x) , (133)

where the slow-roll parameter enters because of the background classical slow-roll
relation ϕ̇2 = 2H2M2

pε1.
Interaction terms are obtained by expanding the action (129) to cubic and higher

order in the fluctuations, and every extra power of v or vi j costs a power of 1/Mp.
For instance, at cubic order one finds the interactions [55]

(3)S =
∫

dt d3xM2
p

[
ε

2
1 aζ (∂ζ )2 + ε1aγ

i j
∂iζ ∂ jζ +

ε1

8
aζ ∂

l
γ

i j
∂lγi j + · · ·

]
=
∫ dηd3x

aMp

{√
ε1

2
√

2
v
[
(∂v)2 +∂

lv i j
∂lvi j

]
+ v i j

∂iv∂ jv+ · · ·
}
, (134)

where the ellipses involve numerous other interactions, all of which either do not
involve the scalar mode v, or are suppressed by more slow-roll parameters or in-
volve more time derivatives than the ones explicitly shown. Further terms involving
quartic and higher powers of v and vi j are also present, suppressed by at least two
powers of 1/Mp, and so on.

From here the goal is to split the fields into system and environment compo-
nents, where the system consists of those modes whose wavelengths are visible to
observers in the late universe. We therefore follow [56] and split the fields v and vi j
as in (120), with the environment/system split occuring at a scale k∗ chosen as the
shortest modes currently accessible in late-time cosmology. We compute how these
modes evolve while outside the Hubble scale during the tail end of inflation, fo-
cussing on how the system modes are decohered by the shorter-wavelength environ-
ment. This involves tracking the evolution of the off-diagonal components 〈ϕ1|ρ|ϕ2〉
of the reduced density matrix rather than the diagonal ones P(ϕ) = 〈ϕ|ρ|ϕ〉 whose
evolution is relevant to the validity of Stochastic Inflation discussed above.

Inspection of the general evolution equation (22) shows that decoherence first
arises at second order in the interaction that couples system to environment, and at
lowest order in 1/Mp the relevant interaction are cubic in the fields, with the fields
split into system and environment parts: v = vsys + venv. Because only primordial
scalar fluctuations have been observed we focus on how these decohere and so can
ignore those cubic interactions not involving v. Interactions involving more than
the minimal slow-roll suppression can also be dropped as subdominant. Finally, the
freezing of super-Hubble modes implies that time-derivatives can also be dropped
relative to spatial derivatives in all interactions provided we focus on super-Hubble
environmental modes. What remains are then only the interactions given by (134).
Not all of these interactions are even required because derivatives acting on system
fields are always suppressed relative to their shorter-wavelength cousins in the en-
vironment. Momentum conservation also precludes having only one environment
field since one large momentum cannot sum with two small ones to give zero.

In the end the only interactions that matter to leading order are the first two ap-
pearing in (134), where the differentiated fields are environmental modes and the
undifferentiated fields belong to the system. Of these, the first interaction mediates
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decoherence of long-wavelength scalar fluctuations by the short-wavelength scalar
environment and the second interaction describes decoherence of long-wavelength
scalar fluctuations by the short-wavelength tensor environment. The interaction
Hamiltonian to be used in (22) therefore becomes

Hint(η) = G(η)
∫

d3x vsys(η ,x)⊗
[
BS(η ,x)+BT (η ,x)

]
, (135)

where the effective coupling and the scalar and tensor environmental interaction
operators are

G(η) :=−
√

ε1

2
√

2 Mp a
, BS := ∂

ivenv∂ivenv and BT := ∂
lvi j

∂lvi j , (136)

Because this interaction is linear in vsys its use at second order in (22) gives an
evolution equation for the system state that is at most quadratic in vsys. Together with
momentum conservation this implies that the field state for each mode k evolves in-
dependent of the others. Starting in the remote past with each mode uncorrelated (as
is true in particular for the Bunch-Davies state) then ensures they remain uncorre-
lated and allows the system’s reduced density matrix to be written

ρsys(η) =
⊗
k<k∗

ρk(η) , (137)

with each ρk(η) evolving independently.
Using (135) and (137) in (22) reveals that the environmental correlation relevant

to primordial scalar fluctuations is Cenv(η ,η ′;y) =CS(η ,η ′;y)+CT (η ,η ′;y) where

CS(η ,η ′;x−x′) :=
〈[

BS(η ,x)−BS(η)
][

BS(η ′,x′)−BS(η ′)
]〉

, (138)

with BS(η) := 〈BS(η ,x)〉. The result for CT is identical with the replacement BS→
BT . In these expressions expectation values for all environmental modes are taken
in the Bunch-Davies state. The combination that controls the evolution of the state
ρk(η) is then Ck(η ,η ′) where

Cenv(η ,η ′;y) =
∫ d3k

(2π)3/2 Ck(η ,η ′)eik·y . (139)

These correlation functions are evaluated explicitly in [56] where it is also shown
that they are peaked in a way that allows approximate Markovian evolution in the
super-Hubble regime |kη | � 1.

The Markovian evolution equation to which one is led in this way is

V

(2π)3
∂ρk

∂η
' −Re[Fk(η ,ηin)]

[
vk(η),

[
vk(η),ρk(η)

]]
(140)

−i Im[Fk(η ,ηin)]
[
[vk(η)]2 ,ρk(η)

]
,
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where V denotes the volume of space and enters due to the way we normalize
momentum modes. The coefficient function is defined by

Fk(η ,ηin) := (2π)3/2
∫

η

ηin

dη
′G(η)G(η ′)Ck(η ,η ′) . (141)

Explicit expressions for Fk are given in [56], which shows in particular that Re Fk
is UV finite. UV divergences do appear in Im Fk and do so in a way that can be
renormalized into parameters in the effective lagrangian in the usual EFT way (as
reviewed, for example, in [34]). Because the second line of (140) describes Liouville
evolution it cannot contribute to decoherence, which therefore depends only on Re
Fk and as a consequence is UV finite.

In the super-Hubble regime (kη → 0) Re Fk is given by

Re Fk(η ,ηin)'
3ε1H2k2

1024π2M2
p

{
20π

(−kη)2 +
g(k∗,−kηin)

(−kη)
+O

[
(−kη)0]} . (142)

where the overall factor of 3 arises as 2 + 1 where the 2 comes from the tensor
environment CT and the 1 from the scalar environment CS. This form is universal in
the sense that all details like the precise position k∗ of the system/environment split
and the initial time ηin where system and environment start off uncorrelated appear
only in subdominant terms, such as the known function g(k∗,−kηin) in (142). Notice
that the universal leading term grows strongly at late times.

Eq. (140) can be solved explicitly [56] and because its right-hand side is quadratic
in vsys it returns a gaussian state whose time evolution can be solved in great detail.
We confine ourselves to exploring one consequence of (140): its implications for the
‘purity’ of the observed system, defined by

pk(η) := Tr
[
ρ

2
k(η)

]
=:

1√
1+Ξk(η)

. (143)

Purity is measure of the state’s decoherence because it satisfies 0 ≤ pk ≤ 1, with
pp = 1 if and only if ρk is a pure state and so ρk is also pure if and only if Ξk = 0.
Decoherence is said to be effective when pk� 1. Eq. (140) implies

Ξk(η) = 8
∫

η

ηin

dη
′ Re[Fk(η

′,ηin)]Pvv(k,η ′) , (144)

where Pvv is the power spectrum, given for the Bunch-Davies vacuum by |uk(η)|2
with mode functions as given in (102). See [56] for more details.

