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Abstract

In this work we discuss the role of chiral symmetry in the description of the nucleon-
nucleon interaction. We make use of a generalized Nambu —J ona-Lasinio model which exhibits
chiral symmetry at the quark level and demonstrate how the various components of the boson-
exchange model of the nucleon-nucleon interaction arise in this model. In this work we make
use of our recent analysis of correlated two-pion exchange. We have found that when correlated
two-pion exchange is represented by an effective low-mass sigma meson, that meson may be
seen to be the chiral partner of the pion. (That result pertains if the meson momentum, g, is
spacelike such that ¢ = g% < 0.) We give particular attention to the vertex functions appearing
in the boson-exchange model. For monopole forms of the vertex functions the cutoff parameter,
A%ZE  varies from about 1.3 GeV to 2.0 GeV. We show how such very large cutoff parameters

can arise in our analysis even if the meson-nucleon vertex is soft, with a characteristic cutoff of

about 750 MeV (as recently determined in a QCD lattice calculation). The correspondence

between our model and the boson-exchange model is particularly good in the case of pion
exchange, where the lattice calculation gives a meson-nucleon vertex characterized by a
parameter A, = 0.75 + 0.14 GeV and the boson-exchange model has A(:BE = 1.3 GeV. We
show how these numbers are compatible without introducing higher-mass resonances in the
boson-exchange model. For mesons other than the pion, we present the values of A that puts

the NJL analysis in very good agreement with the boson-exchange model of the nucleon-nucleon

force.



I. Introduction

There has been an ongoing interest in understanding the role of chiral symmetry in
nuclear structure studies [1] and in the nucleon-nucleon interaction [2-5]. Some effort has been
devoted to introducing chiral symmetry at the level of nucleons and mesons [2-4]; however, the
results of that program have been somewhat inconclusive. It is our belief that chiral symmetry
is best studied at the quark level by making use of models such as that of Nambu—Jona-Lasinio
(NJL) [6]. We present such a study in this work.

We note that the most highly developed and detailed description of the nucleon-nucleon
interaction is that of the boson-exchange model [7]. That model makes no reference to chiral
syrrimetry. The essential features of the model are seen in Fig. 1. There we show a linear
equation for the nucleon-nucleon T matrix with an interaction, Vyy, given by the exchange of
mesons (¢, 7,p,w,...). There are form factors at the meson-nucleon vertices that are often

taken to have a monopole form. For example,

22
A -m

F (1) = '_2_’ (1.1)
A -t

may be used at each vertex in the case the pion is exchanged [7]. Here ¢t = q2 is the square
of the meson momentum.

Let us concentrate on the most important mesons: o, 7, p, w. For each meson we need
to specify the corresponding value of A%BE | the coupling constant, and the meson mass. For
the w and p mesons, one also needs the ratios (f,/g,) and (f,/g,) that describe the relative
importance of the vector and tensor parts of the meson-nucleon coupling [7]. The =, p and w

mesons are assigned their experimental masses. Therefore, there are at least ten parameters to

be specified in the one-boson exchange model.
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Since the boson-exchange model provides a detailed description of the nucleon-nucleon
force [7] and, since it has been extensively used to study the properties of nuclear matter (81,
it is useful to consider whether such a model is related to a theory with chiral symmetry. The
easiest approach to this problem is to attempt to understand the boson-exchange model using a
model, such as the NJL model, that has chiral symmetry at the quark level. The NJL model is
limited since it does not provide a model of confinement. However, in previous work we have
shown how confinement may be introduced [9,10].

One difficulty faced in our program lies in understanding the nature of the sigma meson.
Since there is no low-mass sigma in the data tables, the sigma is usually interpreted as an
effébtive meson describing correlated two-pion exchange [1 1-15]. In a recent work [16] we have
made a study of the quark-quark T matrix of the NJL model. We have shown that, for
t = q2 > 0, the imaginary part of the T matrix has its origin in correlated two-pion exchange. '
However, for ¢ < 0, the same T matrix describes the exchange of the chiral partner of the
pion. This feature of our work will be reviewed in the next section.

Since the NJL model, upon bosonization, will describe the various mesons that play an
important role in the boson-exchange potentials, we will study that model in some detail. The
plan of our work is as follows. In Section II, we provide a review of our study of a generalized
version of the NJL model and of correlated two-pion exchange [16]. In Section 111, we consider
the quark-quark interaction that is here assumed to mediate the nucleon-nucleon interaction. We
provide a 1/n, analysis of the various diagrams that contribute to the interaction and show that,
for t < 0, the most important diagrams correspond to the exchange of gq pairs (mesons). For
¢t > 0, however, our analysis is consistent with the picture of correlated two-pion exchange
(developed at the quark level). In Sections IV, V and VI we study meson-exchange processes

in the o, 7, p and w channels. In these sections we attempt to understand why A9BE g large
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(about 1.3 - 1.7 GeV) while the physical meson-nucleon vertex form factors are "soft", with a
characteristic mass of about 0.75 GeV [17].

