
A
TL

-D
A

Q
-P

R
O

C
-2

02
2-

00
8

19
A

ug
us

t2
02

2
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020 1

Performance evaluation of modern time-series
database technologies for the ATLAS operational

monitoring data archiving service
Matei-Eugen Vasile, Giuseppe Avolio, and Igor Soloviev

Abstract—The Trigger and Data Acquisition system of the1

ATLAS [1] experiment at the Large Hadron Collider [2] at CERN2

is composed of a large number of distributed hardware and3

software components which provide the data-taking functionality4

of the overall system. During data-taking, huge amounts of5

operational data are created in order to constantly monitor the6

system. The Persistent Back-End for the ATLAS Information7

System of TDAQ (P-BEAST) is a system based on a custom-built8

time-series database. It archives any operational monitoring data9

published online, resulting in about 18 TB of highly compacted10

and compressed raw data per year. P-BEAST provides command11

line and programming interfaces for data insertion and re-12

trieval, including integration with the Grafana platform. Since P-13

BEAST was developed, several promising database technologies14

for efficiently working with time-series data have been made15

available. A study to evaluate the possible use of these recent16

database technologies in the P-BEAST system was performed.17

First, the most promising technologies were selected. Then, their18

performance was evaluated. The evaluation strategy was based19

on both synthetic read and write tests, and on realistic read20

patterns (e.g., providing data to a set of Grafana dashboards21

currently used to monitor ATLAS). All the tests were executed22

using a subset of ATLAS operational monitoring data, archived23

during the LHC Run II. The details of the testing procedure and24

of the testing results, including a comparison with the current25

P-BEAST service, are presented.26

Index Terms—database performance, operational monitoring,27

time-series databases28

I. INTRODUCTION29

THE Trigger and Data Acquisition (TDAQ) system of the30

ATLAS experiment is a complex distributed system made31

out of a large number of hardware and software components.32

That means about 3000 machines and in the order of O(105)33

applications working to accomplish the data gathering function34

of the detector.35

During data-taking runs, large amounts of operational data36

are produced in order to monitor the functioning of the37

detector. Currently, this data is being gathered and stored38

using a system called the Persistent Back-End for the ATLAS39

Information System of TDAQ (P-BEAST) [3]. P-BEAST is,40

essentially, a custom time-series database used for archiving41

August 11, 2022
Matei-Eugen Vasile is with the Institutul National de Cercetare-Dezvoltare

pentru Fizică si Inginerie Nucleară Horia Hulubei (IFIN-HH), Măgurele,
România (e-mail: matei.vasile@cern.ch)

Giuseppe Avolio is with the European Laboratory for Particle Physics,
CERN, Geneva 23, CH-1211, Switzerland (e-mail: giuseppe.avolio@cern.ch)

Igor Soloviev is with the University of California, Irvine, CA 92697-4575,
US (e-mail: igor.soloviev@uci.edu)

operational monitoring data and retrieving the stored data for 42

applications that require it. It stores about 18 TB of highly 43

compressed raw monitoring data per year. 44

Since P-BEAST has been commissioned in 2014, more 45

than a few new time-series database technologies have been 46

released. A preliminary survey has been done in order to 47

identify a short list of the most promising candidates for being 48

evaluated for the purpose of being used as a new back-end for 49

P-BEAST. 50

II. BACKGROUND 51

The main requirements for any potential candidate were to 52

support or provide emulation for all the data types currently 53

used by the ATLAS operational monitoring (integers, floats, 54

strings and arrays) and the capability to sustain the data 55

injection rate observed during real data taking runs with P- 56

BEAST. This means an insertion rate of approximately 200k 57

metrics/s. A preliminary survey was done among time-series 58

database technologies, columnar database technologies and 59

key-value stores. As a result of the preliminary survey, two 60

technologies were selected: 61

• InfluxDB [4] – a time-series database 62

• ClickHouse [5] – a columnar database 63

III. DATA MODEL AND TESTING SETUP 64

ATLAS operational monitoring data are stored using a 65

class.attribute data model. The smallest piece of stored data is 66

a time series data point representing the value of an attribute. 67

Each stored attribute belongs to an object. 68

In the first phase of this research [6], two ways of organizing 69

the stored data have been tested: a single table data organiza- 70

tion (see figure 1) and a multiple table data organization (see 71

figure 2). 72

Fig. 1. Single table data organization.

In the single table setup, all the data points for a given 73

attribute are stored in a single table which contains an object 74

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020 2

column used as an index. In the multiple table setup, all the75

data points belonging to an attribute.object pair are stored in76

their own table.77

Fig. 2. Multiple table data organization.

