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Abstract: As part of the Snowmass community planning exercise, we highlight an ongoing

program of research into the structure of scattering amplitudes in N = 4 super-Yang-Mills

theory, particularly in the planar limit of a large number of colors. This theory sits at the

nexus of a number of exciting topics in high-energy particle physics, including the AdS/CFT

correspondence, conformal field theory, integrability, and string theory, and is believed to be

exactly solvable in four dimensions. In many ways, planar N = 4 super-Yang-Mills theory is

the “hydrogen atom” of relativistic scattering: It has proven indispensable for learning about

new geometrical formulations of quantum field theory, for exploring mathematical properties

at high perturbative orders, and for developing powerful new computational methods that

have found applicability in precision collider physics.
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1 Introduction

The study of scattering amplitudes has played a central role in the development of theoretical

physics, and has led to some of the most precise predictions in all of science [1–3]. These

predictions have traditionally been made with the use of Feynman diagrams, which provide

an intuitive picture for scattering amplitudes as the sum over all ways a given configuration

of incoming particles can scatter into a configuration of outgoing particles. However, we

now know that there are completely different ways of formulating scattering amplitudes that

make no reference to particle trajectories, or even any notion of space-time. These novel ways

of thinking about scattering amplitudes have mainly arisen from investigations of N = 4

supersymmetric Yang-Mills (SYM) theory in four dimensions, the theory that we focus on in

this white paper.

Part of the motivation for recasting scattering amplitudes in new and more abstract ways

comes from the incredible simplicity these quantities exhibit, relative to the complexity of the

calculations currently required to compute them. This has been especially true in N = 4 SYM

theory, in which seemingly-miraculous cancellations have led to the discovery of beautiful

mathematical structures that make contact with many branches of modern mathematics,

including combinatorics, algebraic geometry, number theory, and the theory of motives. The

endeavor to understand the simplicity of amplitudes has correspondingly led to a rich and

productive interplay between amplitudes researchers and mathematicians.

Our understanding of the planar limit of N = 4 SYM theory, in which the number of

colors in the SU(Nc) gauge group becomes large, is especially well developed. There are

currently three independent descriptions of scattering amplitudes in this regime, illustrated

in Figure 1. A weak-coupling formulation makes contact with perturbative methods involving

Feynman diagrams [4, 5]; a “holographic” strong-coupling formulation employs minimal-area
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Figure 1: The three approaches that should be unified to solve N = 4 super-Yang-Mills

theory in the planar limit: weak coupling via perturbation theory, strong coupling via minimal

surfaces, and near-collinear kinematics via the pentagon operator product expansion at any

coupling.

surfaces in Anti-de Sitter space [6, 7]; and a pentagon operator product expansion (POPE)

approach exploits the two-dimensional integrability of a dual string picture at finite coupling

in various kinematic limits [8–10]. These formulations are all mutually consistent but make

use of different physics, are formulated in mathematically distinct ways, and make different

properties of amplitudes manifest. A major task for the future will be to find a single unifying

description of amplitudes in this theory that properly matches each of these formulations

in the appropriate limit. Mathematically, this question can be framed as a search for the

functions that are able to express the markedly varied behavior exhibited by amplitudes,

from weak to strong coupling and in arbitrary kinematics.

Many interesting facets of these questions deserve attention in the coming years. They

include: How do gluonic and stringy descriptions morph into each other as the coupling

and kinematics are varied? What kind of singularities show up, and what is the physics

associated to them? How do holographic dualities, string theory, and even space-time itself,

emerge dynamically from planar gauge theories? Solving scattering in planar N=4 SYM

theory will provide a quantitative test for our physical and mathematical expectations, and

will lead to an improved intuition that can be applied to more general and realistic quantum

– 2 –



field theories.

More immediately, the goal of this white paper is to lay out a set of concrete goals

that are within the reach of current technology, and that will allow us to make progress on

these overarching questions. Before outlining these goals, we provide a brief overview of the

state of knowledge about N=4 SYM theory, starting with a review of its particle content

and symmetries in section 2. In section 3 we describe what is known about amplitudes in

this theory at the level of the integrand, while their properties as functions are described in

section 4. The more detailed understanding we have of certain kinematic limits is described in

section 5, and in section 6 we explain how this understanding can be combined with knowledge

of the analytic properties of amplitudes to in some cases bootstrap them directly. Finally,

we highlight some of the research questions that we expect will be important in the coming

decade in section 7.