The strong growth of Fk(η
′,ηin) for kη ′→ 0 implies the integral is dominated by

the super-Hubble limit −kη ≤ −kηin� 1, where the universal form seen in (142)
applies. Using this leads to the late-time prediction

Ξk(η)' 5ε1

64π2

(
H2

M2
p

)
1

(−kη)3 =
5ε1

64π2

(
H2

M2
p

)(
aH
k

)3

. (145)
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The dependence on ε1 and H/Mp found here follows directly from the couplings
appearing in the underlying interaction (134), and if linearized in Ξk agrees (up to
normalization) with the perturbative result found in [57]. But linearization of (145)
is not required because in the small kη limit the universal form of Fk implies it is
independent of ηin, and this allows (140) to be used to resum late time behaviour.
So although use of perturbative methods requires ε1 and H/Mp to be small, the
solutions to the evolution equation (140) can be trusted even for times late enough
that Ξk is not small because the factor of a3 is large enough to compensate for the
small perturbative prefactors.

Notice that because these arguments explicitly use proximity to de Sitter (by
perturbing in ε1) the prediction (145) applies at the end of inflation, and not at the
much later epoch when the observed modes re-enter the Hubble scale and become
observed. At this writing it is an open question how the purity evolves during the
post-inflationary universe, but it is intuitive that a very classical state is not expected
to be recohered by the later evolution of the universe.

4 Black holes

We finally consider preliminary applications of Open EFT techniques to black holes,
whose static properties are captured (for non-rotating black holes) for many pur-
poses by the metric

ds2 =− f (r)dt2 +
dr2

f (r)
+ r2dθ

2 + r2 sin2
θdϕ

2 , (146)

where f (r) = 1− rs/r for the simplest case: a Schwarzschild black hole with
Schwarzschild radius rs = 2GM. This metric has the same form as in (106), with
γi j = diag[ f−1,r2,r2 sin2

θ ].
The difficulty doing explicit calculations for black hole backgrounds means much

less is known about open-system behaviour for these geometries. We therefore con-
tent ourselves to briefly describing some simple examples – such as qubit evolution
– for which explicit calculations can in some circumstances be done. We also ex-
plore the properties of a toy model of a black hole for which the observed system is
a field, using the technique of influence functionals.

4.1 Qubit thermalization

The qubit set-up proceeds similar to previous sections and we pick the qubit to hover
at a fixed position in space (in Schwarzschild coordinates), so
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yµ(τ) =
[
t(τ),r(τ),θ(τ),ϕ(τ)

]
=

[
τ√

1− rs/r0
,r0,θ0,ϕ0

]
(147)

where τ gives proper time along the curve and r0,θ0,ϕ0 are all constants. This tra-
jectory is not a geodesic and so the qubit shares many properties with the uniformly
accelerated Rindler example considered previously. Gravitational redshift implies
the energy splitting seen at infinity between the two qubit levels is

ω∞ = ω

√
1− rs

r0
, (148)

where ω is the splitting in the qubit’s rest frame at the qubit’s position.
We take our quantum field environment again to be a massless real scalar field,

with action as in (54) but with λ = 0 since we ignore field self-interactions. There
are a variety of ‘vacuum’ states in which such a field could be prepared, includ-
ing the Boulware [58], Hartle-Hawking [59] or Unruh [23] vacua, and in prin-
ciple qubit response requires calculating the autocorrelation function W (x,x′) =
〈Ω |φ(x)φ(x′)|Ω〉 for two points along the qubit trajectory using the state of interest.

This evaluation is particularly simple if the invariant separation between the two
field points is sufficiently small that the geodesic distance, s(x,x′), between them is
much smaller than the local curvature scale, in which case it is dominated by the
universal Hadamard form [60, 61, 62] that dominates the coincident limit:

〈Ω |φ(x)φ(x′)|Ω〉 ' 1
8π2σ(x,x′)+ iε[T (x)−T (x′)]

(x→ x′) , (149)

where σ(x,x′) = 1
2 s2(x,x′) is the so-called Synge world function and T is any

future-increasing function of time which gets multiplied by the regulator ε so that
the singularity structure of (149) is that of the Wightman function. This limit applies
to any state of Hadamard form and reflects the intuitive fact that physical vacuum
states on curved spacetimes should be indistinguishable from their flat space coun-
terparts so long as one probes wavelengths much shorter than the local radius of
curvature. The Hartle-Hawking and Unruh vacua in particular are Hadamard states.

Evaluating (149) along the trajectory (147) for the specific case of a Schwarzschild
geometry leads to the expression for W (τ) = 〈Ω |φ [y(τ)]φ [y(0)]|Ω〉:

W (τ)'− 1

64π2r2
s

(
1− rs

r0

)[
sinh

(
t(τ)
4rs

)
− iε

]2 , (150)

which holds in the regime
∣∣σ[y(τ),y(0)]∣∣� r2

s , or equivalently(
1− rs

r0

)
sinh2

[
t(τ)
4rs

]
� 1 . (151)
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Here t(τ) = τ(1−rs/r0)
−1/2 denotes the Schwarzschild time as measured along the

qubit trajectory (147).
Comparing (150) with (78) shows that W (τ) falls off in a suggestively thermal

way so one might hope to deploy the Open EFT formalism to capture late-time
Markovian behaviour over time-scales much longer than the falloff time. The trick
is to do so while remaining within the regime (151) for which (150) is valid. Happily
|σ(x,x′)|� r2

s can be consistent with late times t(τ)� rs provided r0 is chosen close
enough to the horizon to ensure [63]

1� t(τ)
rs
�
∣∣∣∣2log

(
1− rs/r0

4

)∣∣∣∣ . (152)

Having control of the approximation (150) for W (τ) in this manner, one proceeds
as for the uniformly accelerated qubit of §2.1. The same arguments as given above
show that Markovian evolution is valid in the limit where

1� 4πrsω∞�
g2

2π
, (153)

and when this is true the resummed Markovian evolution at late times describes
qubit thermalization to its local Hawking temperature

TH(r0) =
(4πrs)

−1√
1− rs/r0

, (154)

for which β (r0)ω = 4πrsω
√

1− rs/r0 = 4πrsω∞.
The thermalization time-scales as seen by the observer at infinity are found to be

ξc∞ = 2ξd ∞ =
4π tanh(2πrsω∞)

g2ω∞

' 8π2rs

g2 (155)

which correspond to the blue-shifted time-scales ξc,d(r0) = ξc,d ∞

√
1− rs/r0 in

the qubit’s frame. Because all scales redshift in the same way we have ξ∞TH =
ξ (r0)TH(r0) and so the same hierarchy of time-scales seen by the qubit is also seen
at infinity.

4.2 Hotspots and Influence Functionals

A hindrance when studying interacting quantum fields near black holes is the rela-
tive lack of explicit calculations that include self-interactions in addition to the in-
teraction with the classical gravitational field (see however e.g. [64, 65]). Although
qubit calculations in a black hole background can be informative, they are also ex-
ceedingly simple and so might not capture features that arise when more compli-
cated systems involving fields are observed. It is for these more complicated systems
that influence functionals also come into their own.
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Fig. 5 A cartoon of the two spatial branches, RA and RB, in which the system field φ and the N
environmental fields χa repsectively live. Mixing between these fields occurs only in the localized
throat region, which can be taken to be a small sphere of radius rh (or effectively a point in the
limit that rh is much smaller than all other scales of interest).

In this section we illustrate the use of many of the tools described above in a
slightly more complicated field-theoretical system. Because we do not yet have
good black hole examples to hand we instead illustrate their use using a simpler
solvable system, called a ‘hotspot’ [66, 67, 68], that captures some of the features
of a localized thermal source.