The issue of "soft form factors” has been given a good deal of attention recently [18-20].
For example, in Ref. [18], the use of a "soft" form factor in the case of pion exchange requires
the introduction of another meson, a =’ of mass of about 1.2 GeV. For this massive meson to
have any significant role in the t-channel that has pion quantum numbers it must be assigned a
very large value of gf,NN/4'x ~ 70-100. This value is much larger than giNN/47r ~ 14 and
appears to us to be unrealistic.

A recent work by Flender and Gari [21] reports a nonperturbative and self-consistent
determination of baryonic vertex form factors. They find A, = 0.80 GeV, A, = 0.50 GeV and
A, = 0.60 GeV. Further, N, = 0.92 GeV or 0.61 GeV for the Dirac and Pauli parts of the
vertex form factor, respectively. (Note that the w coupling to the nucleon is almost entirely of
vector character, so that only a single value of X\, need be given.) The authors of Ref. [21]
note that the small values of \ they find are quite incompatible with the large values of AOBE
used in the one-boson-exchange model. In our work we show how this problem may be
resolved, so that the "soft" form factors are seen to be consistent with large values of ACBE.
(Our analysis shows that one should not identify the physical parameter A appearing in the
meson-nucleon vertex form factor with the parameter A%BE ) In Sections IV, V and VI we
discuss the relation between A\ and ABE in the case of the pion, sigma, rho and omega mesons.

Finally, Section VII contains some further discussion and some conclusions.

II. A Generalized NJL Model

In a number of works we have studied a coupled-channel quark-hadron model based upon

the NJL model [9, 22-24]. In that body of work we have included a model of confinement that
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serves to eliminate unphysical cuts that arise if quarks and antiquarks go on mass shell [10].
Here, we provide a short review of our procedures, since the remainder of our discussion will

make use of various elements of our genera''zed model.

We begin by specifying the form of the quark-quark 7 matrix in a simple version of the
y
NJL model, where the Lagrangian is
— s 0
L = giv*d, - my)qw)
Gs (= 2 —ns =
- 25[(qe0 a0 + (G@ivs 7)) @.1)

- 2@ 7wy - @@mas 7@y

if we use the SU(2)-flavor group. Here, m? is the current quark mass. The 7 matrix in the

q
scalar-isoscalar channel is
Gs
t () = - ——— (2.2)
where, with ¢ = P2,
4
Js(P?) = (- l)ncnfij ik_SiSF(P/Z +k)iSp(-P/2 +k) 2.3)
27

is the basic quark-loop integral of the NJL model. [See Fig. 2.]

In our generalized NJL model we introduced a model of confinement. That led to a
modified form for J S(Pz). In Fig. 2(a) we show the summation of a ladder of confining
interactions [10]. We also define a vertex for the confining field that satisfies the equation
shown in a schematic fashion in Fig. 2(b). (Figure 2(c) exhibits the series that is summed in
forming the vertex function.) Once the vertex function is calculated, we can replace J S(Pz) of

Eq. (2.3) by J S(Pz) shown in Fig. 3(b). Note that J S(Pz) does not have an imaginary part
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that would arise in a theory without confinement when both the quark and antiquark go on mass
shell.

Also important for our work is the function K S(PZ) shown in Fig. 3(c). There, the
wavy lines denote pions. Introduction of confinement replaces K S(PZ) by I%S(PZ), shown in
Fig. 3(d). Note that K S(Pz) has an imaginary part for P? > 4mf, since both pions can be
on mass shell in that region.

The functions J S(Pz) and K S(Pz) arise when solving coupled equations of the type
shown in Fig. 4. Various approximations may be used in solving such equations [9]. Relatively
simple results are obtained if the coupling of the gq channels to the two-pion continuum is as
shoWn in Fig. 4(b).

We have studied models that we have designated as B and C [9]. In model C, the

qq T matrix in the scalar-isoscalar channel is

G
g ® = - S E—
1 - Ggls(t) - GgRs(@)

(2.4)

This result has a straightforward diagrammatic representation. For model B, the result is

Ggll + GgKs(0)]
1 - Gg[1 + GgRg(01 ()

thq(t) = (2.3)

. G50 2.6)

1 - Gg(t)J5(t) ’

with GS’(t) = 1+GSkS(t). The T matrices, tql;(t) and tqi(t), are rather similar since

GgKg(0) is small.