The idea behind experimenting with both these approaches78

to storing the data was to test which one results in a faster79

write rate. In the end of the first round of testing, the results80

showed that both approaches have very similar performances,81

with a very slight advantage of the single table approach. This,82

combined with the fact that queries were easier to work with83

in a single table setup, the decision was made for this second84

round of testing to use the single table setup.85

A. Test data86

For the write performance testing, the tests have been87

run using various real ATLAS operational monitoring data88

archived during the ATLAS Run 2 operation. Out of that ATLAS89

operational monitoring data stored using P-BEAST, four data90

types have been selected as being the most representative ones:91

• arrays of 12 float64s92

• strings of approximately 5500 characters93

• float64s94

• int64s95

Then, for the read performance testing, the databases that96

have been created and populated with ATLAS operational97

monitoring data have been used for all read performance tests.98

B. Software99

The implementation of all tests has been done in the100

Go! programming language, which is the language used for101

developing InfluxDB, thus it has native support for Go! clients.102

For ClickHouse, there is Go! support via third-party libraries.103

C. Hardware104

All the tests have been run on a dual-CPU computer with105

the following specifications:106

• 2 Intel Xeon E5-2630 v2 @2.60GHz CPUs (each with 6107

cores and hypethreading, for a total of 24 threads)108

• 32 GB of RAM109

• An 18 TB RAID0 array using hard disk drives110

IV. TESTING111

A. Write testing112

The first batch of tests were the write tests. These have113

been developed to fetch batches of 10000 data points from114

the existing ATLAS operational monitoring database using 115

P-BEAST, and then write those batches into the prepared 116

InfluxDB and ClickHouse databases. 117

P-BEAST stores data using an in-house format based on 118

Google Protocol Buffers. Every data file stores time-series data 119

for many objects of a single attribute. Inside a file the data 120

are indexed by object name. The data files are compacted 121

and compressed weekly. The P-BEAST measurements have 122

been performed to serve as a baseline for the performance 123

measurements of the other technologies. 124

InfluxDB: each object is stored in a measurement (InfluxDB 125

table) - the timestamp and a tag (InfluxDB indexed column) 126

containing the object name make up the primary key in each 127

measurement. 128

ClickHouse: each object is stored in a single table - the 129

columns containing the timestamp and the object name make 130

up the primary key in each table. 131

Before importing historical operational monitoring data into 132

the InfluxDB and ClickHouse databases, it was exported from 133

P-BEAST and stored as text files. 134

Then, for both technologies, a separate test was developed 135

to implement the same functionality: 136

1) initialize the database and create the necessary tables if 137

this has not been done yet; 138

2) read the intermediate store of data and fetch records until 139

a batch of 10000 data points have been filled; 140

3) write the prepared batch of data to the database. 141

Initially, testing several batch sizes was being planned, such 142

as batches of 100, 1000, and 10000 data points. But the 143

execution time of the tests was already very long, in the order 144

of months, so only the 10000 data points batch tests were kept 145

in the testing plan. 146

B. Read testing (synthetic) 147

The databases created and populated with data during write 148

testing have been used for all read tests. They contain the same 149

raw data for both InfluxDB and ClickHouse because the same 150

original P-BEAST data had been written into them during write 151

testing. 152

The first, and simplest, type of queries that can be used 153

are those in which all data points are fetched from a specified 154

time interval. However, in a production setting where Grafana 155

is going to be used to display data, such simple queries would 156

be meaningless in many, if not most, situations. Thus, more 157

realistic queries needed to tested. 158

In order to make use of Grafana’s capabilities to display 159

complex graphs with multiple data series, a more complex 160

query that can fetch the data needed to display multiple time 161

series on the same graph is needed. 162

The complexity of the query is caused by the need to fulfill 163

one or both of the following two requirements: 164

1) separate tables into data series by a tag (in the case of 165

P-BEAST, the tag being the object name) 166

2) aggregate measurements over a given time interval 167

By combining these two requirements we end up with four 168

types of possible queries: 169

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020 3

1) a simple query, like those mentioned earlier, without170

time series separation and without aggregation;171

2) a query with time series separation but without aggre-172

gation;173

3) a query without time series separation but with aggre-174

gation;175

4) a query with both time series separation and with176

aggregation.177

Out of these four query types, only the first and the last have178

been kept in order to prevent the analysis from becoming too179

verbose. As such, the following query types were used:180

Type 1 query (simple query):181

InfluxDB:182

SELECT * FROM ifdb..ifdb WHERE183

time > 1501121487282103000 AND time <= 1501133832282103000184

ClickHouse:185