4.2.1 Hotspots: small hot sources

A hotspot is a simple field-theoretic system for which environment degrees of free-
dom are a collection of N massless scalar fields χa localized to an infinite spatial
region RB of spacetime and prepared in a thermal state. This is meant to emulate
a black hole whose interior is hidden behind an event horizon. RB is taken to be
infinite so as to ensure that the fields do not have gaps in the spacing of their parti-
cle states. The observable sector representing the exterior of a black hole is a single
massless real scalar field φ living in a different spatial region RA that is also taken to
be infinitely large. This field can be prepared in any convenient state for the purposes
of study, but we choose here the free-field vacuum state.

The two kinds of fields interact with one another only on the intersection of the
regions, RA∩RB, which is taken to be the surface of a sphere of radius rh (meant as
a proxy for the event horizon, see Fig. 5). The system is solvable if the interactions
are limited to a Caldeira-Leggett style bilinear mixing of these two kinds of fields
[69], since in this case the entire problem remains gaussian. It is often of interest
to focus on the far-field case where rh→ 0 corresponding to measurements that are
performed in the observable sector at distances much larger than rh.

The free actions for these two fields are taken to be

SA0[φ ] :=−1
2

∫
RA

d4x ∂µ φ∂
µ

φ and SB[χ] :=−1
2

∫
RB

d4x δab∂µ χ
a
∂

µ
χ

b . (156)

Although the gravitational field of the environment can be included by assigning
a Schwarzschild geometry to region RA (with rh > 2GM unless we want this to
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actually be a black hole), we here take both RA and RB to be flat for simplicity.
While this does not mimic the perfect infall near a black hole horizon, it does capture
a localized interaction with a thermal object, and so can act as a benchmark against
which quantum black hole calculations can be compared.

In the limit rh→ 0 the Caldeira-Leggett style interaction between the two sectors
is given by a mixing term of the form

Sint =−ga

∫
dt χ

a(t,0)φ(t,0) (157)

so that the fields interact only at a single hotspot point x = 0. There is an implied
sum over the N couplings ga in (157), and it is assumed that the couplings are of the
same size: ga = g̃/

√
N for all a (with the factor

√
N extracted for later convenience).

This interaction also implies the existence of another localized self-interaction,

Sct =−
λ

2

∫
dt φ

2(t,0) , (158)

which must be present in order to absorb some of the UV divergences that (157)
generates. The treatment of these divergences associated with couplings to localized
sources we handle using the general formalism developed in [70]. Because Sct does
not couple sectors A and B it is often convenient to combine it with SA0 from (156)
and write

SA = SA0 +Sct =−
1
2

∫
RA

d4x
[
∂µ φ∂

µ
φ +λ δ

3(x)φ
2(t,0)

]
. (159)

The initial conditions at t = 0 for the full density matrix are assumed to be un-
correlated – c.f. eq. (16):

ρ0 = ρ(t = 0) = ρA0⊗ρB (160)

with φ prepared in its vacuum ρA0 = |Ω〉〈Ω | and the environment fields χa pre-
pared in a thermal state at temperature 1/β :

ρB =
e−βHB

Tr[e−βHB ]
with HB =

1
2

∫
RB

d3x δab

[
∂t χ

a
∂t χ

b +∇χ
a ·∇χ

b
]
. (161)

With this choice 〈ϕ1|ρA0|ϕ2〉 = Ψ [ϕ1]Ψ
∗[ϕ2] where Ψ [ϕ] := 〈ϕ|Ω〉 is the wave-

functional of the vacuum.
In general, interactions introduce correlations between φ and χa spoiling the

factorized form of (160) and for this reason we assume that the interaction Sint is
suddenly turned on at t = 0 — this choice allows one to prepare the initially un-
correlated state and then observe how the combined system reacts to the onset of
couplings (sometimes called a quench). One can think of this sudden approxima-
tion as a cartoon of the formation of a black hole, with outgoing transient waves
radiating out from the spacetime event where the hotspot is formed.
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Because the model is Gaussian the 2-point correlators contain all of the informa-
tion. In the N→ ∞ limit back-reaction of the external field φ onto the environment
can be neglected, so the environment fields satisfy14

TrB

[
χ

a(t,x)χb(0,0)ρB

]
= δ

ab
coth

[
π

β
(t + |x|− iε)

]
− coth

[
π

β
(t−|x|− iε)

]
8πβ |x| .

(162)
Of particular importance later on is the special case

g̃2WB(t) := gagbTrB

[
χ

a(t,0)χb(0,0)ρB

]
=− g̃2

4β 2 sinh2
[

π

β
(t− iε)

] (163)

since this appears explicitly in the influence functional.
More interesting is the response of the external field φ , which feels the effects

of the environment even as N→ ∞. Because the system is gaussian the φ response
function can be computed exactly as a function of g̃, λ and spacetime position,
with the result given explicitly in [66]. It suffices here to quote the result in the
equal-time limit expanded out to order g̃2, for which (after a renormalization of the
self-coupling λ ) the result is

TrB

[
φH(t,x)φH(t,x′)ρA

]
' 1

4π2
[
− (t− t ′− iε)2 + |x−x′|2

] (164)

+
λ

16π3

[
Θ(t−|x|)
|x|

1
(|x|+ iε)2−|x′|2 +

Θ(t−|x′|)
|x′|

1
(|x′|− iε)2−|x|2

]
− g̃2Θ(t−|x|)Θ(t−|x′|)

64π2β 2|x||x′|sinh2
[

π

β
(|x|− |x′|+ iε)

]
+

g̃2

32π4

[
Θ(t−|x|)[

(|x|+ iε)2−|x′|2
]2 +

Θ(t−|x′|)[
(|x′|− iε)2−|x|2

]2
]

+
g̃2

64π4

[
δ (t−|x|)

|x|
[
(t + iε)2 + |x′|2

] + δ (t−|x′|)
|x′|
[
(t− iε)2 + |x|2

]] ,
The delta-function terms reveal an outgoing transient wave radiating out from the
system’s shock at x = t = 0. The step functions show how the external system’s
properties change after this wave passes. Translation symmetry is clearly broken
while invariance under rotations about the hotspot position is preserved.

A connection to the previous qubit calculations can also be made by coupling a
qubit to the φ -field alone at a nonzero distance from the hotspot. Doing so shows
that this qubit thermalizes to the temperature of the hotspot in certain regimes of
parameter space — see [67] for further details.

14 Time and spatial translation symmetry of the thermal bath is used here. Note also that the iε-
prescription used here only works for real t.
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4.2.2 Hotspot influence functional

We now take the hotspot model and use it to illustrate some of the features of the
influence functional formalism, and how it overlaps with the other approaches en-
countered above. As in eq. (68), the components of the reduced Schrödinger-picture
density matrix for the φ field have the path-integral representation

〈ϕ2|ρ̂A(t)|ϕ1〉= ∑
ϕ3,ϕ4

∫
ϕ2

ϕ4

Dφ
+
∫

ϕ1

ϕ3

Dφ
− eiSA[φ

+]−iSA[φ
−]+iSIF [φ

+,φ−]〈ϕ4|ρA0|ϕ3〉

(165)
where the influence functional is given by (69), which in the present instance is

eiSIF [φ
+,φ−] := ∑

χ,χ3,χ4

∫
χ

χ4

Dχ
+
∫

χ

χ3

Dχ
− (166)

× eiSB[χ
+]+iSint[φ

+,χ+]−iSB[χ
−]−iSint[φ

−,χ−] 〈χ4|ρB|χ3〉 .

We emphasize that the actions in (166) are integrated from time t = 0 (where the
initial conditions are applied) up to time t (where we evaluate the reduced density
matrix on the left-hand side), and so the boundary conditions in the path integrations
(for the field eigenstates) are applied at these times as well.

