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Abstract: Nuclear properties of ground- and isomeric states of the neutron-rich
131−134In (Z = 49) are proposed to be measured using Collinear Resonance Ionization

Spectroscopy (CRIS), yielding their electromagnetic moments and changes in
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mean-square charge radii. The measurements will offer new and complementary insights
into how the nuclear structure of a proton hole at Z = 50 evolves beyond the neutron
closed shell N = 82. Our results will provide essential input to guide developments of

density functional theory and ab initio calculations in this frontier region of the nuclear
chart.

Requested shifts: 16 shifts with protons (+ 3 without for setup).

1 Motivation and previous experiments

Isotopes in the vicinity of doubly magic nuclei are particularly important systems in
our understanding of atomic nuclei. Their simpler structures are more computationally
tractable and measurements of them provide critical guidance to develop inter-nucleon
interactions and nuclear many-body methods [1, 2, 3, 4].
The indium (Z = 49) isotopic chain, with 1 proton less than proton-magic tin (Z = 50),
offers a compelling system to study the evolution of nuclear properties both between and
beyond the suggested neutron closed shells at N = 50 and N = 82 [5, 6, 7].
The sustained interest in this region of the nuclear chart has motivated complementary
studies at ISOLDE, including laser spectroscopy studies performed by the COLLAPS
collaboration on the nearby cadmium (Z = 48) [8, 9], tin (Z = 50) [10, 6], antimony
(Z = 51) [11] and tellurium [12] chains. In addition, decay spectroscopy studies were
undertaken at the ISOLDE Decay Station (IDS) on the neutron-rich indium isotopes
133−135In [13, 14] .
Moreover, two successful experiments on short-lived indium isotopes, between 101In(N =
52) and 131In(N = 82), have been performed using the Collinear Resonance Ionization
Spectroscopy setup (IS639 [15] and addendum [16]). Our first results, which include
the electromagnetic moments of neutron-rich isotopes and charge radii, were published
recently [7, 17]. Additional articles reporting further charge radii, the electromagnetic mo-
ments of neutron-deficient isotopes and the properties of high-spin isomers are in progress.
In a shell-model picture, the ground states of even-N indium isotopes should be predomi-
nately described by a proton hole in the g9/2 orbital. In addition, low-lying 1/2− isomeric
states, whereby a proton is excited from the πp1/2 to πg9/2 orbital, appear consistently
in all even-N indium isotopes studied to date. The simultaneous existence of these two
nuclear states allow the evolution of both single-particle and collective behaviour at ex-
treme proton-to-neutron ratios [7] to be probed. Long-lived isomers can also be formed
by the breaking of a neutron pair to create nuclear configurations of high nuclear spin
(I > 19/2) in the vicinity of N = 82 [18].
Furthermore, studying its odd-N isotopes enables complementary aspects of the proton-
neutron interaction to be investigated. These isotopes exhibit rich isomerism, forming
nuclear states of different spin. These odd-N isotopes are suggested to be dominated by
the interaction of the πg9/2 and πp1/2 proton states with multiple single-particle neutron
states formed by the gradual filling of the νs1/2, νd3/2, νg7/2, and νh11/2 orbitals with
increasing N .
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The nuclear electromagnetic properties of ground states and isomers of indium isotopes
are unknown beyond N = 82. Both the 9/2+ ground- and 1/2− isomeric states are
predicted to appear for the odd-even isotopes 133,135In. For the odd-odd 132,134In, their
nuclear spins are predicted to be (7−) [19, 14], dominated by a πg9/2⊗νf7/2 configuration
[20].
The results for the magnetic moments and quadrupole moments of the I = 9/2+ states
of odd-even isotopes obtained during the previous IS639 CRIS experiment are shown
in Figure 1 [7]. Concurrent to our experimental developments, impressive progress has
been made in describing nuclear properties within the DFT framework and by ab ini-
tio methods [21, 22, 7]. Figure 1 compares the experimental values with the theoretical
results from Density Functional Theory (DFT), and Valence Space In-Medium Similar-
ity Re-normalization Group (VS-IMSRG) calculations. DFT calculations include both
Hartree–Fock (HF) and Hartree–Fock–Bogoliubov (HFB) approaches. The inclusion of
time reversal-symmetry breaking terms was shown to be essential to describe the observed
magnetic moments [7]. VS-IMSRG calculations were performed using two different forces
derived from chiral effective field theory[23, 24, 25], labeled as 1.8/2.0(EM) and N2LOGO.
Although the magnitude of the electromagnetic moments is not reproduced, these calcu-
lations closely describe the observed relative trends. No effective factors were used in the
employed calculations.
DFT and ab initio predictions of the magnetic dipole and electric quadrupole moments
of indium beyond N = 82 are also included in Figure 1 [26], Details of the theoretical
approaches can be found in Refs. [7, 27, 28] Notably, the magnitude of the electromagnetic
moments of 133In, with a neutron pair in the f7/2 orbital, are predicted to be similar to that
of 129In, which has two neutron holes in the h11/2 orbit. Moreover, a similar trend to that
observed towards N = 82 is predicted at N = 90. An abrupt change of nuclear structure
properties at N = 90 has been suggested from other theoretical and experimental studies
[29, 30].
The measurements proposed here will provide the first insights into how nuclear structure
evolves beyond N = 82 for an isotope chain below the Z = 50 shell closure allowing the
predictions from these state-of-the-art calculations to be tested. In addition to investigat-
ing how the single-particle and collective behaviour of these nuclei evolves beyond N = 82
through their electromagnetic moments, their changes in mean-square charge radii will
give the first information on this observable for an isotope chain with Z < 50 across this
shell closure.