In Fig. 5 we show J s(f) as calculated in an earlier work [16]. The dashed line and the
solid line for ¢ < O represent J(¢), while the solid line for ¢t > 0 represents J s(®. Note that
confinement plays only a minor role for ¢ < 0 where J s = Jg(®). However, fort > 0,
J () rises more slowly than Jg(f) with increasing ¢. That has the effect of pushing the scalar-
isoscalar resonance to higher energies. For example, in the theory without confinement
m, = 540 MeV , while with confinement, m, > 900 MeV . Therefore, our generalized model
is consistent with the fact that there is no low-mass physical sigma meson. However, for
t < 0 we have seen that confinement plays only minor role with the consequence that the
theory behaves as if there was a low-mass sigma, with m, = 540 MeV. This result is
parﬁcularly important for studies of nucleon-nucleon scattering and nuclear structure where the
meson momenta are spacelike.

In Fig. 6 we exhibit values of Re MS(PZ) and Im MS(PZ), where
MS(Pz) = - G§1€S(P2). Since we have calculated values for J s(®) and Ks(t), we may
present values for tql;(t), defined above. In Fig. 7, we show Re tqz(t) and Im tqlfl(t). The
imaginary part arises from the cuts in the function ks(t). Thus, for £ > 0, 7, (t) describes
"correlated two-pion exchange" as defined in Ref. [16], for example. The dotted curve in Fig.
7 represents g2/(t—m3') with g = 3.05 and m, = 0.542 GeV. (Here we have used
Gg = 7.91 GeV™ and m, = 262 MeV.) Note that the dotted curve provides a good fit to
tql;(t) for -0.25 GeV? < t < 0, arange of values particularly important for nuclear structure
studies. Figure 8 serves to compare the values of tql; (f) and tqi(t). It may be seen that these

functions are very close in value for < 0.



III. Diagrammatic Analysis of the Nucleon-Nucleon Interaction and 1/n, Counting

There are a large number of diagrams that contribute to the calculation of the quark-quark
T matrix. We will call the general T matrix T, while using 7., t0 denote the T matrices that
may be expressed in terms of J s(f) and K s(#) only. [See Eqgs. (2.4) and (2.5).] While the
various diagrams may be calculated explicitly, it is useful to find some guidance in an
organization of the diagrams in powers of 1/n,. In that type of counting Gg is of order
1/n, and Jg(¢) is of order n,. Further, § = gqpq = &xqq 18 Of order 1/\/”_;’ while Kg() is
of order unity. Thus, while Gsf s(®) is of order unity, GSIE'S(t) is of order 1/n_. Indeed, at
£ =0, GgRg(0)/Gslg©) = -Ms5(0)/GsJs(©) = 0.55/(7.91)*(0.082) = 0.11, where
we have used M s® = - Ggli's(t) and the values shown in Figs. 5 and 6. (In this case, the
result of our calculation is in accordance with what one would expect from 1/n, counting.)

In Fig. 9 we show various diagrams that contribute to the nucleon-nucleon interaction,
assumed to be mediated by qu. In Fig. 9(a) we show some Born terms, where the wavy lines
denote pions. The Born diagrams are of order 1/ n?. Of still higher order is the last diagram
that involves the pion-pion interaction ¢, .. (Models for £, have been given in Ref. [25].
Some of the terms that contribute to ¢, are shown in Fig. 10. The terms depicted in Figs.
10(b), 10(c) and 10(d) have been considered in Ref. [25].)

In Fig. 9(b) we show the contributions that are of order 1/n,. The terms shown in Fig.
9(c) are of order 1/ nf, since they contain two factors of Gg, one factor of I?S(t) and an
arbitrary number of factors of GSf s(®. Note that the diagrams of Fig. 9(b) are real, while
those of Figs. 9(a) and 9(c) have imaginary parts if £ = 4m3 . In Fig. 11(a) we show how we
may calculate Im T, using the diagrams of Fig. 9(c) when ¢ = 4mz. In Fig. 11(b) we show

a sigma-dominance approximation to the series in Fig. 11(a).
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Finally, in Fig. 12 we consider the case ¢ < O and exhibit the leading diagrams which

are of order 1/n,. At that order, the result is expressed solely in terms of J sty = Jg(0),

- GS
T () & —— (3.1)
qq() 1 -GgJg(D)
2
I )
= 2= . 3.2)
t-m (o)
Again, if - is not too large, we have, fort < 0,
gz
Tq) = s - (3.3)
t-m

a
[See Fig. 12(b).]