The leading influence functional contributions computed perturbatively in g̃ are

SIF [φ
+,φ−] ' i

2
〈
S2

int[φ
+,χ+]

〉
B
+

i
2
〈
S2

int[φ
−,χ−]

〉
B

(167)

−i
〈
Sint[φ

+,χ+]Sint[φ
+,χ+]

〉
B
+ . . .

where we neglect terms O(g̃3) and use the notation

〈O〉B := ∑
χ,χ3,χ4

∫
χ

χ4

Dχ
+
∫

χ

χ3

Dχ
− O eiSB[χ

+]−iSB[χ
−] 〈χ4|ρB|χ3〉 (168)

to denote averaging over environment fields. Notice that the average can be inter-
preted in terms of the Fig. 4 (with φ± replaced by χ±), where the boundary condi-
tion at time t identifies χ+(t,x) = χ−(t,x) = χ(x). This means that time integration
can be thought of as being from zero to t along the upper ‘+’ branch, and then back
again along the lower ‘−’ branch.

It remains to compute the three averages appearing in eq. (167). Writing out the
first term more explicitly using (157) one finds

〈
Sint[φ

+,χ+]2
〉

B
= gagb

∫ t

0
dt ′
∫ t

0
dt ′′ φ+(t ′,0) φ

+(t ′′,0) (169)

× ∑
χ,χ3,χ4

∫
χ

χ4

Dχ
+
∫

χ

χ3

Dχ
−

χ
+a(t ′,0)χ+b(t ′′,0) eiSB[χ

+]−iSB[χ
−] 〈χ4|ρB|χ3〉 .
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A standard path integration exercise [71] shows that the lower line of (169) is equiv-
alent to the following environmental propagator in the state ρB:

TrB

[
T+

{
χ

a(t ′,0)χb(t ′′,0)
}

ρB

]
= δ

ab FB(t ′− t ′′) (170)

where T+ denotes time ordering of the field operators on the upper ‘+’ branch of
the closed time path depicted in Fig. 4, and FB is the Feynman propagator for a
single field in the state ρB. Note that FB is related to the Wightman function WB –
given in eq. (163) – in the standard way:

FB(t ′− t ′′) = WB(t ′− t ′′)Θ(t ′− t ′′)+WB(t ′′− t ′)Θ(t ′′− t ′) , (171)

and (using gagbδ ab = g̃2) this allows (169) to be written

〈
Sint[φ

+,χ+]2
〉

B
= g̃2

∫ t

0
dt ′
∫ t

0
dt ′′ φ+(t ′,0)φ+(t ′′,0)FB(t ′− t ′′)

= 2g̃2
∫ t

0
dt ′
∫ t ′

0
dt ′′ φ+(t ′,0)φ+(t ′′,0)WB(t ′− t ′′) . (172)

A similar exercise shows the second average in (167) is given by

〈
Sint[φ

−,χ−]2
〉

B
= g̃2

∫ t

0
dt ′
∫ t

0
dt ′′ φ−(t ′,0)φ−(t ′′,0)F ∗

B (t
′− t ′′)

= 2g̃2
∫ t

0
dt ′
∫ t ′

0
dt ′′ φ−(t ′,0)φ−(t ′′,0)W ∗

B (t ′− t ′′) , (173)

which again uses (171) together with the property WB(−t) = W ∗
B (t) that is always

valid for Hermitian fields. These imply that the path integration here anti-time orders
the two fields on the lower ‘−’ branch (as might have been expected given the
interpretation of the lower branch in Fig. 4 as going backwards in time relative to
the upper branch).

The third term in (167) involves a field on both the upper and lower branch,

〈
Sint[φ

+,χ+]Sint[φ
−,χ−]

〉
B
= g̃2

∫ t

0
dt ′
∫ t

0
dt ′′ φ+(t ′,0)φ−(t ′′,0) W ∗

B (t ′− t ′′)

= g̃2
∫ t

0
dt ′
∫ t ′

0
dt ′′
[

φ
−(t ′,0)φ+(t ′′,0) WB(t ′− t ′′)

+φ
+(t ′,0)φ−(t ′′,0) W ∗

B (t ′− t ′′)
]

(174)

and so – recalling that g̃2W ∗
B (t ′−t ′′)= gagbTrB[χ

a(t ′′,0)χb(t ′,0)ρB] – time-ordering
is not enforced by the path integration. The integration is nevertheless ‘path-
ordered’, however, inasmuch as the field on the lower branch (with time t ′′) is to
the left of the field on the upper branch (with time t ′) in the correlator. The final
equality arranges the integration range here to match the ones in (172) and (173).
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Combining everything allows the O(g̃2) terms of the influence functional (167)
to be explicitly written as

SIF [φ
+,φ−] ' ig̃2

∫ t

0
dt ′
∫ t ′

0
dt ′′
[

φ
+(t ′,0)φ+(t ′′,0) WB(t ′− t ′′) (175)

+φ
−(t ′,0)φ−(t ′′,0) W ∗

B (t ′− t ′′)−φ
−(t ′,0)φ+(t ′′,0) WB(t ′− t ′′)

−φ
+(t ′,0)φ−(t ′′,0) W ∗

B (t ′− t ′′)
]
,

with WB(t) given explicitly for the thermal environment by (163). Anything that can
be computed using the reduced density matrix can be computed given SIF through
the connection (165). For instance φ equal-time correlation functions are straight-
forwardly evaluated and lead again to the result (164).

In the remainder of this subsection we explore some of the other physical impli-
cations of the above influence functional.

4.2.3 Hotspot master equation

Expression (165) ensures that the influence functional encodes all of the information
contained in the reduced density matrix. This includes the ability to derive a master
equation like (22) for its evolution (which was also truncated at second order in the
interactions).

To derive the master equation from the influence functional one evaluates

∂ 〈ϕ2|ρ̂A(t)|ϕ1〉
∂ t

' 〈ϕ2|ρ̂A(t +∆ t)|ϕ1〉−〈ϕ2|ρ̂A(t)|ϕ1〉
∆ t

(176)

for small enough ∆ t, using (165) to compute the reduced density matrix elements.
Expanding for ∆ t� t yields

∂t〈ϕ2|ρ̂A(t)|ϕ1〉 ' ∑
ϕ3,ϕ4

∫
ϕ2

ϕ4

Dφ
+
∫

ϕ1

ϕ3

Dφ
− i∂t

{
SA[φ

+]−SA[φ
−]+SIF [φ

+,φ−]
}

×eiSA[φ
+]−iSA[φ

−]+iSIF [φ
+,φ−]〈ϕ4|ρA0|ϕ3〉 (177)

up to terms O(∆ t). The two terms depending on ∂tSA can be re-expressed in operator
language in terms of the Hamiltonian corresponding to SA, which given (159) is

HA =
1
2

∫
d3x

[
(∂tφ)

2 + |∇φ |2
]
+

λ

2
φ

2(t,0) , (178)

giving ∂t〈ϕ2|ρ̂A(t)|ϕ1〉 ' −i〈ϕ2|
[
HA, ρ̂A

]
|ϕ1〉+ (∂tSIF term).

To simplify the final term, we evaluate ∂tSIF to leading nontrivial order in g̃, using
(175) to write
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i∂tSIF = −g̃2
∫ t

0
ds
{[

φ
+(t,0)φ+(s,0)−φ

−(t,0)φ+(s,0)
]

WB(t− s) (179)

+
[
φ
−(t,0)φ−(s,0)−φ

+(t,0)φ−(s,0)
]

W ∗
B (t− s)

}
.

Using φ+(t,0) = ϕ2(0) and φ−(t,0) = ϕ1(0), this becomes

∂t〈ϕ2|ρ̂A(t)|ϕ1〉 ' −i〈ϕ2|
[
HA, ρ̂A

]
|ϕ1〉−

[
ϕ2(0)−ϕ1(0)

]∫ t

0
ds WB(t− s)F+(t,s)

−
[
ϕ1(0)−ϕ2(0)

]∫ t

0
ds W ∗

B (t− s)F−(t,s) , (180)

which introduces the shorthand

F±(t,s) := g̃2
∑

ϕ3,ϕ4

∫
ϕ2

ϕ4

Dφ
+
∫

ϕ1

ϕ3

Dφ
−

φ
±(s,0) (181)

×eiSA[φ
+]−iSA[φ

−]+iSIF [φ
+,φ−]〈ϕ4|ρA0|ϕ3〉 .