SELECT time, object, value_uint32 FROM ch.ch WHERE186

time > 1501121487282103000 AND time <= 1501133787282103000187

Type 4 query (complex query):188

InfluxDB:189

SELECT mean(*)190

FROM ifdb..ifdb191

WHERE object =˜192

/ˆ(object1|object2|object3|object4|object5)$/ AND193

time > 1501121487282103000 AND time <= 1501133832282103000194

GROUP BY time(600s), object195

ClickHouse:196

SELECT object, groupArray((t, c))197

AS groupArr198

FROM (199

SELECT200

(intDiv(time, 600000000000) * 600000000000) as t,201

object,202

avg(value_uint32) AS c203

FROM ch.ch204

WHERE205

(object LIKE ’object1’ OR object LIKE ’object2’ OR206

object LIKE ’object3’ OR object LIKE ’object4’ OR207

object LIKE ’object5’) AND208

time > 1501121487282103000 AND time <= 1501133787282103000209

GROUP BY object, t ORDER BY object, t)210

GROUP BY object ORDER BY object211

A couple of issues became apparent with above queries.212

1) Issue 1: Limitation of ClickHouse Grafana datasource213

plugin: The groupArray ClickHouse function returns an214

associative array as a list of tuples. Each tuple contains a key215

and a value. In these queries, they key is a timestamp, but the216

timestamp and the object name could be flipped around and217

the object could be used as the key, if needed. The value is218

whatever type of data is present in the table being queried (or219

some aggregation of it).220

The encountered problem was that the ClickHouse Grafana221

database plugin used for testing was not able to handle tuples222

of any kind. As a result, the complex queries would have been223

impossible to test. After investigations, it turned out that only224

the C++ ClickHouse client could handle all the data types that225

ClickHouse can output. The testing setup had been using the226

Go! client since the beginning, so moving over to C++ would227

have been a problem. So, the easier way was to implement228

tuple support in the Go! ClickHouse client library.229

The only limitation of this feature’s implementation is that230

it can work with all basic data types, but not with arrays.231

No arrays can be returned as values in the key/value pair232

of the tuple. This is because of the architecture of the Go! 233

ClickHouse library, which would have required much more 234

extensive modifications if it were to be modified to handle 235

array tuple values as well. 236

2) Issue 2: Not all queries made sense for all attribute data 237

types: The data types used in the tests, as mentioned earlier, 238

are arrays, strings, floats and integers. The complex queries, 239

because of the time series separation and of the aggregation, 240

offer no easy solutions for compound data types such as arrays 241

and strings. Complex queries can be run only on basic data 242

types because: 243

• Time series separation, although conceptually possible, 244

was not implemented for ClickHouse because of a limi- 245

tation of the ClickHouse library mentioned in Issue 1; 246

• Aggregation, while theoretically possible for strings and 247

arrays, is a more complicated topic which was considered 248

outside the scope of this work. 249

For each test run, the server is started, checked that it started, 250

the test is run and then the server is stopped. This is done for 251

two reasons: 252

1) in order to avoid any caching artifacts that could skew 253

the results, the server is stopped after each run; 254

2) because it was noticed in preliminary testing that some 255

of the queries can be intensive enough to crash the 256

servers, both for ClickHouse and especially for InfluxDB. 257

By making sure that the server is not running at the 258

end of a run, be it because it crashed or because it 259

was stopped cleanly, each test in the test suite has the 260

same starting point: starting the server and making sure 261

it initialized properly before sending queries. 262

C. Read testing (Grafana) 263

The standard interface of P-BEAST is based on Grafana, so 264

any potential technology that could be used as a new database 265

engine for P-BEAST would need to be able to work as well as 266

possible with Grafana. Thus, because even the complex query 267

tests were still being used in a synthetic environment, a final 268

round of read testing using Grafana has been set up. 269

The Grafana testing started from an existing P-BEAST 270

dashboard (see figure 3). 271

Fig. 3. Grafana screenshot: The ATLAS basic dashboard.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020 4

The first step was to replicate the functionality of this272

dashboard but using first InfluxDB and then ClickHouse as273

a backend. A one-month long time interval was selected and274

the The ATLAS operational monitoring data used in the chosen275

dashboard was imported both into a InfluxDB and into a276

ClickHouse database.277

Then, once the data were imported into the databases, the278

original P-BEAST dashboard was recreated for InfluxDB and279

for ClickHouse. Care was taken to get the recreated graphs280

to be as close as possible to the original graphs. See figures281

4 (from the InfluxDB dashboard) and 5 (from the ClickHouse282

dashboard) to get an idea of how similar to each other the two283

new dashboards were able to be created. As can be seen in the284

figures, there are still some small differences, the reason for285

this being the slightly different functionality of the InfluxDB286

and ClickHouse plugins of Grafana.287

Fig. 4. Grafana screenshot: InfluxDB graph for the ”TDAQ Storage by Stream
[B/s]” attribute.

Fig. 5. Grafana screenshot: ClickHouse graph for the ”TDAQ Storage by
Stream [B/s]” attribute.