While our discussion here has mainly concerned the scalar-isoscalar ¢-channel dynamics,
we can generalize the discussion to other channels. That will be done in the following sections.
However, before leaving this section, it is worth noting that, while the calculation of the

diagrams of Fig. 9(a) requires the knowledge of the quark density matrix of the nucleon, the

calculation of the diagrams of Figs. 9(b) and 9(c) require only the specification of valence quark

form factors of the nucleon. These form factors are functions of the single variable ¢ = q%.

IV. Pion Exchange in a Generalized NJL Model and in the Boson-Exchange Model

Consider the nucleon-nucleon interaction that involves the exchange of qq pairs with the

quantum numbers of the pion. The T matrix in the NJL model takes the form

- 10 -



Gs

(r)
log () = = ———
4 1 -GgJp(t)

4.1)

where J p(2) is the appropriate quark-loop integral (see Fig. 13) and where 1 - G¢Jp (m,::‘) = 0.

Using a momentum-space bosonization procedure [26], we have

2
GS - g-xqq (t)

B} i 4.2)
1-GgJp®  1-ml()

at one-loop order.

If |z] is not too large, we may use the approximation

2 2

(4.3)
t —mi(t) t —mf(O)

2
- Sra (4.4)
t-m?

where g, = 8qu(0) and m_ = m_(0). [See Fig. 7, for example.]

Now, the leading diagrams that are of order 1/n_ yield the interaction

2

0z N2
Ve = 15 OF;0) | — . (4.5)
A -t

x

€)) cos = 2, .2 .
Here 7,7 (1) is given by Eq. (4.1) or Eq. (4.2) and F,(0)[N,/(\; - 0] is the valence form-
factor of the nucleon in the pion channel corresponding to the diagrams of Fig. 12. The

parameter F, (0) is defined via the relation,
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2
_ A _ _
F_(0) 2' 2(P+q,s)ysu(P,s){+' | 7|7)
A2 -t (4.6)

= <N,75+?j,sr’7/ |a(0)757q(0) | N,'P.,s, T>val

The parameter N\, has been measured in a lattice simulation of QCD with the result that

X, = 0.80 GeV [17]. Now let us identify V, () of Eq. (4.5) with VP (1), where

2 [,z 2]
V:)BE([) _ 81NN2 12 T ’ | 4.7
t-m A -t

T

with g2yy/47 = 14.4-14.9 and AZ%® ~ 1.3 GeV to 1.4 GeV [7]. Thus, we should have

g2 A2 2 2 22 2

*NN x T - t(‘r) ([)FZ(O) x 4.8)
2 2 99 ¥ 2

t-m_ | A,-¢ A, !

for t < 0. For example, if we use Table A.1 of Ref. [7], we have giMV/41r = 14.7 and
A, = 1.3 GeV. If we further put g, . = 3.05 and m_ = 138 MeV, we see that we should
have FT (0) = 4.43 if Eq. (4.8) is to be valid. Since we have not calculated F - (0) at this point,

we will compare the rates of fall with increasing -t of the two sides of Eq. (4.8). To that end,

we define
2 2
2 2 2 2 2
OBE _ my A‘r (- g‘rNN) A‘r —my 4.9)
he @ = 2 2 2 2
g.nn| | Ay—-m t-m, A -t
and
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2

(7) 2
WLy - fag O | As (4.10)
¥ ) 2 ’
teg O [ Ayt

which are defined such that hf BE

© = r o) = 1.
In Figs. 14 and 15 we show h;WL(t) of Eq. (4.10) as a solid line. (Here
A, = 0.8 GeV.) Also shown, as a dotted line, is ;> (§) with A, = 1.3 GeV,
m, = 0.138 GeV, and ngN/41r= 14.7. For small negative
t(-0.1 GeV2 < t < 0.0 GeV?), the curves are undistinguishable and they are not shown in
that region in Fig. 15. (Note that both curves go to 1 at ¢ = 0.)
| We see that, even though A = 0.8 GeV, we still need AfBE = 1.3 GeV, if the simple
form of the OBE model is used, as in Eq. (4.7). Thus, we infer that while A, is a physical

parameter, AQBE is not. This result resolves some of the problems described in Ref. [21]

where values of N and A2PE are compared for a number of mesons.

V. Siema Exchange in the NJL Model and in the Boson Exchange Model

We have seen how sigma exchange may be used to parameterize the quark 7' matrix, ifz < 0

[16]. Proceeding as in Section IV, we write

G
,éj;(,) =-S5 (5.1
1 -GgJs(0)
More precisely, we could put
G
/@ ) = S , (5.2)

9 1 - GgJ () - GgKg(1)

but we will drop Ii's(t) as it represents only a small correction to Eq. (5.1) when ¢t < 0.
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Momentum-space bosonization [26] yields the relation

Gy 8oqq® (5.3)
1-Ggls®  r-m@)

fort < 0.