This satisfies F−(t,s) = F+∗(t,s), as can be seen using the identity S∗IF [φ
+,φ−] =

SIF [φ
−,φ+] that follows from eq. (166). The function F±(t,s) has a simple operator

interpretation if we drop terms beyond leading order in g̃2, since then

F±(t,s) ' g̃2
∑

ϕ3,ϕ4

∫
ϕ2

ϕ4

Dφ
+
∫

ϕ1

ϕ3

Dφ
−

φ
±(s,0)eiSA[φ

+]−iSA[φ
−]〈ϕ4|ρA0|ϕ3〉 ,

= g̃2〈ϕ2|e−iHA(t−s)
φ̂(0)e−iHAs

ρA0e+iHAt |ϕ1〉 . (182)

Using this in the above expressions we obtain the evolution equation,

∂t ρ̂A(t) ' −i
[
HA, ρ̂A(t)

]
(183)

−g̃2
∫ t

0
ds
{
WB(t− s)

[
φ̂(0) , e−iHA(t−s)

φ̂(0)e−iHAs
ρA0e+iHAt

]
+h.c.

}
where we peel off the eigenstates to yield an operator equation, and where ‘h.c.’ means
Hermitian conjugate of the previous terms in the curly bracket. This is more illumi-
nating in the interaction picture, defined using HA as the unperturbed Hamiltonian
so that ρA(t) := e+iHAt ρ̂A(t)e−iHAt , since the above becomes

∂tρA(t) ' −
iλ
2

[
φ

2(t,0) , ρA(t)
]

(184)

−g̃2
∫ t

0
ds
{

WB(t− s)
[
φ(t,0) ,φ(s,0)ρA0

]
+h.c.

}
.

This is the leading perturbative result since dropping additional powers of g̃ is what
justifies dropping SIF in going from (181) to (182). Notice that because ρA(s) =
ρA0+O(g̃2) in the interaction picture, eq. (184) agrees with the perturbative limit of
the Nakajima-Zwanzig equation given in (22), which in this example would be
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∂tρA(t) ' −
iλ
2

[
φ

2(t,0) , ρA(t)
]

(185)

−g̃2
∫ t

0
ds
{

WB(t− s)
[
φ(t,0) ,φ(s,0)ρA(s)

]
+h.c.

}
.

It is fairly common practice in the literature to justify master equations like (185)
by deriving (184) in perturbation theory and then simply replacing ρA0 → ρA(s)
with the justification that these agree at lowest order in g̃2. Of course this argument
is actually ambiguous, as we could have equivalently taken any number of other
combinations of operators that agree with ρA0 as g̃→ 0 by the same argument, and
all of these choices can disagree15 on the predicted evolution beyond order g̃2. From
this point of view the derivation that passes through the Nakajima-Zwanzig equation
(22) is preferable, because this derives the higher-order dependence on couplings
like g̃ by explicitly tracing out the environment order-by-order in g̃.

For the hotspot these arguments allow a test of the validity of the Markovian limit
of the Nakajima-Zwanzig equation. To this end one again notices that the correlaton
function WB(t − s) given in (163) is sharply peaked in time for an intervel set by
the inverse temperature β . This allows the remainder of the integrand to be Taylor
expanded about s = t if the remainder of the integrand varies over time scales much
longer than β . When this is true the leading contribution behaves as if WB(t − s)
were proportional to δ (t− s) and the upper integration limit can be taken to infinity,
resulting in the approximate Markovian evolution

∂tρA(t) ' −
iλ
2

[
φ

2(t,0) , ρA(t)
]

(186)

−g̃2
∫

∞

0
ds
{

WB(s)
[
φ(t,0) ,φ(t,0)ρA(t)

]
+h.c.

}
.

In the present instance a sufficient condition for ensuring both φ(t,0) and ρA(t)
vary slowly compared to β is when the external field theory’s UV cutoff Λ obeys
βΛ � 1. This makes the hotspot temperature a UV scale (which for black holes
also would require the event horizon size rh to be negligibly small, as assumed
above). In this limit integrating the Markovian master equation (186) to compute
the correlation functions for the system gives (after a tedious computation)

TrB

[
φH(t,x)φH(t,x′)ρA

]
' 1

4π2|x−x′|2 −
λ

16π3|x||x′|(|x|+ |x′|) (187)

+
g̃2

32π3β |x||x′|δ (|x|− |x
′|)+ g̃2

16π4(|x|2−|x′|2)2

which specializes to t > |x|, |x′| (after transients of the sudden approximation have
passed). This is precisely the |x|, |x′| � β limit of the correlator given in (164) – see
[68] for more details.

15 An example instead replaces ρA0 ' ρA(t) and so predicts an evolution equation – the Redfield
equation – that is time-local (as opposed to involving convolutions with ρA(s) as in (185)).
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4.2.4 Langevin equations and Stochastic evolution

Another use for the path-integral influence functional formulation is to derive a
stochastic evolution equation for the fields in which the environment is reduced to
stochastic noise variable appearing in the equations of motion for the observed field.
This type of formulation is useful when computing the time evolution of correlation
functions.

To see how, relabel the two fields φ± using

φ
cl := φ

++φ
− and φ

q := φ
+−φ

− , (188)

The notation ‘cl’ stands for classical and ‘q’ stands for quantum, with the logic that
φ cl emerges as a macroscopic mean field in a regime where φ q averages to zero.
Fluctuations of φ q about zero will be the source of the noise mentioned above with
which φ cl interacts.

In terms of these variables the unperturbed actions become

SA[φ
+]−SA[φ

−] =−1
2

∫
d4x
[
∂µ φ

q
∂

µ
φ

cl +λ δ
3(x)φ

q
φ

cl
]
, (189)

while eq. (175) for SIF is

SIF [φ
+,φ−] ' ig̃2

2

∫ t

0
dt ′
∫ t

0
dt ′′ φ q(t ′,0)Re

[
WB(t ′− t ′′)

]
φ

q(t ′′,0) (190)

−ig̃2
∫ t

0
dt ′
∫ t ′

0
dt ′′ φ q(t ′,0) Im

[
WB(t ′− t ′′)

]
φ

cl(t ′′,0) .

Notice that the integration limits of the first line of (190) are not time-ordered while
those of the second line are.

The only contribution within SA[φ
+]− SA[φ

−]+ SIF [φ
+,φ−] that is quadratic in

φ q comes from the first line of (190). Furthermore the factor of i ensures that eiSIF

becomes a real gaussian exponential in φ q, as would have appeared for a statistical
average rather than a quantum one. This makes it suggestive to use the Hubbard-
Stratonovich identity [18]

e−
1
2
∫

dt ′
∫

dt ′′ φq(t ′)N(t ′,t ′′)φq(t ′′) =
∫

Dν P[ν ] ei
∫

dt ′ ν(t ′)φq(t ′) , (191)

which expresses the left-hand side in terms of a Gaussian integral over a stochastic
dummy field ν which is defined to have zero mean and correlation functions given
by the kernel in the exponent on the left-hand side:

〈ν(t)〉P = 0 and
〈
ν(t)ν(t ′)

〉
P
= N(t, t ′) (192)

where the averages here denote

〈O〉P :=
∫

Dν P[ν ] O . (193)
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Armed with this formula the influence functional (190) appearing in the path
integral can be rewritten in terms of this stochastic noise field as

eiSIF =

〈
exp
(

i
∫ t

0
dt ′ ψ(t ′)φ q(t ′,0)

)〉
P

(194)

with the definitions

ψ(t) := ν(t)− g̃2
∫ t

0
dt ′ Im[WB(t− t ′)]φ cl(t ′,0) , (195)

and in the present case the noise kernel is

N(t, t ′) = g̃2 ReWB(t, t ′) . (196)

The point of this exercise is that φ q now appears only linearly in the argument
Seff[φ

+,φ−] := SA[φ
+]− SA[φ

−] + SIF [φ
+,φ−] of the exponential appearing in the

path integral. Its integration therefore gives a functional delta function that can be
used to perform the φ cl path integral, leading to the constraint

0 =
δSeff

δφ q =�φ(x) (197)

+δ
3(x)

[
−λφ(t,0)−ν(t)+ g̃2

∫ t

0
ds Im[WB(t− s)]φ(s,0)

]
,

where we rescale φ := 1
2 φ cl.