2 N = 4 Supersymmetric Yang-Mills Theory

The field content of SYM theory in four dimensions consists of a gauge field Aµ, four Weyl

fermion gluinos ψaA, and six scalar fields that are conventionally packaged into a two-index

antisymmetric field φAB = −φBA. The indices A,B are vector indices of an unbroken SU(4)

R-symmetry that is possessed by the theory. Since supersymmetry transformations relate

the fields to each other, gauge invariance requires that ψaA and φAB must transform in the

adjoint representation of the gauge group, similar to Aµ. The N = 4 supersymmetric (indeed,

superconformal) Lagrangian [11] for this field content is unique up to the choice of gauge group

and the value of a single complex, dimensionless coupling constant.

The on-shell degrees of freedom of the N = 4 supermultiplet consist of a positive helicity

gluon g+, four +1
2 helicity gluino states g̃A, six scalars SAB, four −1

2 helicity gluino states

g̃
A

, and the negative helicity gluon g−. It is useful to package this collection of on-shell states

into an on-shell superfield [12]

Φ(paȧ, ηA) = g+(p)+ηAg̃A(p)+1
2η

AηBSAB(p)+1
6η

AηBηCεABCDg̃
D

(p)+ 1
24η

AηBηCηDεABCDg
−(p) ,

(2.1)

in terms of which superamplitudes are constructed. This object is a function of an on-shell

four-momentum p, which is often parametrize in terms of spinor helicity variables as

paȧ = λaλ̃ȧ , (2.2)

as well as four independent superspace coordinates ηA satisfying

{ηA, ηB} = 0 . (2.3)

For more details on these conventions, see for instance [13].

The conservation of momentum and half of the components of supermomentum (those

corresponding to the generators QaA = λaηA)1 can be made manifest by writing the n-particle

1The conservation of the Q
ȧ

A = λ̃ȧ ∂
∂ηA

is not manifest in this formalism, but implies non-trivial and powerful

differential constraints on superamplitudes [14].
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superamplitude An with an explicit prefactor of

δ4

(
n∑
i=1

λai λ̃
ȧ
i

)
δ8

(
n∑
i=1

λai η
A
i

)
. (2.4)

(The sole exception is the so-called MHV three-point amplitude, which exists due to the

peculiarities of massless three-point kinematics in four dimensions.) In light of Eq. (2.4), the

Grassmann Taylor expansion ofAn evidently begins atO(η8), and, thanks to R-symmetry, can

only contain terms with 8 + 4k powers of η. Terms in the expansion of An are conventionally

denoted

An(λai , λ̃
ȧ
i , η

A
i ) =

n−4∑
k=0

ANkMHV
n (λai , λ̃

ȧ
i , η

A
i ) , (2.5)

where ANkMHV
n is homogeneous of degree 4k + 8 in the η’s and MHV stands for maximally

helicity violating. Because of the overall supermomentum conserving delta function, we can

say that ANkMHV
n is equal to δ8(q) times a homogeneous polynomial in the η’s of degree 4k.

The terms with k = 0, 1, 2, . . . are referred to as MHV, NMHV (next-to-MHV), NNMHV

(next-to-next-to-MHV), etc.

In the planar limit, where only single-trace color structures contribute,2 it is useful to

trivialize (super)momentum conservation by formulating this constraint geometrically. If we

place the n four-momentum vectors paȧi of the scattering particles head to tail in the order

dictated by the color trace, they form a closed polygon in Minkowski space with light-like

edges. Such a configuration may alternatively be described by the locations of its vertices,

which we denote by xi and call dual coordinates. Specifically we have

xaȧi − xaȧi+1 = paȧi , (2.6)

and we similarly have n Grassmann dual coordinates θaAi obeying

θaAi − θaAi+1 = λai η
A
i (no sum on i). (2.7)

This notation not only serves to trivialize (super)momentum conservation (via periodicity in

i→ i+ n),

δ4(p)δ8(q) = δ4(xn+1 − x1)δ8(θn+1 − θ1) , (2.8)

it also helps to expose a striking property of planar scattering amplitudes in SYM theory

called dual (super)conformal symmetry [15, 16]—which is simply superconformal symmetry

in (x, θ) space.

