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Abstract

A microscopic three-body cluster *He+t+n model is developed for 8Li using the
method of hyperspherical harmonics with cluster interactions fitted to experimental
data. The model is used to calculate wave functions, spatial and matter densities
of the ground state and the low lying excited state of 8Li. The model reproduces
experimentally known properties of 8Li. Contrary to two-body models, our prediction
for the radiative neutron capture on “Li at low energies supports a lower cross section
value.

1 Introduction

The trigger reactions to nucleosynthesis proceed via light nuclei. which are known to have a
cluster nature. Few-body models of light nuclei have been intensively developed in the last
decade. as reviewed in [1]. Thorough investigations of A=6 nuclei and ''Li in three-body
models [2] have shown that essential characteristics are well accounted for. The three-
particle structure and three-particle asymptotic behaviour is of particular importance for
nuclear reactions at energies of astrophysical interest.

The nuclear structure of the A=8 nuclei 3Li (and ®B) can. as we will show below, also be
considered in a three-body approach. It is a question of interest not only in nuclear physics
but even more so in astrophysics and weak interaction physics. This paper investigates 8Li,
which will be considered as a three-particle (*He + t + n) system. Here the Coulomb part
is essentially simpler than for the isospin mirror nucleus 8B. It is natural to expect that the
structure of 8B should have similarities with that of 8Li. The rate of the "Be + p = ®B
+7v reaction, relevant for the Solar neutrino problem, could be strongly affected by specific
three-particle features of ®B (*He + *He + p). The exact solution of this particular three-
body problem implies the exact reproduction of two-particle (?Be+p) asymptotic behaviour
of the wave function as well as a solution of the difficult three-body Coulomb problem. We
will return to this in a forthcoming publication.

The 8Li structure is important not only as a doorway to understanding the "Be + p
reaction mechanism: The radiative capture "Li+n =*Li + 5 is in fact the trigger reac-
tion to the primordial nucleosynthesis of heavy elements in inhomogenous big-bang mod-
els [6] due to the chain: "Li(nay) *Li(*ITe.n) M B{n,y) "?B(3}'*C with "leak” to the chain
3Li(n,7)°Li(37,2)?Be(p,a)’Li. The experimental status of the "Li+n=®Li+~ reaction is re-
grettably not clear. The three experiments on the thermal radiative neutron capture (3, 4, 5]
only agree with each other within a factor of two.

2 Theoretical background

Within the cluster representation of 4 = 8 nuclei (see Refs.[1]. [2] for details), three-body
hound state and continuum center-of - mass system wave functions (WFs) have the form



of products of intrinsic cluster WFs and functions of the relative motion coupled to total
angular momentum J, M and isospin T, Mr,

(1
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where ®4((,) and ®3T((,) are intrinsic WFs of *Tle and t respectively, X3nTn are the neutron
spin-isospin functions, L and § are net orbital momentun and spin quantum numbers and
the brackets [...]| mean a vector coupling. Functions ¥§(x,y) describe the three-cluster
relative motion.

Translationally invariant normalized sets of Jacobi coordinates x and y are defined as
follows

X3 = (A12)'/*ria = (A12)'/*(Ry — Ry),
yYa= (/‘(12)3)‘/21'(12)3 = (Ap2a)' [ Ra+ (AR + A2R,) /(A + A)), (2)

Here A1z = A1Ay/(Ay + A;) is the reduced mass of the (12) subsystem in units of the
nucleon mass m, Aqz3 = (A + A2)A3/(A; + Az + A3) is the reduced mass of particle 3
with respect to the cluster (12), and A = (A; + A; + A;3). Notice, y; is co-linear with
R; — Ron. Alternative sets (x1,y1) and (x2,yz) of Jacobi coordinates are obtained by
cyclic permutations of (1,2,3). We use hyperspherical coordinates p,0,0,, ¢,,0,, ¢, where
0:,¢: and 8, ¢, are angles associated with unit vectors x and y, and

p=(2"+y")'?, 0 = arctan(z/y). (3)

The collective variable p is called the hyperradius while @ is the hyperangle. In the bound
state case we seek for the three body relative motion functions in the form of the expansion