The upshot is that correlation functions of φ = 1
2 φ cl are to be computed as a

stochastic average over ν(t) with correlator N(t, t ′) given in terms of Re WB(t, t ′) by
(196) and with the spacetime dependence of φ determined by the Langevin equation

�φ(x)+δ
3(x)

[
−λφ(t,0)+ g̃2

∫ t

0
ds Im[WB(t− s)]φ(s,0)

]
= δ

3(x)ν(t) , (198)

with the stochastic field ν appearing as a source. Notice in the particular example of
the hotspot we have Im WB(t− s) = δ ′(t− s)/4π and so the equation is really local
in time,

�φ(x)+δ
3(x)

[(
−λ +

g̃2

4π
δ (0)

)
φ(t,0)+ g̃2

∂tφ(t,0)
]
= δ

3(x)ν(t) . (199)

The δ (0) divergence appearing in (199) can be absorbed into a renormalization
of λ . The Im[WB(t − t ′)] term is called the dissipation kernel because it ends up
introducing single time derivatives into the equation of motion for φ — what turns
out to be a generic feature of influence functionals. It is the noise kernel ReWB(t−t ′)
that is responsible for the decoherence seen in earlier sections.
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As a final note, the Langevin equation encountered here provides the same in-
formation as does a Fokker-Planck equation – like eq. (123) encountered in §3.2.1
– for the evolution of the probability distribution P[φ ] that φ inherits from the dis-
tribution P[ν ]. Doing so brings us full circle and back to the density matrix since
P[φ ] = 〈φ |ρA|φ〉. For more details we refer the reader to the literature [19, 43, 72].

5 Summary

Our focus in this chapter is on open quantum systems, which we argue carry im-
portant lessons for quantum studies in gravitational fields. We focus in particular on
situations where hierarchies of scale simplify calculations for these systems – what
can be called Open EFTs – as is appropriate in this section devoted to effective field
theories. Such simplifications are widely used throughout physics, but their use for
gravitating open quantum systems still remains young.

The hope is that the gravity community can profit from the decades of study of
quantum fields interacting with open systems, particularly for problems involving
event horizons. The potential benefits are many and include an improved ability to
understand evolution at the very late times that are both of great interest for problems
like information loss, and are places where simpler traditional perturbative methods
are known always to fail. Differences between Open EFTs and traditional Wilsonian
ones – such as the appearance of nonlocality in time for open systems – might yet
bring surprises.
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induced by light scalar fields,” Phys. Rev. D 100 (2019) no.7, 076003.
M. Parikh, F. Wilczek and G. Zahariade, “The Noise of Gravitons,” Int. J. Mod.
Phys. D 29 (2020) no.14, 2042001 [arXiv:2005.07211 [hep-th]].

http://arxiv.org/abs/hep-ph/9606295
http://arxiv.org/abs/2208.11754
http://arxiv.org/abs/2212.05161
http://arxiv.org/abs/1801.09949
http://arxiv.org/abs/1809.02732
http://arxiv.org/abs/2005.07211


54 C.P. Burgess and Greg Kaplanek

M. Parikh, F. Wilczek and G. Zahariade, “Signatures of the quantization of
gravity at gravitational wave detectors,” Phys. Rev. D 104 (2021) no.4, 046021
[arXiv:2010.08208 [hep-th]].
S. Banerjee, S. Choudhury, S. Chowdhury, J. Knaute, S. Panda and K. Shirish,
“Thermalization in Quenched De Sitter Space,” [arXiv:2104.10692 [hep-th]].
S. Brahma, A. Berera and J. Calderón-Figueroa, “Universal signature of quan-
tum entanglement across cosmological distances,” [arXiv:2107.06910 [hep-
th]].
T. Colas, J. Grain and V. Vennin, “Benchmarking the cosmological master
equations,” Eur. Phys. J. C 82 (2022) no.12, 1085 [arXiv:2209.01929 [hep-
th]].
A. Daddi Hammou and N. Bartolo, “Cosmic decoherence: primordial power
spectra and non-Gaussianities,” [arXiv:2211.07598 [astro-ph.CO]].
R. Loganayagam, M. Rangamani and J. Virrueta, “Holographic open quan-
tum systems: Toy models and analytic properties of thermal correlators,”
[arXiv:2211.07683 [hep-th]].

[5] S. Nakajima, “On Quantum Theory of Transport Phenomena,” Prog. Theor.
Phys. 20 948 (1958).

[6] R. Zwanzig, “Ensemble Method in the Theory of Irreversibility,” J. Chem.
Phys. 33 1338 (1960).

[7] G. Lindblad, “On the Generators of Quantum Dynamical Semigroups,” Com-
mun. Math. Phys. 48 (1976) 119.

[8] V. Gorini, A. Frigerio, M. Verri, A. Kossakowski and E.C.G. Sudarshan,
“Properties of Quantum Markovian Master Equations,” Rept. Math. Phys. 13
(1978) 149.

[9] G. Kaplanek and C. P. Burgess, “Hot Accelerated Qubits: Decoherence, Ther-
malization, Secular Growth and Reliable Late-time Predictions,” JHEP 03
(2020), 008.

[10] C. P. Burgess, J. Hainge, G. Kaplanek and M. Rummel, “Failure of Pertur-
bation Theory Near Horizons: the Rindler Example,” JHEP 10 (2018), 122
[arXiv:1806.11415 [hep-th]].

[11] J. S. Schwinger, “Brownian motion of a quantum oscillator,” J. Math. Phys. 2
(1961) 407.

[12] L. V. Keldysh, “Diagram technique for nonequilibrium processes,” Zh. Eksp.
Teor. Fiz. 47 (1964) 1515 [Sov. Phys. JETP 20 (1965) 1018].

[13] D. J. Gross, R. D. Pisarski and L. G. Yaffe, “QCD and Instantons at Finite
Temperature,” Rev. Mod. Phys. 53 (1981), 43.

[14] T. Altherr, “Infrared problem in g?4 theory at finite temperature,” Physics Let-
ters B, Volume 238, Issues 2-4, 1990, 360-366.

[15] R. P. Feynman and F. L. Vernon, Jr., “The Theory of a general quantum system
interacting with a linear dissipative system,” Annals Phys. 24 (1963), 118-173

[16] R. P. Feynman and A. R. Hibbs, “Quantum Mechanics and Path Integrals,”
McGraw-Hill, New York, 1965.

[17] U. Weiss, “Quantum Dissipative Systems,” World Scientific (2000).

http://arxiv.org/abs/2010.08208
http://arxiv.org/abs/2104.10692
http://arxiv.org/abs/2107.06910
http://arxiv.org/abs/2209.01929
http://arxiv.org/abs/2211.07598
http://arxiv.org/abs/2211.07683
http://arxiv.org/abs/1806.11415


Gravity, Horizons and Open EFTs 55

[18] E. A. Calzetta and B. L. B. Hu, “Nonequilibrium Quantum Field Theory,”
Cambridge University Press, 2022.