One of the most remarkable developments in the understanding of scattering amplitudes

in SYM theory is the discovery of the amplitude/Wilson loop correspondence [6, 15, 17–

23]. We saw that it was natural to picture the kinematic configuration (p1, . . . , pn) of n null

2The color-stripped planar n-gluon amplitudes An are the coefficients of a single-trace color factor

Tr(T a1T a2 · · ·T an), and naturally transform under the dihedral group Dn.
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momenta satisfying energy-momentum conservation as a polygon with light-like edges and

vertices located at the n dual coordinates (x1, . . . , xn). Let 〈W 〉 denote the expectation value

of a Wilson loop associated to this polygon. In its simplest form, the amplitude/Wilson loop

correspondence is the statement of the exact equivalence

log
AMHV
n (p1, . . . , pn)

AMHV
n (p1, . . . , pn)|tree−level

= log 〈W (x1, . . . , xn)〉 (2.9)

in planar SYM theory. A generalization of this formula is also known to hold for non-MHV

amplitudes, when the Wilson loop is suitably decorated by the insertion of certain operators

on its edges.

Both sides of Eq. (2.9) are divergent. The left-hand side has the usual infrared divergences

of massless gauge theories, while the right-hand side has ultraviolet divergences arising from

gluon exchange between adjacent edges of the polygon near its corners. Fortunately the

divergences of both sides are very well-understood and take a simple factorized form. In

dimensional regularization to D = 4− 2ε we can write [24–27]

log 〈W (x1, . . . , xn)〉 =
n∑
i=1

Div(x2i−1,i+1; ε) + Finn(x2ij) (2.10)

where x2i,j = (xi − xj)2,

Div(x2; ε) = −1

4

∞∑
L=1

g2L(−x2µ2)Lε
[

Γ
(L)
cusp

(Lε)2
+

Γ
(L)
collinear

Lε

]
(2.11)

and Finn(x2ij) is free of infrared and ultraviolet divergences. For a gauge group SU(N) and

gauge coupling gYM, we define

g2 ≡
g2YMN

16π2
=

λ

16π2
, (2.12)

where λ is the ‘t Hooft coupling of planar SYM theory, µ is an arbitrary mass parameter,

and the two sequences of numbers denoted Γ(L) are respectively the L-loop cusp and collinear

anomalous dimensions.3

The Wilson loop has conformal symmetry in x-space (this is the dual conformal symmetry

of the corresponding amplitude), except that this is broken by the UV divergences at the cusps.

In the ε→ 0 limit, the breaking of the conformal symmetry manifests itself as an anomalous

Ward identity [15]

Kµ Finn(x2ij) =
1

2
Γcusp(g2)

n∑
i=1

xµi,i+1 log
(
x2i,i+2/x

2
i−1,i+1

)
(2.13)

for the generator of special conformal transformations

Kµ =
n∑
i=1

[
2xµi x

ν
i

∂

∂xiν
− x2i

∂

∂xiµ

]
. (2.14)

3The collinear anomalous dimension for amplitudes differs from that for Wilson loops; the difference drops

out for suitable finite ratios.
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One particular solution to the conformal Ward identity (2.13) is a function of the x2ij known

as the BDS ansatz [27].4 Therefore, the Ward identity completely determines the Wilson loop

expectation value (and hence, the MHV amplitude) up to the addition of any homogeneous

solution of Eq. (2.13), i.e. up to any dual conformally invariant function of the x2ij . The finite,

dual conformally invariant quantity obtained by subtracting the BDS ansatz from Eq. (2.9) is

called the MHV remainder function Rn. Because the polygon edges are light-like, x2i,i+1 = 0,

it is impossible to form any non-trivial dual conformal cross ratios for n < 6. So the first

nontrivial instance of the remainder function is for n = 6, where three independent cross

ratios

u =
x213x

2
46

x214x
2
36

, v =
x224x

2
51

x225x
2
41

, w =
x235x

2
62

x236x
2
52

(2.15)

can be defined. In general, there are 3(n − 5) independent variables, and this is the dimen-

sionality of the phase-space for n-point scattering in planar SYM, five variables fewer than in

a generic theory.