Wi (x.y) = 02 S kS (0) - Vet (92s) (1)
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Here Q5={0,0,, ¢-,0,, ¢,}, and )'}L’,{”(QS) are hyperspherical harmonics (HII). The I are
eigenfunctions of the hypermoment operator with eigenvalues (A + 4), where N'=0.12...is
referred to as the hypermoment and is the quantum number associated with the extra "angle”
0 . Other quantum numbers are the Jacobi orbital momenta I, and [, and the total orbital
moment um and its projection L, Af. The ITH have the following explicit form

Vi) = P [17, %) - Vi ()]
where

P
2

¢'I\’.ly(0) = N;\f“’(sin 0 (cos 0)' [’kf,l/z,"”“/z(cos 20), (6)

. . tely -
Po# are Jacobi polynomials and N2 is a normalization factor.
The corresponding Schrodinger three-body equation is

(T+V-—E)\I/5M=0,V=Vn+“/13+‘723- (M

After separating out the hyperangular parts of the WF we obtain a set of coupled equa-
tions similar to those for a particle moving in a deformed mean field

2
(-2 [f7+—c—(i—fl~)l+vm,mp>—E)m(p)=— Y Vewsaloxols) ()
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3
Vi ky(p) =< Yo (Qs) | 3 Vis(p, Q) | Yicen (25) >,
1<y

7={lrslyaLsS};£=K+3/2. (9)

Note that for the bound three-body states (£ < 0) the hyperradial functions yk.(p) decay
exponentially at large p values.

It should be noticed here, that the three-body effective centrifugal barrier £(%?-‘—lldoes not
vanish even if the angular momenta I; and I, of the subsystems are equal to zero. In the
case of short-range pairwise cluster interactions the three-body mean field behaves at large
p values as Viy gry(p — 00) ~ p™™ with n > 3 (n = 3 for the diagonal terms). This power
law reflects the peculiarity of the three-body problem, namely the possibility of two particles
to interact far away from the third particle.

The HHs form a complete set of functions, but to describe bound asymptotic of a binary
type one may need a large series of IIIl . The investigations of the three-nucleon problem
(see e.g. [20]) and of the ®Li nucleus {1,2] have shown that for various observables involving
finite distances, the convergence of the WF in hypermoment K is fast.

It should also be stressed here that in the shell model language every HH corresponds to
an infinite sum of radial excitations.

3 Cluster-Cluster Interactions

a-N Interaction

Two tvpes of a-N interactions. one of Woods-Saxon and one of Gaussian shape were tried
in our previous calculations for bonnd and excited states of A=6 nuclei [1]. Both fit a-
N scattering phase shifts satisfactorily, V,, (WS) employs a Woods-Saxon of range 2.0
fm combined with a WS-derivative form and was used in the coordinate space Faddeev
calculation for °Li [18]. The present HII calculations used the WS potential for the a-N
p-wave interaction. For the s-wave component we took a purely repulsive potential with
the same geometry and V., = 43 MeV. This component of the V., interaction reproduces
the experimental sy, phase shifts well. This "Pauli core™ is the way the Pauli exclusion
principle is taken into account. excluding from the aN potential 0s orbits occupied by the
-core neutrons.



a-t(*He) Interaction

Interaction parameters for a-t (*He) were determined by analyzing the experimental data
from [15],(16] on a- t (*He) scattering at energies below triton break-up. The Pauli principle
was simulated by repulsive cores in s- and p-waves. A number of phase equivalent potentials
were tried. For final calculations we used an I-dependent potential of Gaussian shape:

V= Vcexp[“(R/Rc)z] + Veore exp[_(R/Rcore)z] - IsV, exP["(R/Rln)2]

The potential parameters are listed in the Tabl.l. Since all d-wave scattering phases are
nearly zero up to 10 MeV , we neglected the d-wave potential in our calculations. The
Coulomb interaction was taken into account.