2 Objectives, experimental details and beam time re-

quest

The neutron-rich indium isotopes 131m−134In are proposed to be measured using CRIS
yielding the following properties for the first time:

• 131m2In (21/2+): µ, Qs, δ⟨r2⟩ [31]

• 132In (7−): µ, Qs, δ⟨r2⟩ [19]
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Figure 1: Left : Experimental nuclear magnetic dipole moments (top) and electric
quadrupole moments (bottom) of the 9/2+ ground states in even-N indium isotopes,
shown alongside ab initio and DFT calculations. DFT and ab initio predictions are
shown for 133−135In with additional calculations for 137,139In from DFT. The black dashed
line denotes the unquenched Schmidt limit. Right : Shell model orbits for 131In, Z = 49
and N = 82.

• 133gIn (9/2+): µ, Qs, δ⟨r2⟩ [13]

• 133mIn (1/2−): I, µ, δ⟨r2⟩ [13]

• 134In (7−): µ, Qs, δ⟨r2⟩ [14].

Bunched indium ion beams will be delivered to CRIS where they will be neutralized
in-flight through charge-exchange collisions with a sodium vapour. Any residual ions
following this are deflected away before the neutral bunches enter an ultra high-vacuum
region where they are collinearly overlapped with two lasers.
Two atomic transitions in neutral indium with similar wavelengths (246.0 nm, 246.8 nm)
were used in previous CRIS experiments [7]. A sketch of these atomic transitions is shown
in Figure 2. The different angular momenta and sensitivities of the states involved in these
two transitions enable precise measurement of all the nuclear observables of interest in
addition to allowing each hyperfine structure transition to be assigned to the nuclear
state from which it originates. As the wavelengths of these transitions are very similar,
switching between them is possible with minimal intervention. When the first-step laser is
on resonance, indium atoms are excited to either the 8S1/2 or 9S1/2 states. These excited
atoms can be efficiently non-resonantly ionized with a single 1064-nm photon, produced
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by a high pulse-energy Nd:YAG laser. Further resonant excitation to a Rydberg state to
enable field ionization, as developed previously, is also possible [32].

Figure 2: Laser ionization scheme proposed for the study of neutron-rich In isotopes.
These schemes were successfully used during previous CRIS experiments [7].

The resulting resonant indium ions are then steered onto an ion detector where they are
counted as a function of spectroscopic laser frequency. The short half-lives (< 200 ms) and
large β-decay energy of 131−134In (Qβ > 13 MeV), with respect their isobaric contaminants,
open up the possibility of using β detection. This approach was successfully used to
measure 52K despite significant stable 52Cr contamination (> 10 pA) [33]. Additionally,
these neutron-rich isotopes can decay through beta-delayed neutron (βn) emission. Hence,
neutron detection could be a highly selective and efficient method to circumvent the
intense isobaric contamination, which is dominated by stable and long-lived isotopes of
Ba and Cs. Based on the design of the ISOLDE Decay Station (IDS), a dedicated β-
decay station for CRIS is being built at KU Leuven [34], and will be commissioned at
the beginning of 2023. In addition, an existing neutron detection array [35] from Institut
Laue-Langevin (ILL) in Grenoble could be installed at the end of the CRIS beamline to
enable neutron detection. Either of these would provide a means to reduce the detrimental
impact of the significant contamination expected at these masses on the spectra measured
in this campaign.

Beam time request

In total, we request 16 shifts with protons using a UCx target constructed with a neu-
tron converter and quartz transfer line. Preceding this, we request 3 shifts to perform
beam tuning, charge-exchange cell heating and laser/atom interaction optimization. The
details of the beam production and the required shifts for this proposal are summarized
in Table 2. The yields are taken from the ISOLDE Yield database and correspond to
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Isotope I Half life (ms) Yield (ions/µC) Shifts Qβ (MeV)
115In 9/2+ stable > 105 3 (setup) 0

131m2In (21/2+) 300 200 3 unknown
132In (7−) 194(4) 8000 2 14.14 (6)
133gIn (9/2+) 162(2) 900 2 13.18 (20)
133mIn (1/2−) 162(2) 300 3 unknown
134In (7−) 118(6) 100 6 14.46 (20)

height

Table 1: Isotopes of interest, their spins and half-lives [31, 19, 13, 14], yields and shifts
requested. The quoted yields for the ground states are taken from the ISOLDE Yield
Database where a UCx target with neutron converter is used in combination with RILIS.
The yield of 131m,133mIn was estimated using experimentally observed ratios in 129,131In
during the IS639 experiment. The requested shifts include the time needed for regu-
lar calibration measurements with the reference isotope 115In, however 3 shifts (without
protons) preceding the experiment are requested for beam tuning, charge-exchange cell
heating and laser/atom interaction optimization.

neutron-converter yields. The use of a LIST would massively suppress surface-ionized
contaminants (Cs and Ba) which are strongly produced in this mass range. However,
yield measurements of 131−134In utilizing a LIST in early 2022 demonstrated a LIST-mode
loss factor of 35-50 with respect to existing on-converter yields [36].
The required shifts were estimated assuming an overall experimental efficiency of 0.05 %
and a background suppression factor of 10−6. These values were taken from the previous
experiments on indium at CRIS.
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Appendix

DESCRIPTION OF THE PROPOSED EXPERIMENT
The experimental setup comprises: (name the fixed-ISOLDE installations, as well as
flexible elements of the experiment)

Part of the Availability Design and manufacturing

CRIS experiment ⊠ Existing ⊠ To be used without any modification

HAZARDS GENERATED BY THE EXPERIMENT (if using fixed installation:) Hazards
named in the document relevant for the fixed CRIS installation.
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