In practice, it is often convenient to parametrize dual-conformally-invariant kinematics

using momentum twistors [221], which are four-component objects defined by

ZIi = (λai , x
bȧ
i λib) (2.16)

for each particle index i, where I = (a, ȧ) is a combined SU(2, 2) index. Momentum twistors

are invariant under overall rescalings ZRi → tiZ
R
i and as such represent points in CP3. They

also transform linearly under dual conformal transformations. In n-particle kinematics, they

can be assembled into a 4× n matrix

Z ∈ Gr(4, n)/GL(1)n−1 , (2.17)

which corresponds to a point in the Grassmannian of four-dimensional subspaces in CPn, mod-

ulo independent rescalings on its columns. Up to these rescalings, every element of Gr(4, n)

thus specifies a point in n-particle kinematics; in particular, the value of dual conformal cross

ratios such as those shown in Eq. (2.15) can be computed by making the replacement

x2ij → det(Zi−1ZiZj−1Zj) , (2.18)

as all other factors in these ratios cancel out. In the literature, these determinants are usually

denoted by four-brackets as 〈ijkl〉 = det(ZiZjZkZl).

3 Amplitude Integrands and the Amplituhedron

At tree level, scattering amplitudes are rational functions of kinematical variables. In the

planar limit they are especially simple, and poles can only appear when squared sums of

consecutive momenta vanish, namely when (pi+pi+1+· · ·+pj)2 = 0. Amplitudes factorize

4More precisely, the term “BDS ansatz” usually refers to the sum of this particular solution and the

divergent terms displayed explicitly in Eq. (2.10).
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on these poles into pairs of subamplitudes, as dictated by unitarity. At loop level, while

amplitudes generally evaluate to complicated transcendental functions, it is possible (in the

planar case) to define a rational n-point NkMHV `-loop integrand I`−loopn,k , which is a function

of both external kinematics and loop momenta. We can think about these rational functions as

the integrands one would get from summing over all Feynman diagrams prior to integration;

however, because of the power-counting properties of N = 4 SYM theory, these functions

are also uniquely determined by the requirement that they satisfy all possible cuts of the

amplitude [28]. In practice, this fact can be used to compute I`−loopn,k much more efficiently

than would be possible using Feynman diagrams.

Although one must integrate over the loop momenta in these integrands to obtain the

full loop-level amplitude, it also proves interesting to study these rational functions prior to

integration. In doing so, it is usually advantageous to make use of momentum twistors, as

defined in section 2. These variables make the dual conformal symmetry of planarN = 4 SYM

amplitudes completely manifest, and furnish the space of kinematics with a nice geometric

interpretation. Namely, in momentum twistor space, we have n ordered momentum twistors

Zi representing the external momenta, and L lines (AB)j representing the independent loop

momenta, which are each represented by a pair of points ZA and ZB. In this framework, the

cuts of the amplitude only have support on special configurations of the lines (AB)j , in which

they intersect the external lines ZiZi+1 in a specified way. Given the function I`−loopn,k , which

is constructed to match the predictions of field theory on all of the amplitude’s cuts, the full

integrand form Ω`−loop
n,k for the n-point NkMHV amplitude at ` loops is given by

Ω`−loop
n,k = dµ1dµ2 . . . dµ` I`−loopn,k , (3.1)

where dµk = 〈AB d2A〉〈AB d2B〉 for each loop momentum. In order to carry out these

integrals over the loop momenta, one must generally regularize these integrals in the infrared.

The integrand form Ω`−loop
n,k can also be obtained as the canonical differential form on

the Amplituhedron geometry [29, 30]. This geometry is defined as a special configuration of

momentum twistors Zi and lines (AB)j which are subject to certain positivity conditions.

For Ω`−loop
n,k , the momentum twistors are chosen to satisfy

〈i i+1 j j+1〉 > 0 , where the series {〈1234〉, 〈1235〉, . . . , 〈123n〉} has k sign flips. (3.2)

In addition, each loop momentum line (AB) must satisfy

〈AB i i+1〉 > 0 , where the series {〈AB12〉, 〈AB13〉, . . . , 〈AB1n〉} has k+2 sign flips. (3.3)

For each pair of lines (AB)i, (AB)j , we also require that 〈(AB)i(AB)j〉 > 0. This de-

fines the loop Amplituhedron space A(`)
n,k. We can think about the Amplituhedron as being

parametrized by a set of variables xi (the degrees of freedom in Zi and (AB)j) which are

subject to certain polynomial inequalities. The boundaries of the Amplituhedron correspond

to the loci where either 〈i i+1 j j+1〉 = 0 or 〈(AB)i j+1〉 = 0, which are exactly the poles of

the loop integrand I`−loopn,k .