The s- and p- phase shifts obtained with the potential from Tabl.1 are demonstrated
in Tabl.2 in comparison with the erxperimental phase shifts. All phases as well as the
binding energies of "Li(3/27, 1/27), "Be(3/2~, 1/27), and the r.m.s. radius of "Li(3/2")
are reproduced well with the chosen potentials.

n- t Interaction

To determine the n+t and p+°lHe interaction only a few experimental data on elastic scat-
tering phases at energies below t break-up are available [14]. Therefore it is difficult to
determine accurately all necessary parameters of spin-orbit and tensor interactions. We have
chosen for our calculations two types of phase equivalent potentials with repulsive cores in
the s-wave channel, having Gaussian and Woods-Saxon:

V= Ve n Veore _ sl Visexpl(R — Ri,)/ai)

1 +exp[(R—- RC)/GC] 1 +exp[(R— Rcore)/acure] rll +6XP[(R“ R,,)/a,,]]z
shapes. The parameters of the potentials are listed in the Tabs.3.4. Tensor forces were
simulated by the spin dependence of the central potentials, following e.g. paper {17]. The
phase shifts are shown in the Tabs.5,6 in comparison with the experimental data. All d-
wave scattering phases are small and comparable to zero at low energies. so the d-wave n-t
potential was assumed to be zero in our calculations. Both choices reproduce the available n-
t scattering phase shifts well within a reasonable energy range. Nevertheless, one needs more
accurate experimental data to fix the potentials more precisely. This is especially important
for the tensor component of the interaction. since the usual way to simulate it by a spin
dependent central force does not give the correct channel coupling. Therefore, and in order
to estimate the sensitivity of our calculations to the real tensor interaction. we also carried
out a caleulation including the nucleon-nucleon tensor forces with a free depth parameter.

4 ®Li Nuclear Structure

4.1 Wave Functions

The wave functions were found using Fqs.(1), (9). Here we list the results for the WS version
of the n- t potential. The binding energy for N ., = 2,4 and 6 equals 0.287. 3.98 and 1.47

MeV, respectively relative to the three-particle threshold. The trend in the convergence is
such that we do not expect a significant increase in the binding energy due to higher K
values. Our binding energy is close to the experimental value 4.50 MeV [11]. The binding
energy is, however, sensitive to uncertainties in the n-t potential: By varying that potential
within experimental errors of the phase shifts we obtained a variation of the binding energy
of about 200 KeV.

The predominant component of the 2¥ ground state is that with $ = L = 1. We also see
from Tabl.7 that the weights of predominant components quickly decrease as K increases.
The angular momentum structure of the wave function is shown in Tabl.8 for the n(at)
partition. We notice that [,=1 dominates in agreement with the p-motion adopted for the
neutron in simple binary models.

In general our results confirm those of Ref. [10]. The differences in the formulations of
the problem prevent us, however, from a detailed comparison.

For the first excited 1% level we obtained a binding energy of a 3.50 MeV relative to the
three-particle threshold. Thus our calculation reproduces the experimental excitation energy
of 980 keV [11] from the ground state rather well. The weights of various components of the
1* state are given in Tabl.9.

The second 1t state is lying in the two-body continuum at a calculated energy 1.58 MeV
below the three-particle threshold and is slightly overbound (the experimental value relative
to the three-body threshold is 1.29 MeV).

In order to investigate the sensitivity of the nuclear structure to n-t tensor forces we
switched off the spin dependence of the n-t central s-wave potential and included a tensor
interaction as the free nucleon-nucleon tensor interaction with a free depth parameter. This
model calculation shows, that admixtures of small WF components are very sensitive to the
tensor interaction. For example, by including 20% of the free nucleon-nucleon tensor force
we get the same binding energy but the (I;=1, {,=3) WF component increases by an order
of magnitude. Thus, we can conclude that it is very important to account accurately for the
tensor interaction in this problem.

4.2 Matter Densities and Radii

Geometrical characteristics of the states of 8Li were calculated from the wave functions.
Details are described in [2]. Using r.m.s matter radii R(*He)=1.17 fm and R(t)=1.63 fin
from experiment, Tabl.10 contains various rms separations between ®Li subsystems calculated
for the two set of potentials described above. For the WS n-t potential good agreement with
the experimental rms value R(*Li)= 2.37£0.02 fm [19] was obtained. For the Gaussian n-t
potential we obtain the same result as Ref. [10], a smaller value than in Ref. [13]. The
r.m.s neutron radius. caleulated for the WS n-t potential is 2.7 fin | which is less than that
of Cs616 [10], while the neutron skin Ar = 0.47 fin is somewhat greater than that given in
Refs. [10. 13).