[19] A. O. Caldeira and A. J. Leggett, “Path integral approach to quantum Brownian
motion,” Physica A 121 (1983), 587-616.
V. Hakim and V. Ambegaokar, “Quantum theory of a free particle interacting
with a linearly dissipative environment,” Phys. Rev. A 32 (1985), 423-434.
C. M. Smith and A. O. Caldeira, “Generalized Feynman-Vernon approach to
dissipative quantum systems,” Phys. Rev. A 36 (1987), 3509-3511.
H. Grabert, P. Schramm and G. L. Ingold, “Quantum Brownian motion: The
Functional inegral approach,” Phys. Rept. 168 (1988), 115-207.
B. L. Hu, J. P. Paz and Y. h. Zhang, “Quantum Brownian motion in a general
environment: 1. Exact master equation with nonlocal dissipation and colored
noise,” Phys. Rev. D 45 (1992), 2843-2861.
B. L. Hu and A. Matacz, “Quantum Brownian motion in a bath of parametric
oscillators: A Model for system - field interactions,” Phys. Rev. D 49 (1994),
6612-6635 [arXiv:gr-qc/9312035 [gr-qc]].
B. L. Hu and A. Matacz, “Back reaction in semiclassical cosmology: The
Einstein-Langevin equation,” Phys. Rev. D 51 (1995), 1577-1586 [arXiv:gr-
qc/9403043 [gr-qc]].
E. Calzetta and B. L. Hu, Phys. Rev. D 49 (1994), 6636-6655 [arXiv:gr-
qc/9312036 [gr-qc]].
D. Boyanovsky, H. J. de Vega, R. Holman, D. S. Lee and A. Singh, “Dissipa-
tion via particle production in scalar field theories,” Phys. Rev. D 51 (1995),
4419-4444 [arXiv:hep-ph/9408214 [hep-ph]].
F. Lombardo and F. D. Mazzitelli, “Coarse graining and decoherence in quan-
tum field theory,” Phys. Rev. D 53 (1996), 2001-2011 [arXiv:hep-th/9508052
[hep-th]].

[20] P. M. Bakshi and K. T. Mahanthappa, “Expectation value formalism in quan-
tum field theory. 1.,” J. Math. Phys. 4 (1963), 1-11.

[21] R. Kubo, “Statistical mechanical theory of irreversible processes. 1. General
theory and simple applications in magnetic and conduction problems,” J. Phys.
Soc. Jap. 12 (1957), 570-586.

[22] P. C. Martin and J. S. Schwinger, “Theory of many particle systems. 1.,” Phys.
Rev. 115 (1959), 1342-1373.

[23] W.G. Unruh, “Notes on black hole evaporation,” Phys. Rev. D 14 (1976) 870.
[24] B.S. DeWitt, “Quantum Gravity: The New Synthesis” in “General Relativity,

An Einstein Centenary Survey,” edited by S. W. Hawking and W. Israel, Cam-
brdige University Press (1979).

[25] D.W. Sciama, P. Candelas and D. Deutsch, “Quantum Field Theory, Horizons
and Thermodynamics,” Adv. Phys. 30 (1981) 327.

[26] S. Chaykov, N. Agarwal, S. Bahrami and R. Holman, “Loop corrections in
Minkowski spacetime away from equilibrium 1: Late-time resummations,”
[arXiv:2206.11288 [hep-th]].

[27] S. Takagi, “Vacuum noise and stress induced by uniform accelerator:
Hawking-Unruh effect in Rindler manifold of arbitrary dimensions,” Prog.

http://arxiv.org/abs/gr-qc/9312035
http://arxiv.org/abs/gr-qc/9403043
http://arxiv.org/abs/gr-qc/9403043
http://arxiv.org/abs/gr-qc/9312036
http://arxiv.org/abs/gr-qc/9312036
http://arxiv.org/abs/hep-ph/9408214
http://arxiv.org/abs/hep-th/9508052
http://arxiv.org/abs/2206.11288


56 C.P. Burgess and Greg Kaplanek

Theor. Phys. Suppl. 88 (1986) 1.
[28] P. Langlois, “Causal particle detectors and topology,” Annals Phys. 321 (2006)

2027 [gr-qc/0510049].
[29] P. C. W. Davies, “Scalar particle production in Schwarzschild and Rindler met-

rics,” J. Phys. A 8 (1975) 609.
[30] D. G. Boulware, “Quantum Field Theory in Schwarzschild and Rindler

Spaces,” Phys. Rev. D 11 (1975) 1404.
[31] W. Troost and H. van Dam, “Thermal Propagators and Accelerated Frames of

Reference,” Nucl. Phys. B 152 (1979) 442.
[32] J. S. Dowker, “Thermal properties of Green’s functions in Rindler, de Sitter,

and Schwarzschild spaces,” Phys. Rev. D 18 (1978) no.6, 1856.
[33] B. Linet, “Euclidean scalar and spinor Green’s functions in Rindler space,”

gr-qc/9505033.
[34] C. P. Burgess, “Quantum gravity in everyday life: General relativity as an ef-

fective field theory,” Living Rev. Rel. 7 (2004), 5-56.
[35] P. Adshead, C. P. Burgess, R. Holman and S. Shandera, “Power-counting dur-

ing single-field slow-roll inflation,” JCAP 02 (2018), 016.
[36] G. Kaplanek and C. P. Burgess, “Hot Cosmic Qubits: Late-Time de Sitter Evo-

lution and Critical Slowing Down,” JHEP 02 (2020), 053.
[37] N. C. Tsamis and R. P. Woodard, “Matter contributions to the expansion rate

of the universe,” Phys. Lett. B 426 (1998), 21-28.
[38] A. A. Starobinsky, “Stochastic de Sitter (inflationary) stage in the early Uni-

verse,” Lect. Notes Phys. 246 (1986) 107–126.
[39] D. Green, “EFT for de Sitter Space,” [arXiv:2210.05820 [hep-th]].
[40] V. Vennin and A. A. Starobinsky, “Correlation Functions in Stochastic Infla-

tion,” Eur. Phys. J. C 75 (2015), 413.
[41] V. Vennin, “Stochastic inflation and primordial black holes,”

[arXiv:2009.08715 [astro-ph.CO]].
[42] C. P. Burgess, R. Holman and G. Tasinato, “Open EFTs, IR effects & late-time

resummations: systematic corrections in stochastic inflation,” JHEP 01 (2016),
153.

[43] A. A. Starobinsky and J. Yokoyama, “Equilibrium state of a self-interacting
scalar field in the De Sitter background,” Phys. Rev. D 50 (1994) 6357–6368.

[44] N. C. Tsamis and R. P. Woodard, “Stochastic quantum gravitational inflation,”
Nucl. Phys. B 724 (2005), 295-328 [arXiv:gr-qc/0505115 [gr-qc]].

[45] M. Mijic, Stochastic dynamics of coarse grained quantum fields in the infla-
tionary universe, Phys. Rev. D 49 (1994) 6434–6441, [gr-qc/9401030].
D. Seery, Infrared effects in inflationary correlation functions, Class. Quant.
Grav. 27 (2010) 124005, [1005.1649].
C. P. Burgess, R. Holman, G. Tasinato and M. Williams, “EFT Beyond the
Horizon: Stochastic Inflation and How Primordial Quantum Fluctuations Go
Classical,” JHEP 03 (2015), 090.
H. Collins, R. Holman and T. Vardanyan, “The quantum Fokker-Planck equa-
tion of stochastic inflation,” JHEP 11 (2017), 065.