– 7 –



In general, we can define a canonical form ω`−loopn,k that has logarithmic singularities on

the boundaries of the space A(`)
n,k. Namely, this form has a singularity of the form dx/x

whenever we approach one of the boundaries of the Amplituhedron corresponding to x = 0

(and nowhere else). This canonical form is guaranteed to exist for A(`)
n,k, and to be unique.

The amplitude form Ω`−loop
n,k can then be obtained from ω`−loopn,k by a simple replacement

Ω`−loop
n,k = ω`−loopn,k (dZi → ηi) , (3.4)

where the differentials dZi are replaced by the fermionic variables ηi. This provides a com-

pletely geometric reformulation of N = 4 tree-level amplitudes, as well as the integrands of

planar loop-level amplitudes. In particular, the normal physical properties of amplitudes,

such as their singularity and branch cut structure, emerge as nontrivial consequences of the

positivity conditions that define the Amplituhedron geometry. Moreover, the computational

problem of obtaining a particular loop integrand Ω`−loop
n,k as a sum of Feynman diagrams,

or as the product of recursion relations, is translated into the mathematical problem of tri-

angulating the Amplituhedron space. One promising direction in the effort to extend the

Amplituhedron picture to other theories is the formulation of the positive geometry in the

Mandelstam or spinor helicity space [31–33].

While a closed-form expression for the integrand of planar amplitudes in N = 4 SYM

theory remains an open problem, the geometric problem has been solved for some all-loop-

order cuts [34]. Moreover, the connection to Wilson loops and infrared-finite quantities has

allowed for the development of interesting geometric approximations for all-loop quantities

including the cusp anomalous dimension [35]. The Amplituhedron picture has also been stud-

ied extensively from the purely mathematical perspective [36–38], as it provides a substantial

generalization of the positive Grassmannian [39, 40]. As a mathematical structure, it is closely

related to cluster algebras and other interesting algebraic structures that remain intact after

one carries out the integration over loop momenta, as we discuss in the next section.

4 Mathematical Properties at Loop Level

At loop level, amplitudes generally evaluate to transcendental functions that have an exceed-

ingly complicated branch cut structure. Since our a priori understanding of this analytic

structure remains limited beyond special cases such as 2 → 2 scattering, most amplitudes

of interest remain prohibitively difficult to evaluate using current technology. Despite this

general situation, several infinite classes of amplitudes in planar N = 4 SYM theory have

been uncovered over the last two decades whose analytic structure is simple enough to be

understood either to all loop orders or at all particle multiplicity. In particular, the MHV

amplitudes in this theory are known to two loops for any number of particles [14, 41, 42],

while its six- and seven-particle amplitudes have been computed to high loop orders [5] and

are not expected to exhibit new types of analytic structure at higher orders in perturbation

theory.
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One of the advantageous features of these classes of amplitudes is that they can be ex-

pressed in terms of multiple polylogarithms, or iterated integrals over logarithmic integration

kernels [43–48], whose properties as special functions are well understood. In particular,

the analytic structure of multiple polylogarithms can be systematically exposed using the

symbol [49], which maps multiple polylogarithms to a tensor product of logarithms that en-

codes all the logarithmic and algebraic branch of the original function.5 Moreover, as the

identities that hold between logarithms are completely understood (up to algebraic identities

between their arguments), it is easy to find all identities between the symbols of multiple

polylogarithms; these identities can then be uplifted to the original space of multiple poly-

logarithms through the inclusion of further contributions proportional to transcendental con-

stants [53, 54].6 Algorithms also exist for systematically expressing multiple polylogarithms

in terms of so-called fibration bases, which allow these functional relations to be imposed on

an expression systematically [56–58].