Our calculations indicate a 10% reduction of the 8Li intercluster r.an.s. R, _sy separation
relative to that {3.53 fm) in “Li: the valence neutron acts like “glie™.

In the calculations of the matter density of *Li we correct for the sizes of the a - particle
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and the triton by folding the squared wave function of their center-of-mass motion with
the internal  and t densities, which we take to be Gaussians. Figs. 1-3, show the matter
densities in ®Li decomposed in neutron- and proton- components. The neutron density falls
more rapidly than that calculated in [13], reflecting three-body dynamical features.

Additional insight is gained by plotting the correlation density (Fig. 4) (see ref. [2] ) de-
fined as the angle integrated probability P(r3H-a» r(3y._,,)_,.). The correlation plot exhibits a
prominent peak at the most probable distances and qualitatively demonstrates the distortion
of 7Li as a function of the valence neutron distance, a characteristic feature of three-body
dynamics. The calculation substantiates, however, that 8Li has a structure resembling "Li
+ n.

5 Cross-Section of 'Li(n,y) Reaction

The cross-section of the 7Li( n,y) reaction at energies of astrophysical interest has been a
subject of experimental and theoretical investigations for more than three decades. The
experimental status of the reaction remains nevertheless uncertain. Three experimental
values have been published at a neutron energy of about 25 keV, where only s-wave capture
contributes to the cross-section. The first and largest value, obtained by Imhof et.al. at the
end of the 1950s [3] is 50ub at E,=40 keV and was reported without giving experimental
errors. In this experiment the reaction was detected by observing the beta decay of 8Li.
Essentially the same method was used in a more recent experiment of Wiescher et.al [4], but a
much lower value was obtained: o(n, 7)=21.0% 1.9 ub at £,=25 keV. In both measurements
two quantities are involved, where neither is perfectly established, namely the branching ratio
to the first exited state of Li and the probability of Li beta decay to @ + a continuum
states. Another experimental method, where the reaction was detected by observing prompt
~-rays from a captured state, was used by Nagai et.al. [5]. For partial capture cross-section
to the ground state of ®Li they obtained: o(n,v)=35.4% 6.0 ub at E,=30 keV. The cross-
section to the first exited state was estimated experimentally to be o{n,v) < 9ub. but was
taken as 3.940.7 ub according to a branching ratio of 10.6+1% cited in {7] as an unpublished
result. Adding these numbers. the total cross section was reported as 39.3+ 6.0 ub. The
value of the branching ratio is important; the first exited state in the mirror nucleus ®B lies
above the two-particle threshold, hence does not contribute to the "Be(p,v)®B reaction rate.
So. it is only meaningful to compare the the cross section "Li(n, v)®Li(g.s.) with that of the
mirror reaction "Be(p,v)®B.

[n summary the experimental situation is that the value of the "Li(n,y) reaction cross
section at low (= 25keV) energies seems to fall within the range 20-50 ub. The previous
theoretical estimates are more definite: both the simple two- body model of Barker [9] and
the more refined GCM model of Descouvemont and Baye (8] support the highest value of
Imhof and upper experimental limit of Nagai ct.al. As we will see below. our result supports
a lower value.

-1

5.1 Two-body continuum

In the present work we use an approximate approach to the two-body continuum, which is
not an exact solution of the three-body Schrodinger equation, but is simulated as a solution
of a two-body equation with a Li-n potential, fitted to reproduce observed s-wave scattering
lengths and the characteristics of the 81i ground state. An attempt to account exactly for
the two-body continuum in the hyperspherical harmonics method is in progress. We believe,
that the essential feature of our approximate continuum solution will be retained in exact
three-body calculations. The reasons for this is the following: the exact description of the
two-body continuum in a three-body problem can only change this continuum in the region of
the nuclear forces. The main contribution to the cross section at low energies comes however,
from the near asymptotic region, where the continuumis reliably fixed by experimental values
of scattering lengths. In order to compare our results with those of a two-body model we have
chosen the Li-n potentials suggested by Barker [9], which reproduce experimental s-wave
scattering lengths for channel spin [=1.2. We can, however, also use other potentials, which
reproduce these values since the direct radiative capture cross section at energies about 25
keV is not sensitive to details of the two-body continuum at distances inside 4.0 fm.