Again, like in the case of the write performance testing, the288

P-BEAST version was tested as well, for the purpose of using289

these measurements as a reference. Time intervals starting290

from 3 hours and up to 21 days have been selected. For each291

time interval, 30 measurements were taken while making sure292

that no caching is involved to skew the measurements. The 4293

setups that were tested are:294

• InfluxDB295

• ClickHouse296

• P-BEAST with caching297

• P-BEAST raw (no caching)298

V. TEST RESULTS 299

The conclusions of this batch of testing vary across the 300

course of the various tests. 301

A. Write testing 302

For write testing, P-BEAST has demonstrated write perfor- 303

mances above both InfluxDB and ClickHouse. Between the 304

latter ones, ClickHouse has been the technology with better 305

results across all the performed tests. 306

Fig. 6. Write rate for P-BEAST, InfluxDB and ClickHouse and all the tested
data types.

Furthermore, ClickHouse has the advantage of the fact that 307

has free built-in clustering support, which can be used to 308

even further increase its write rate. The clustering support is 309

a commercial offering for InfluxDB. 310

B. Read testing (synthetic) 311

For synthetic read testing, the results between types of 312

queries are very different among the tested technologies. 313

In the case of simple queries, ClickHouse always shows 314

better read performance than InfluxDB. See figure 7: 315

Fig. 7. Read rate for simple queries for InfluxDB and ClickHouse and all the
tested data types.

However, in the case of complex queries, the performance of 316

InfluxDB goes over that of ClickHouse from a certain query 317

interval onward, and stays above for the tested intervals as 318

shown on figure 8. 319

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020 5

Fig. 8. Read rate complex queries for InfluxDB and ClickHouse and the data
types that work with complex queries.

C. Read testing (Grafana)320

During Grafana read tests, several tens of queries are321

started simultaneously by the dashboard, that is quite different322

from synthetic read tests, where every test was executed323

individually.324

As suggested by the better complex query performance of325

InfluxDB, it was not unexpected to see that in the Grafana326

read testing, InfluxDB showed consistently better performance327

than ClickHouse as shown on figure 9:328

Fig. 9. Grafana dashboard refresh time for P-BEAST (both cached and raw),
InfluxDB and ClickHouse.

The read performance of raw P-BEAST without caching329

enabled is below both InfluxDB and ClickHouse, that is330

explained by its primitive data files format (no data indexing331

by time inside weekly compacted and compressed data files).332

When looking at the performance of P-BEAST with caching333

enabled, despite starting in a place similar to ClickHouse and334

worse than InfluxDB, for longer queried intervals it demon-335

strated better performance compared to both InfluxDB and336

ClickHouse.337

This suggests that if either InfluxDB or ClickHouse would338

be used as a back-end, with caching, for a potentially modified339

P-BEAST, the performances of the upgraded P-BEAST would340

be above what is currently available.341

VI. CONCLUSIONS 342

The test results demonstrated much better write performance 343

of present P-BEAST implementation oven both InfluxDB or 344

ClickHouse technologies. To sustain Run II data insertion 345

rates, several times more more hardware resources will be 346

necessary assuming linear increase of the write speed with 347

the number of computers in the cluster. 348

The read performance of both InfluxDB or ClickHouse 349

technologies is better than present P-BEAST without caching 350

option enabled. It is expected, implementation caching for 351

them will increase speed for both technologies. 352

A. Further research 353

Evaluating InfluxDB and ClickHouse as possible P-BEAST 354

back-ends is the next step of this research. 355

REFERENCES 356

[1] ATLAS Collaboration, “The ATLAS Experiment at the CERN Large 357

Hadron Collider,” JINST, vol. 3, pp. S08003, 2008, DOI. 10.1088/1748- 358

0221/3/08/S08003. 359

[2] L. Evans and P. Bryant, “LHC Machine,” JINST, vol. 3, pp. S08001, 360

2008, DOI. 10.1088/1748-0221/3/08/S08001. 361

[3] G. Avolio, M. D’Ascanio, G. Lehmann-Miotto and I. Soloviev, “A web- 362

based solution to visualize operational monitoring data in the Trigger 363

and Data Acquisition system of the ATLAS experiment at the LHC,” in 364

J. Phys.: Conf. Ser., Oct. 2017, pp. 032010. 365

[4] InfluxDB: Open Source Time Series Database 366

https://www.influxdata.com 367

[5] ClickHouse: Fast Open-Source OLAP DBMS https://clickhouse.com/ 368

[6] M. Vasile, G. Avolio and I. Soloviev, “Evaluating InfluxDB and 369

ClickHouse database technologies for improvements of the ATLAS 370

operational monitoring data archiving,” in J. Phys.: Conf. Ser., Apr. 2020, 371

pp. 012027. 372