A great deal has been learned about the specific logarithmic arguments—or symbol

letters—that appear in polylogarithmic amplitudes in planar N = 4 sYM theory from the

study of the theory’s two-loop MHV amplitudes. In [41] it was shown that the symbol letters

that appear in the n-particle instance of this class of amplitudes can always be chosen to

be cluster coordinates defined on the Grassmannian Gr(4, n) [59]. This initial observation

has led to a prolific body of work that has tied the analytic structure of these amplitudes to

cluster algebras [42, 60–68], and to closely related algebraic structures such as tropical fans

and polytopes [69–82]. Of particular note are the cluster adjacency conditions [62], which

state that symbol letters only appear in adjacent entries of the symbol of (appropriately-

normalized) amplitudes when they also appear together in a cluster. In all known cases, this

requirement has been observed to be equivalent to the implications of the extended Steinmann

relations [83–87], which restrict these amplitudes from having nonzero double discontinuities

in partially-overlapping momentum channels (at any depth in the symbol). Similar con-

straints on the analytic properties of amplitudes have also been deduced more directly from

the Landau equations [88] and cut integrals [89]; see for instance [90–102] for recent work in

this direction.

The six- and seven-particle amplitudes in planarN = 4 SYM theory are especially simple,

insofar as the cluster coordinates defined on Gr(4, 6) and Gr(4, 7) appear to describe the full

set of symbol letters that appear in these amplitudes at any loop order. As we will review in

section 6, this expectation has been leveraged to bootstrap the six-particle amplitude through

seven loops [86, 103–111], and the seven-particle through four loops [66, 111–113]. Access to

such high-loop data has, in turn, made it possible to uncover additional types of structure in

these amplitudes, such as interesting number-theoretic symmetries under the cosmic Galois

group [114–117]. These symmetries restrict what numerical constants are expected appear

5Technically, this is only true modulo contributions proportional to transcendental constants such as ζ3;

however, these terms can be captured as well by upgrading the symbol to a full coaction [50–53].
6We highlight that it can still prove highly nontrivial to find all identities between multiple polylogarithms

when complicated algebraic functions appear in the arguments of these logarithms; see for instance [55].

– 9 –



in these amplitudes perturbatively; for instance, the constant ζ3 is not expected to appear

in the six-particle amplitude at a particular kinematic point, at any loop order, when it

is ‘cosmically normalized’ in the way described in [87]. Notably, similar number-theoretic

symmetry properties have been observed in massless φ4 theory [118, 119], QED [3, 120], and

string theory [121].

Functions beyond multiple polylogarithms also appear in planar N = 4 SYM theory, for

instance at two loops for ten particles [122–127]. A great deal of work has gone into under-

standing the next class of special functions that naturally arises, which involves integrals over

elliptic curves [125–160]. Even more complicated integrals, such as integrals over hyperelliptic

curves [161, 162] and over Calabi-Yau manifolds of unbounded dimension [135, 163–173] also

appear. The evaluation of amplitudes that involve functions more complicated than multiple

polylogarithms remains an active area of research; see [174] for a white paper devoted to this

topic, and [175] for a more pedagogical introduction.

5 Special Kinematic Limits

Much more is known about the structure of amplitudes in N = 4 SYM theory in special

kinematic limits. One important class of examples are multi-Regge limits, where all outgoing

particles are strongly ordered in rapidity. Amplitudes exponentiate in these limits and admit

an effective description as an expansion in large logarithms. This exponentiation is especially

well understood in the planar limit of this theory [10, 107, 176–184], where it has been shown

that the coefficients multiplying these large logarithms are always expressible in terms of

specific classes of single-valued multiple polylogarithms [180, 182]. Moreover, predictions for

these expansions are available at all loop orders and for any number of particles [10, 184].

For a recent introduction to this topic, see for instance [185].

Another interesting limit that has been studied in great detail is the near-collinear

limit of planar amplitudes in N = 4 SYM theory. In the dual theory, this limit admits

a non-perturbative description in terms of the so-called pentagon operator product expansion

(POPE) [8, 9, 186–196], by means of which the amplitude can be computed as an expansion in

terms of flux-tube excitations crossing the Wilson loop. While in principle the POPE encodes

the full amplitude, it is not yet known how to resum this expansion beyond one loop [197, 198].

A form factor operator product expansion (FFOPE) has recently been developed in planar

N = 4 SYM theory [199–201], which leverages the duality between form factors and Wilson

loops in a periodic target space [202–204].

Further limits have also been studied in six- and seven-particle kinematics, where a num-

ber of amplitudes have been computed in general kinematics. These include multi-particle

factorization limits [108, 113], and the origin of the six-particle amplitude, which is conjec-

turally known to all loop orders [205]. The amplitude also becomes singular when the dual

Wilson polygon crosses itself, and an evolution equation has been derived that governs these

singularities, as well as a proposed all-orders resummation [110, 206].