5.2 Results

Using (i) our three-body ®Li wave function and (ii) a "Li wave function obtained as a solution
of a two-body Schrédinger equation with the same a —3 H potential, and (iii) the wave
function for Li-n relative motion in Barker’s potential, we calculated the s-wave direct
neutron capture cross section. All necessary formulas are given in the Appendix. The final
result : at E.=25 keV partial capture cross-section to the o(n,v)2Lig.s. =27.5 pb, total
o(n,4)=28.2 ;b (with a branching of 0.71b to the first excited state). Thus our three-body
approach, leads to the partial cross section to the 8Li ground state which is slightly below the
lower experimental limit of Nagaiet.al. #(n.)=35.4% 6.0 pb[5], while the total cross-section
is more smaller than that derived in [5] due to the small branching to the first excited state.
This value is essentially smaller than the two body cross section of Barker (o(n,v) = 50ub)
[9] and the GOM results {12] ( 54.9-44.5 itb) . The reason for such difference is the different
asvmptotic behaviour of the 81,i wave functions in three-body and two-body approaches.
For both cases the region below 3 fm does not contribute to the cross section because of
nature of the dipole operator, suppresing small distances, and the lack of resonant states in
the vicinity of this energy region. For the three-body case the cross section grows rapidly
Letween 4-8 fin and saturates at & L1 fm in hyperradius . It should be mentioned here that
we solve the three body Schrodinger equation exactly up to 15 fm and match this solution
with the three bodv asymplotics from 15 fm. Since the saturation of the three-body cross
wetion oecurs at 11 fm and the convergence of the *Li WF in hypermoment I is quite good
fsee Tabl.T), we don’t expect a signilicant contribution from explicitly accounting for the
two-body channel in the three-body problem.



6 Conclusion

We have performed a detailed study of 8Li which, aside for its own role in nucleosynthesis also
is a mirror nucleus to the more complicated ®B, and may thus provide a key to nuclear aspects
of the Solar neutrino problem. A three-body model with realistic interactions between the
clusters, which reproduce all observables in binary subsystems was developed. Without
fitting parameters we could for the first time reproduce the binding energy in a satisfactory
way and also the splitting between the 2+ ground state and 17 first excited state, as well as
the matter radius of the ®Li ground state.

Analysis of pair interactions showed that the main ingredients of calculations, i.e. ‘He+t
and ‘He+n two-body potentials, are well-established. But to reproduce fine details of 8Li
spectra and some components in the ground state wave function , that could give a few-
percent correction to the cross-section we are strongly in need of experimental information
on n-t phase shifts to reconstruct non-central components of n-t interaction (ls- and tensor
forces).

Using three-body wave functions for the ground state and 1* state of ®Li we have inves-
tigated the "Li (n,y) reaction at 25 keV with a variety of continuum wave functions, fixed
by experimental phase analysis in binary models. Due to the three-body characteristics of
the 8Li nucleus our result is a "Li (n,y) partial cross section to the 8Li ground state of 27.5
ub at neutron energy 25 keV, supporting the lower limit of the experimental value 35.44+ 6
ib [5] and the "Li (n,y)8Li(1*) of 0.7 pb.

The "Li {n,y) cross-section depends only weakly on the way we construct the continuum
wave function, as long as it satisfies asymptotic experimental phase shifts. In contrast it is
very sensitive to the behaviour of the 3Li wave function in the nuclear exterior.