Let us define the interaction for the generalized NJL model

2|
_ @ B2 o (5.4
V,0) = 1y OF;0) | — , )
A, -t
where F ;(0) is defined via the relation
22
F, () | 2 | 5P + 7, s (P55, = (N,P+3,5, 7 |qOqO N, P,s, 7)yar - (3.5)
A, -t
For the boson-exchange model we have the interaction
2 2 2)?
yOBE o = 8ann | Ao~ Mg (5.6)
’ t- mg Ai -t
Thus, as in Eqgs. (4.9) and (4.10), we define
2 2
2 2 2 2 2
BOBE (| Mo A, =& | | Ae Mg 6.7
s 0= | 22 2 2
84NN A, -mg t-m, A -t

and
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2

2
WLy - fae® | N (5.8)
4 (@) 2 )
teq © | N, -t

First let us compare V,(f) and VUO BE () at ¢ = 0. We use Model I of Table B.1 of Ref.
[7]. For that model, we have g yy/4% = 6.32, m, = 0.55 GeV, and A, = 1.5 GeV. (We
use this particular OBE potential since the effects of the excitation of the delta are explicitly

separated.) We now equate the interactions at ¢ = 0:

2 2 2 2 2
_ 8sNN Aa -m; - _ 85qq [f;- (0)]2 5.9
2 2 2 L@ ’
m, A, my

For A, = 1.5 GeV, gZyy/4r = 6.32 and g,,, = 3.05, we obtain F,(0) = 2.92 from Eq.
(5.9). (If we include the effects of a finite value of GSK 5(0), we obtain F »(0) = 2.75 instead
of 2.92.) For the nonrelativistic quark model we would have F ,(0) = 3, since in that case the
same value is obtained for the matrix elements of qT(O) q(0) and q(0)g(0). However, the use
of relativistic wave functions (with small components) would lead to F,(0) < 3. We expect
about a 10 percent reduction from the value 3, that is F 5(0) = 2.7. Therefore, we infer that
the NJL model gives a good account of the magnitude of that part of the scalar-isoscalar (T = 0)
potential that does not involve excitation of the delta [7].

We return to a comparison of £2E (1) and A" () of Egs. (5.7) and (5.8). In Fig. 16
the solid line represents hi\w‘ (©). The dotted line represents hf BE () with A, = 1.2 GeV and
the dashed line represents hao BE(t) with A, = 1.5 GeV. (The value used in Ref. [7] is
A, = 1.5 GeV.) If we increase A\, to 1.1 GeV, we find essentially perfect agreement with

hOPE (1) calculated for A, = 1.5 GeV.
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VI. Rho and Omega Exchange in the Generalized NJL Model and in the OBE Model

The discussion of the exchange of the tho and omega mesons is made somewhat more
complicated than the discussion of pion and sigma exchange due to the necessity of specifying
two form factors. For example, we have for the isoscalar and isovector parts of the

electromagnetic current,

. — _ n —_ — —
(N,P+q,s'f'Iq(O)%q<0)|N,P,sr> =5, u(P+q,s"
6.1)

uy .
X \:’Y“Fw(qz) + ;o’: quzo(qz)] u(P,s)
N

and

— —_— - H — —_ —_— — —
<N,P+q,s'r'|q<0>%q(0>|1v,P,sr> - < |Tr>u(P+q,s")

2my

Uy B
" \:WFM(‘IZ) . 1 quzl(QZ)i\ u(P,s) .

(6.2)
These forms may be used to specify the form factors of the nucleon that are needed to calculate
the diagrams of order 1/n,. Equation (6.1) is needed for the (isoscalar) w meson and Eq. (6.2)
is needed for the (isovector) p meson. (Note that F;o(0) = Fy;(0) = 1/2, so that, for the

proton form factor, we have F lp (0) = 1 and for the neutron form factor we have F 1" © =0.)
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For omega exchange in the boson-exchange model, we have at each vertex

2
Do Moy 6.3)

R uy —
g @ (Prq,s) | v+ 22 20 g, | u(Bos
gw 2mN

if we use monopole vertex cutoffs. In the case of the w, f,/g, = 0 in phenomenological fits.