– 10 –



6 Perturbative Bootstrap Calculations

The BDS ansatz for planar amplitudes in N = 4 SYM theory needs to be corrected for

amplitudes involving more than five particles, starting at two loops. As reviewed in section 2,

these corrections take the form of finite functions of dual-conformally-invariant cross ratios.

In an impressive calculation, the first nontrivial correction—the two-loop correction to the six-

particle amplitude—was integrated directly using Mellin-Barnes techniques, and found to be

expressible in terms of multiple polylogarithms [207, 208]. Symbol methods were subsequently

used to put this function into a more parsimonious form, which makes it clear that only nine

symbol letters appear [49]:

S6 = {u, v, w, 1− u, 1− v, 1− w, yu, yv, yw} , (6.1)

where u, v, and w were defined in (2.15), and

yu =
u− z+
u− z−

, yv =
v − z+
v − z−

, yw =
w − z+
w − z−

, (6.2)

where

z± =
1

2

[
−1 + u+ v + w ±

√
∆
]
, ∆ = (1− u− v − w)2 − 4uvw . (6.3)

In other words, this function only develops logarithmic branch cuts on the nine codimension-

one surfaces where these letters vanish in the space of dual-conformally-invariant cross ratios.

Equipped with this insight into the analytic structure of the two loop contribution, a

bootstrap approach to computing the six-particle remainder function at higher loops was

initiated in [103]. This approach starts from the assumption that no further symbol letters

appear in the dual-conformally-invariant correction to the BDS ansatz, and tries to identify

the unique polylogarithmic function that has all the right properties to encode the ampli-

tude. This assumption turns out to be valid, and bootstrap methods have now been used

to determine the amplitude through seven loops [86, 103–110]. As part of this work, the

mathematical properties of the six-particle amplitude have been studied in great depth, and

are now known to include:

(i) Dihedral Symmetry – The amplitude is invariant under relabelings of its external legs

that respect the original planar ordering.

(ii) Branch Cut Conditions – When formulated in the Euclidean region, the amplitude

should only develop branch cuts where one of the Mandelstam invariants vanishes or

approaches infinity.

(iii) Final Entry Conditions – Only certain letters are allowed to appear in the last entry of

the symbol, as prescribed by the action of the Q̄ equation [14, 209, 210].

(iv) Extended Steinmann Relations – When appropriately normalized, the amplitude never

involves sequential discontinuities in partially-overlapping three-particle momentum

channels [83–85, 87]. This turns out to be equivalent to the cluster adjacency con-

ditions proposed in [62].
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(v) Cosmic Galois Coaction Principle – The span of functions of fixed weight that appear

in the first entry of the coaction of the amplitude stabilizes after a certain number of

loop orders; this observation restricts the space of functions that are expected to show

up to all higher loop orders [87].

(vi) Multi-Regge Kinematics – In this limit, the outgoing particles are strongly ordered in

rapidity and the amplitude exponentiates. It can be independently computed as an

expansion in large logarithms using an effective description in terms of an impact factor

and BFKL eigenvalue [10, 107, 176–180].

(vii) Near-Collinear Kinematics – The expansion of the amplitude around collinear limits

is described at finite coupling by the POPE [8, 9, 186–196], which makes it possible

to independently compute the first terms in this near-collinear expansion at fixed loop

order.

(viii) Self-Crossing Kinematics – Kinematics in which the transverse momentum of a pair of

outgoing gluons vanishes and the amplitude becomes singular. The singular terms are

governed by an evolution equation, and have been determined to high loop order [206].

(ix) Behavior Near the ‘Origin’ – The behavior of the MHV amplitude near the ‘origin’ of

six-particle kinematics, where u, v, and w all vanish, is conjecturally understood to all

loop orders [205], and it is the exponential of a quadratic form in the logarithms of

u, v, w.

It is believed that the six-particle amplitude is determined by (a subset of) these constraints

to all orders in perturbation theory; however, in practice constructing the explicit functions

becomes too computationally intensive beyond seven or eight loops. To illustrate the power

of this procedure, we present the number of free parameters that remain at various steps in

the bootstrap procedure for the MHV amplitude through six loops in Table 1. After the

amplitude has been uniquely determined, the remaining constraints act as cross checks. The

NMHV helicity configuration works in a similar fashion.