For the mirror reaction "Be (p,v), where the asymptotic behaviour of 8B, , wave function
may be even more important, we also expect a reduction of the cross-section at the energies
of astrophysical significance. Work on this reaction is in progress. The extended HH theory
with inclusion of the binary channels, or Faddeev equations are the most promising tools for
answering this nuclear physics question.
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8 Appendix

The Li (n,7y) cross-section is calculated using the well known formula (we assume hi=c=1):

167r62E3 ¢ a2

MMy 1My

In N-cluster representation the standard dipole operator (referred to the CM) is
T = D mmYiy(f)

In case of three charged clusters it takes the form ( the Jacobi coordinates are defined in
sect. 1)

e

= uYim(d) + zxYim(E)
zypcos 0 Yiar(§) + z,psin 0 Yy p ()

, AlAg (22 2 )
o= _a 1
4 /‘1 + /42 A; A1 ( )

oo (A] + /‘2)/‘13 ( 1+ 2y _ <3
v /11 + /12 + A:; A] + /12 I)
{-1; 1s the mass number of a cluster).
For electromagnetic capture we use a WF for the initial state of n+7Li in the channel
spin (1) representation (the relative motion momentum k is along the z-axis), which in
corresponding Jacobi coordinates takes the form

i

with effective charges

(12)

, ) &, (k'y) i, (z) . _
Wiry) = 3 (5 amRn w0 Y |(l',s‘,)j,(jzs‘y)l(l;l)J;M‘)—I*—ul@‘—(x)e'NIM,I;O[J.vA’I.-)

It JoM, ky z
v

In the above a natural normalization of the scattering wave function and the bound state
wave function was assumed. Namely, at y — oo

&, (K'y) — sin(K'y + 8),

anid -
/ de(d), () = 1.
0 i
Transforming this WF to 1.-§ coupling gives for the spin-angular part (J = 27 + 1)
(B i ) DAM) = 37 (=¥ LIS WL s, 154 5L50)

y
s

WSHLLL L) (8 ) Lol st st ) S LS00 Ji M)
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After integration over angles & and j the transition matrix element between the two-body
L-S coupled continuum wave function and the ground state WF of 8Li can be written as

Iy Mm | TigliMim) = (WM EMAT M) Ty i, 2 (= 1)1+,

4
pes 1 & T UL L
I;L.La-]iuopy(]“yo){ I f Ly } { S. J] Ji }
v 1 1 ' '

45, (K'y) ), (z)

(@5, (P, 0) |z p cos O] r— )

Ty:“-lL:tl ,I,=L;,L.':t1 ,Z.'=L/

The spin-angular integration over & is performed by interchanging the z and y indices
taking into account additional phase multipliers (—=1)~5++5 and (—1)-Lr+4+4 after this
permutation.

Radial matrix elements

with selection rules I = {{ | Ty = li R

8, (k') 8, ()

(651, (9, 0)]p c05 0] S )

are calculated numerically with a quasi-gaussian 200 points formula for the hyperangular
part that we used in the matrix element calculations. A hyperradial grid with step 0.2 fm
was chosen for the solution of coupled hyperradial equations for Ko < 4. For Kpqz up to
6 these equations were solved by expansion in a convenient set of hyperradial functions (see
e.g. {20]). The two methods lead to the same results for K, < 4.
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Vc Rc Vcore Rcorc /Is Rla
MeV | fm { MeV | fm { MeV | fm

s-wave - - 80 2.1 - -
p-wave | -141.6 [ 2.1 | 300 | 143 | 2.3 | 2.1
f-wave | -48.5 | 3.1 13.2 | 1.91

Table 1: Parameters of a-t Gaussian potentials.

E(MeV) | 67, ex. | §7,th. | 87, ex. | 67th. | 65, ex. 83/, th.
3.30 -23+ 2| -21.6 | 162+ 3 | 162.1 {165+ 1 | 163.7
3.51 -24+ 1 | -23.6 | 161+ 1} 1603 {164+ 1| 162.1
3.88 -27£ 1] -27.0 {159+ 2 157.3 | 162+ 1| 159.3
437 30+ 1 | -31.4 | 156+ 2] 153.5 | 158+ 1| 155.6
4.46 31 1) -32.2 (1561 2 1528 | 158t 1| 1519
4.64 -33+ 2 | -33.8 | 153+ 2| 1514 {158+ 1| 153.6
4.79 34 1| <3510 | 151k 2| 1503 | 157£ 2| 152.5
4.95 -40+ 6 | -36.4 | 150+ 3 | 149.1 | 154+ 2 | 1514
5.09 -49+ 7 | -37.6 | 146+ 5| 148.1 | 153+ 3 | 150.4
5.21 -38£ 5 | -38.6 | 149+ 31 147.2 | 153+ 2| 149.5
6.04 S50+ 7 -45.3 | 13TE 51 1415 | 142+ 2| 1439
6.46 -49+ 5 | 484 | 139+ 3| 138.7 | 140+ 2| 141.2
6.86 48+ 9| -51.4 [ 139+ 4 | 136.1 | 140+ 4| 138.7