For rho exchange in the boson-exchange model, we have at each vertex

- = - P - A2 -m? -

ig u(P+q,s") |7 +=2 q, | u(P,s) | 2—L | <r'|7]7> . (6.4)
g, 2my 2

In the case of the tho, we have f /g, = 6.1 in standard phenomenological fits, while A, is

about 1.3 GeV [7].
To keep our analysis simple, we will be interested in the behavior of the vertex functions

with increasing -f = - qz. Again let us define the basic quark-loop integral to be J ,(?) and

write

G
D - —Y . (6.5)
1-Gyd,

Values of J (1) are given in Ref. [22]. We also define

2

NIL . _ t(](z) O N (6.6)
hp @ = o 5

teq 0) )\p—t

in analogy to Eq. (4.10), for example, and
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2 2

2 2 2 2 2
OBE ., _ | ™ A, “gan| | Ay (6.7)
h, (@)

2 2 2 2 2

gpNN Ap—mp t_mp Ap_t

in analogy to Eq. (4.9). Note that h'"C(0) = h2%°(0) = 1. To compare mt @) and
h po BE () we make use of some calculations of J » () made in our study of the vector-isovector
current correlation function [22]. In that work we have m, = 350 MeV and Gy = 9.2 GeV 2.
In the present work we calculate J,(#) for negative ¢ using a Euclidean momentum space
with a cutoff Ag = 0.680 GeV. We then use Eq. (6.4) with the approximation that
J 0 = J, (¢) fort < 0. The results of our calculations are shown in Fig. 17. There the solid
line’ represents h;m‘ (). The dotted line represents h f BE () with A, = 1.1 GeV and the dashed
line represents thE(t) with A = 1.3 GeV. Here, weput A, = 0.8 GeV in Eq. (6.6). Itis
seen that the phenomenological value of the cutoff parameter, A, = 1.3 GeV [7], is generally
consistent with a "soft" form factor that has )\p = 0.8 GeV. However, if we increase )\p to
0.93 GeV, we get a significantly better fit. (See Fig. 18 and Table 1.)

We remark that for the 1/n. diagrams considered here the theory gives rise to the
vector-dominance result f /g, = 3.70, since these diagrams yield an interaction of the form

. uv
lo""q,
2mN

v=-u(P+7, 53) \:7“F11(t) + F21(t)] u(P, s,)

Gy
=Gy, | ™
6.8)
io™P

X 3(75’ —_(j,sll) [7“F11(t) _0

My

th(f)] u(P,s))(r'2 | 717 - (71|‘;|‘;1>

for the NJL diagrams of order 1/n,.
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In order to check upon the magnitude of gZ‘NN/47r given by our model, we can write

2

R 2
BonN | Do "M | | 8ogq (6.9)
4T A2 4r

D

To obtain g Z, aq> W€ write the relation that pertains upon bosonization

2
v _ %4 (6.10)

=Gy, 2

With Gy = 9.2 GeV™%, J, (0) = 0.049 GeV? [22] and m, = 0.770 GeV, we find
gpzqq/47r = 0.79 from which we obtain ngN/47r = 1.86 when A, = 1.3 GeV. Values for
gpzNN/ 47 range from about 0.95 to 1.2 in the various OBE models that use monopole vertex
cutoffs [7]. (Note that a larger value for g, gqg Was quoted in Ref. [22] since a different
bosonization relation was used there). We remark that it would be of some interest to see if
consideration of additional diagrams would yield values for f,/g, larger than the value of 3.70
obtained here.

We note that g, = 3gpqq. Then, it is seen that, if A, = Aw,giNN/47r = 9g§NN/47r
in our model. With the value given above for ngN/ 47, we find gi av/4m =16.7. From
Table A.1 of Ref. [7], we have gf, wn/ 4w = 25 for A9BE - | 35 GeV. We see, therefore, that
the diagrams of order 1/n_. provide only about 67 percent of the repulsion in the « channel.
Study of diagrams of order 1/ nz' may, therefore, be useful in obtaining an improved fit to the

phenomenological value of the OBE potential in the w channel.
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VII. Discussion and Conclusion

The large values of A9BE of the boson-exchange model have always been somewhat
puzzling. In this work we have shown how these values may be understood. It has been seen,
within the context of our model, that A9BE has no direct physical significance, but is needed

to make phenomenological form such as

2
A2 —m2 22
AZ-t | t-m?

follow the behavior of the product of the quark-quark T matrix and the square of the meson-

nucleon vertex function for spacelike ¢. Indeed, in the case of the pion the coincidence of the
two functions is remarkable. (See Figs. 14 and 15 and Table 1.)

Probably of more significance is the fact that the NJL model exhibits chiral symmetry
and provides a basis for deriving the boson-exchange model. The role of chiral symmetry in
understanding the origin or the nucleon-nucleon force has been of interest for some time [2-4].
One approach to that problem has been to consider Skyrmion-Skyrmion scattering. However,
it is not expected that a detailed description of the force will emerge in such studies. It is also
unlikely that one can obtain an understanding of nuclear matter based upon the Skyrmion-
Skyrmion interaction. On the other hand, studies of finite nuclei and of nuclear matter based
upon the boson-exchange model have been quite successful [8].