[46] V. Gorbenko and L. Senatore, “λφ 4 in dS,” [arXiv:1911.00022 [hep-th]].

http://arxiv.org/abs/gr-qc/0510049
http://arxiv.org/abs/gr-qc/9505033
http://arxiv.org/abs/2210.05820
http://arxiv.org/abs/2009.08715
http://arxiv.org/abs/gr-qc/0505115
http://arxiv.org/abs/gr-qc/9401030
http://arxiv.org/abs/gr-qc/9401030
http://arxiv.org/abs/1005.1649
http://arxiv.org/abs/1911.00022


Gravity, Horizons and Open EFTs 57

M. Mirbabayi, “Infrared dynamics of a light scalar field in de Sitter,” JCAP 12
(2020), 006.
M. Baumgart and R. Sundrum, “De Sitter Diagrammar and the Resummation
of Time,” JHEP 07 (2020), 119.
T. Cohen and D. Green, “Soft de Sitter Effective Theory,” JHEP 12 (2020),
041.
M. Mirbabayi, “Markovian dynamics in de Sitter,” JCAP 09 (2021), 038.
M. Baumgart and R. Sundrum, “Manifestly Causal In-In Perturbation Theory
about the Interacting Vacuum,” JHEP 03 (2021), 080.
T. Cohen, D. Green and A. Premkumar, “A Tail of Eternal Inflation,”
[arXiv:2111.09332 [hep-th]]; “Large Deviations in the Early Universe,”
[arXiv:2212.02535 [hep-th]].

[47] L. P. Grishchuk and Y. V. Sidorov, “On the Quantum State of Relic Gravitons,”
Class. Quant. Grav. 6 (1989), L161-L165.

[48] R. H. Brandenberger, R. Laflamme and M. Mijic, “Classical Perturbations
From Decoherence of Quantum Fluctuations in the Inflationary Universe,”
Mod. Phys. Lett. A 5 (1990), 2311-2318.

[49] E. Calzetta and B. L. Hu, “Quantum fluctuations, decoherence of the mean
field, and structure formation in the early universe,” Phys. Rev. D 52 (1995),
6770-6788.

[50] C. Kiefer, D. Polarski and A. A. Starobinsky, “Quantum to classical transition
for fluctuations in the early universe,” Int. J. Mod. Phys. D 7 (1998), 455-462
[arXiv:gr-qc/9802003 [gr-qc]].

[51] T. J. Hollowood and J. I. McDonald, “Decoherence, discord and the quan-
tum master equation for cosmological perturbations,” Phys. Rev. D 95 (2017)
no.10, 103521.

[52] J. Martin and V. Vennin, “Non Gaussianities from Quantum Decoherence dur-
ing Inflation,” JCAP 06 (2018), 037.

[53] H. Kodama and M. Sasaki, “Cosmological Perturbation Theory,” Prog. Theor.
Phys. Suppl. 78 (1984), 1-166.

[54] V. F. Mukhanov, H. A. Feldman and R. H. Brandenberger, “Theory of cosmo-
logical perturbations. Part 1. Classical perturbations. Part 2. Quantum theory
of perturbations. Part 3. Extensions,” Phys. Rept. 215 (1992), 203-333.

[55] J. M. Maldacena, “Non-Gaussian features of primordial fluctuations in single
field inflationary models,” JHEP 05 (2003), 013.

[56] C.P. Burgess, R. Holman, G. Kaplanek, J. Martin and V. Vennin, “Minimal
decoherence from inflation,” [arXiv:2211.11046].

[57] E. Nelson, “Quantum Decoherence During Inflation from Gravitational Non-
linearities,” JCAP 1603 (2016) 022 , [arXiv:1601.03734].

[58] D.G. Boulware, “Hawking Radiation and Thin Shells,” Phys. Rev. D 13 (1976)
2169.

[59] J.B. Hartle and S.W. Hawking, “Path Integral Derivation of Black Hole Radi-
ance,” Phys. Rev. D 13 (1976) 2188.

[60] J Hadamard, “Lectures on Cauchy?s problem in linear partial differential
equations”, Yale University Press, New Haven, U.S.A.

http://arxiv.org/abs/2111.09332
http://arxiv.org/abs/2212.02535
http://arxiv.org/abs/gr-qc/9802003
http://arxiv.org/abs/2211.11046
http://arxiv.org/abs/1601.03734


58 C.P. Burgess and Greg Kaplanek

[61] B. S. DeWitt and R. W. Brehme, “Radiation damping in a gravitational field,”
Annals Phys. 9 (1960), 220-259.

[62] S. A. Fulling, M. Sweeny and R. M. Wald, “Singularity Structure of the Two
Point Function in Quantum Field Theory in Curved Space-Time,” Commun.
Math. Phys. 63 (1978), 257-264.

[63] G. Kaplanek and C. P. Burgess, “Qubits on the Horizon: Decoherence and
Thermalization near Black Holes,” JHEP 01 (2021), 098.

[64] E. T. Akhmedov, H. Godazgar and F. K. Popov, “Hawking radiation and
secularly growing loop corrections,” Phys. Rev. D 93 (2016) no.2, 024029
[arXiv:1508.07500 [hep-th]].

[65] S. Emelyanov, “Near-horizon physics of an evaporating black hole: One-loop
effects in the λΦ4-theory,” [arXiv:1608.05318 [hep-th]].

[66] G. Kaplanek, C. P. Burgess and R. Holman, “Influence through mixing:
hotspots as benchmarks for basic black-hole behaviour,” JHEP 09 (2021), 006.

[67] G. Kaplanek, C. P. Burgess and R. Holman, “Qubit heating near a hotspot,”
JHEP 08 (2021), 132.

[68] C. P. Burgess, R. Holman and G. Kaplanek, “Quantum Hotspots: Mean Fields,
Open EFTs, Nonlocality and Decoherence Near Black Holes,” Fortsch. Phys.
70 (2022) no.4, 2200019.

[69] A. O. Caldeira and A. J. Leggett, “Influence of dissipation on quantum tunnel-
ing in macroscopic systems,” Phys. Rev. Lett. 46 (1981), 211.

[70] C. P. Burgess, P. Hayman, M. Williams and L. Zalavari, “Point-Particle Effec-
tive Field Theory I: Classical Renormalization and the Inverse-Square Poten-
tial,” JHEP 04 (2017), 106.
C. P. Burgess, P. Hayman, M. Rummel, M. Williams and L. Zalavari, “Point-
Particle Effective Field Theory II: Relativistic Effects and Coulomb/Inverse-
Square Competition,” JHEP 07 (2017), 072.
R. Plestid, C. P. Burgess and D. H. J. O’Dell, “Fall to the Centre in Atom Traps
and Point-Particle EFT for Absorptive Systems,” JHEP 18 (2020), 059.

[71] S. Weinberg, “The Quantum theory of fields. Vol. 1: Foundations,” Cambridge
University Press (2005).

[72] G. A. Pavliotis, “Stochastic processes and applications: diffusion processes,
the Fokker-Planck and Langevin equations,” Vol. 60, Springer (2014).

http://arxiv.org/abs/1508.07500
http://arxiv.org/abs/1608.05318

	Gravity, Horizons and Open EFTs
	C.P. Burgess and Greg Kaplanek
	1 Open systems and gravity as a medium
	1.1 Open quantum systems
	1.2 Late-time failure of perturbative methods
	1.3 Influence Functionals

	2 Applications to Rindler space
	2.1 Accelerated qubit thermalization
	2.2 Secular growth and the Minkowski vacuum

	3 Applications to de Sitter space
	3.1 Qubit thermalization
	3.2 Coarse-grained fields

	4 Black holes
	4.1 Qubit thermalization
	4.2 Hotspots and Influence Functionals

	5 Summary
	References