Table 2: Phase shifts (degrees) for p-wave « -

from Ref.[16].

t scattering. Experimental data are taken

Ve Re | Vi | R

MeV ] fm | MeV | {m
s-wave,5=01 160 2.1 - -

s-wave,S=11 220 2.1

p-wave,S=0| -8.8 | 3.725

p-wave, S=1 | -18.6 | 3.015 | 4.67 | 3.015

Table 4: Parameters of N-t (°*He) Gaussian-potentials.

E(MeV) (Sn(] ex. 6110t’h. 6011 ex. 6011“'1. 6”1 ex. 61“ th 52118)(. 6211th.
1 5.7 3.4 3.0 2.5 11.1 3.1 8.1 6.1
2 17.6 9.7 1.8 7.1 16.2 8.8 30.6 19.3
3.5 25.0 21.7 7.0 14.9 29.0 19.2 53.2 45.2
6 24.9 39.3 14.3 26.1 48.9 34.0 65.1 71.4

Table 5: Phase shifts (degrees) for p-wave n-t scattering (WS-potential).

[‘:”\l(‘\’) 6000 ex., éoo()th 610] ex. 6|01th.

1 -26.6 -26.0 -36.2 -32.4
2 -36.1 -36.3 -45.5 -45.4
3.5 -47.0 -17.5 -59.2 -59.3
6 -60.7 -60.6 -76.2 -76.3

Table 6: Phase shifts (degrees) for s-wave n-t scattering (WS-potential).

K|S=1,L=1|S=1L=2|S5=1.L=3|5=0,L=2
2 85.5 0.8 - 0.3
4 10.7 1.1 0.05 0.37
6 1.0 0.1 0.05 0.1
h3 97.2 2.0 0.1 0.7

Vo | Re | ac | Viore | Roore | @core Vis Ry, | ay
MeV | fm | fm | MeV | [m fm | MeV:fm | fm | fm
s-wave, S=01{ -33 2 10.7| 200 1.3 | 0.7
s-wave,S=1| -33 | 2 0.7} 400 | 143 | 0.7
p-wave, S=0| -43 | 2 | 0.7 - -
p-waveS=1| -33 | 2 [0.7 66 1.5 0.35

Table 3: Parameters of N-t (*Ile) WS potentials.

Table 7: Percentage of various [, § components of the ground-state wave function of ®Li.

LS| |1, | WF percentage (HH) | WF percentage {10}
1)1l 96.1 95.0
2010011 1.1 1.9
200111 0.1 1.6
200131 0.8 2.0
201113 0.2 0.09
20010311 0.13 1.6
20013 0.02 0.03

Table 3: Weights of the main components of the ground-state wave function of *Li. I, is the

refative & — ¢ orbital momentum and [, - the neutron orbital momentum relative to (at).
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KIS=1,L=1|5=0,L=1|85=1,L=0][S=1,L=2
2 15.1 72.4 0.03 0.9 0.80
4 1.7 7.3 0.13 1.10 —-
6 0.17 0.8 0.03 0.11 ]
T 17.0 80.5 0.2 22 ]
Table 9: Percentage of various L, S components of the first exited state of 8Li. j}
0.00 ——_
4 L
T -1
= ]
: ]
kY 1
 0.40 4
= ]
O I
N
S ]
|
020 4 ~ ~
T * 1 1 [ 1F .
t-n pot. : | Gauss | WS | Gauss | WS !
Tne7Li 4.00 | 3.63] 4.14 | 3.88 3
maH-a | 3.26 |3.13] 3.27 |3.23 .
rCM | 350 |37 3.63 |3.40 -
? 5.67 |5.32| 5.78 | 5.58 00 I :
Rpaer | 245 235 248 | 2.42 560 500
Table 10: Calculated r.m.s. separations between various parts of the 3Li svstem.
The experimental value is R;2,..=2.374 0.02 fm [19].
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