It may also be seen from our analysis that the large (Lorentz) scalar field found in nuclei
is a chiral field [1]. The magnitude of that field is related to the partial restoration of chiral
symmetry at finite density. Thus, it is possible to relate QCD sum rule studies in matter [1],
Dirac phenomenology, and the boson-exchange model in a single formalism that has its base in

models that exhibit chiral symmetry at the quark level.
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In future work one may study terms of order 1/ nf to see if the magnitudes of the force
in the rho and omega channels can be given more accurately. It will also be of value to
calculate Ay, A, and N\, eitherina lattice simulation of QCD, or in a quark model of nucleon
structure. In the case of the pion, the value obtained for A, in the lattice simulation has been

shown here to be consistent with the phenomenological value of AfBE.
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Table 1. Typical values of ACBE are given for various mesons [7] as are the values of
N considered here. The items with asterisks denote those values of A that yield

a very accurate fit to h OBE () fort < 0.

Meson AOBE A Figure
x 1.3 GeV * 0.80 GeV Fig. 14
o 1.5 GeV 0.80 GeV Fig. 16
* 1.10 GeV not shown
p, W 1.3GeV 0.80 GeV Fig. 17
*0.93 GeV Fig. 18
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Fig. 1.

Fig. 2.

Fig. 3.

(b)

(©)

(b)

©

®

©

Figure Captions
A linear equation that serves to determine the nucleon-nucleon T matrix
is shown.
The potential, Vyy, is shown for the boson-exchange model, where the
important mesons are o, ¥, p and w [7]. The open circles denote
phenomenological meson-nucleon vertex functions.
The vertex function, F! (qz) , is shown for a meson of momentum g. (See
Ref. [7] for a description of the various choices that have been made for
the vertex function in boson-exchange models.
The diagram on the left is the basic quark loop integral of the NJL model.
The propagators are S({p) = (P -m, + ie)_l , where m, is the constituent
quark mass. The additional diagrams show the introduction of a confining
potential, vEe.
A vertex function for the confining interaction (cross-hatched area) is
given by the equation shown [10].
Here the various terms summed in the equation of (b) are shown.
The basic quark-loop integral of the NJL model is shown. In the notation
of this work we have P? = r. [See Eq. (2.3).]
The function J S(Pz) is defined by introducing a vertex (cross-hatched
area) for the confining interaction vC. See Ref. [10] for a detailed
discussion of the construction of such vertex functions.

The function K S(Pz) is defined by the diagram shown. (See Ref. [9].)
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Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

(d)

(b)
(©)

The function Ii’S(PZ) is defined by including a vertex function for the
confining interaction (cross-hatched region). (See Ref. [10].)

General form of coupled equations for the T matrices ¢.,, {4 and ¢_,.
(See Ref. [21].)

The form of the kemels, k,, and k.., used in our work is shown.

The interaction is shown to be composed of the Born term of the NJL
model (black dot) and a confining field vEe.

The dashed line and the solid line for ¢ < O denote the values of
J(#) calculated in a Euclidean momentum space with A = 1.0 GeV.
The solid line for ¢ > 0 represents the result of a calculation of J s(®) in
Minkowski space. There, a three-dimensional cutoff of A; = 0.702 GeV
is used for all the momentum vectors in the integral. Here we use
m, = 262 MeV, Gg =791 GeV~2 and the model of confinement
described in Ref. [10]. Note that the inclusion of the confinement vertex
function hardly affects the result for + < 0.

The function Re M S(Pz) is shown as a solid line. The dashed line is
Im MS(Pz). Note that MS(Pz) = - GS%I%S(Pz). (This figure is taken
from Ref. [9].)

The figure exhibits Re tqq(t) [solid line] and Im tqq(t) [dashed line]
obtained using model B where () is given by Eq. (2.5). The dotted
line represents g2l —mf) with g = 3.05 and m, = 0.542 GeV. The
values for fs(t) to be inserted in Eq. (2.5) are taken from Fig. 5. (We
put J () = Jg() for t < 0.) Note that if we were to neglect Ks(t) , We

would have tqq(O) = -23 GeV?. The dotted curve provides a good fit
-7 -



Fig. 8.

Fig. 9.

(a)

®)

©

to the solid curve for -0.2 GeVZ? < r < 0. This is the range of
momentum transfer that is particularly important for nuclear structure
physics and for nucleon-nucleon scattering. (This figure is taken from
Ref. [16].) The small discontinuity in the solid line at ¢ = 0 is due to the
discontinuity in the solid line in Fig. 5.

Values of tql;(t) [solid line] and tqi(t) [dashed line] are compared. The
curves in the upper right are the imaginary parts and the other curves
represent the real parts of tqlz (H and tqi(t). It is seen that the real parts
are quite similar for # < 0. The values of Re t;; (#) and Im tqlfl(t) are the
same as those shown in Fig. 7.

The figure shows various diagrams that contribute to the quark-quark T
matrix, qu.

These diagrams represent Born terms in the quark-quark amplitude and
also a term in which the pions interact via a pion-pion interaction £, ..
(Models for z_. may be found in Ref. [25].) The first two diagrams in
(a) are of order 1/nc2 and the last is of order 1/n2. [See Fig. 9.]

Here the solid dot is the basic quark-quark interaction of the NJL model.
The remaining diagrams are given in terms of an expansion of the T
matrix in powers of st s(®, if we consider the scalar-isoscalar channel,
for example. These diagrams are of order 1/n,.

Diagrams that contain one factor of K (), for example, and any number

of factors of GSj s(n. The presence of I%S(t) causes these diagrams to
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Fig. 10.

Fig. 11.

Fig. 12.

(@)

(b)

©

(@

(@)

®)

®)

be of order l/nf. Note that, if we are interested in the imaginary part
of T, (9) for r > 4m3, it is the diagrams of (c) that are most important.
(Recall that J4(¢) is real.)

Various diagrams contributing to a model for ¢, , are shown. Here we
concentrate on the dynamics in the ¢ channel.

Some box and crossed-box diagrams are shown.

s-channel p exchange is seen to affect the interaction in the ¢-channel for
t.x [25].

Coupling to the KK system is important for the description of the
resonance f,(975) in the model of Ref. [25]. The KK interaction is
attractive due to ¢ and w exchange in that model.

The distant resonance, f;(1400), plays some role in the model of Ref.
[25].

Diagrams contributing to Im 7, (¢) for t > 4m3.

Diagrams of order 1/ nc2 are obtained if a single factor of K () appears.
The crosses on the pion lines denote on-mass-shell pions. An arbitrary
number of factors of GgJg(f) may be included.

A sigma-dominance approximation to the sum of the amplitudes
considered in (a). (See Fig. 7.)

For ¢t < 0, the leading terms in the calculation of qu(t) = tqq(t) are
shown.

The sum of the diagrams in (a) may be given in terms of a sigma-

dominance model if - is not too large. [See Fig. 7, for example.]
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Fig. 13.

Fig. 14.

Fig. 15.

Fig. 16.

Fig. 17.

The function Jp(f) is shown. The calculation is made by using a
Fuclidean momentum  space. Here m, = 0.262 GeV  and
Gg = 7.91 GeV 2.

Values of hiw L (¢) are given by the solid line and hf BE (¢) is represented
by the dotted line. Here A, = 0.80 GeV and AS"" = 1.3 GeV [7).
(See Fig. 15.)

Values of hiVJL () [solid line] and hf BE () [dotted line] are shown on an
expanded scale relative to Fig. 14.  (Here A, = 0.80 GeV and
ASBE = 1.3 GeV. Note that, by definition, both curves go to 1 at
t = 0.

Values for héVJL () are shown as a solid line forh, = 0.80 GeV

and m; = 0.54 GeV. Values of thE

(¢) are given forA, = 1.2 GeV
(dotted line) and A(?BE = 1.5 GeV (dashed line). The value for
A(?BE from Ref. [7] is 1.5 GeV, with m, = 0.55 GeV. (This figure
would appear essentially the same if model C were used.)

Note that if A, is increased to 1.0 GeV the agreement of the solid line
with the dashed line (A?BE = 1.5 GeV) is very good. Almost perfect
overlap is obtained if A, is increased to 1.1 GeV.

Values of h;VJL (t) are shown as a solid line for A, = 0.80 GeV. The
dotted line represents A po BE (¢) for A‘?BE = 1.1 GeV and the dashed line
represents hpo BE () when ASBE = 1.3 GeV. For the calculation of
h:]”‘ we used results of a previous work where we had

Gy =9.2 GevV?, mg = 350 MeV. The Euclidean-space calculation of

J » () made here had a momentum cutoff Ag = 0.68 GeV.
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Fig. 18. Values of h;wl‘ (t) are shown as a solid line for N, = 0.93 GeV. The
dotted line represents h po BE () for ASBE = 1.1 GeV and the dashed line
represents hDOBE (t) for ASBE = 1.3 GeV. [See caption to Fig. 17 and

Table 1.]
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