A similar bootstrap approach has also been employed to compute the seven-particle

amplitude and certain three-point form factors in planar SYM. In the former case, 42 symbol

letters appear in the two loop MHV amplitude [14], and the same letters have been found

to be sufficient for expressing both the MHV and NMHV amplitudes through four loops [66,

111–113]. In the latter case only six symbol letters appear, and the form factor has been

bootstrapped through eight loops [211–213]. Surprisingly, this form factor has also been

shown to be dual to the six-particle amplitude evaluated on a two-dimensional kinematic

surface, order-by-order in perturbation theory [214]. The duality reverses all entries in the

symbol (the antipode map). It is not known yet whether antipodal duality appears in a wider

class of processes.

More generally, while the planar two-loop n-particle MHV amplitude is known to involve
3
2n

3−15n2+ 77
2 n letters [14], additional letters are expected to appear at higher loops for eight
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Constraint L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

1. Hhex 6 27 105 372 1214 3692?

2. Symmetry 2 7 22 66 197 567

3. Final-entry 1 4 11 30 85 236

4. Collinear 0 0 0∗ 0∗ 1∗3 6∗2

5. LL MRK 0 0 0 0 0∗ 1∗2

6. NLL MRK 0 0 0 0 0∗ 1∗

7. NNLL MRK 0 0 0 0 0 1

8. N3LL MRK 0 0 0 0 0 1

9. Full MRK 0 0 0 0 0 1

10. T 1 OPE 0 0 0 0 0 1

11. T 2 OPE 0 0 0 0 0 0

Table 1: The number of free parameters that remain in the BDS-like normalized ansätze for

the MHV six-particle amplitude after each constraint is applied. The initial ansatz is formed

out of a general linear combination of the functions in the Hhex space, which includes all

polylogarithms that involve just the letters in S6, and that satisfy conditions (ii), (iv), and

(v). The superscripts “∗” (or “∗n”) denote an additional ambiguity (or n ambiguities) that

arises due to further ambiguities in the cosmic normalization constant ρ. The “?” indicates

an ambiguity about the number of weight 12 odd functions that are “dropouts”, namely that

are allowed at symbol level but not function level. The numbers in this table were taken

from [110], where further details can be found.

or more particles. Such letters explicitly appear in the three-loop eight-point MHV amplitude,

which was recently computed with the help of the Q̄ equation [215]. This fact makes bootstrap

computations harder to pursue for more than seven particles, since there doesn’t yet exist

a reliable method for predicting the symbol letters that will appear in these amplitudes

(although much work has been devoted to this question; see for instance [40–42, 60, 62, 64–

67, 69–81]). Further data on this question can be gathered by computing three-loop MHV

amplitudes at higher points, which should also be possible with the help of the Q̄ equation,

using input from our knowledge of this theory’s two-loop NMHV amplitudes [216, 217].

At higher points, amplitudes and form factors in N = 4 SYM theory are expected

to involve functions beyond multiple polylogarithms, even in the planar limit. While it is

expected that bootstrap approaches can also be applied to amplitudes that involve these more

general types of functions—as indeed, these quantities are expected to exhibit many of the

same algebraic and analytic features as the amplitudes that have already been bootstrapped—

more technology for dealing with these functions is needed to make this approach feasible.
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Notably, however, a great deal of progress in this direction has recently been made in the

case of elliptic polylogarithms, and similar advances are expected in the coming years in our

understanding of the more general types of integrals that appear [174].

7 Outlook

While an impressive amount is already known about the amplitudes in N = 4 SYM theory,

there are many directions in which our understanding can be improved. We now highlight

some of the important questions and research directions in which we expect progress can be

made in the coming years:

• Much of the recent progress in this theory has been made on the planar limit, where

significant simplifications occur. While initial results have also been achieved for four-

and five-particle amplitudes with full color dependence [218–220], it will become increas-

ingly important to develop tools that scale well with the number of kinematic variables

in order to compute amplitudes at higher points.

• There is an ongoing search for the putative dual Amplituhedron, whose volume (rather

than associated differential form) should reproduce tree-level amplitudes and loop inte-

grands. The dual geometry for NMHV tree-level amplitudes was discovered some time

ago [221, 222], and some encouraging results are available in the literature [223–226];

however, an explicit and general construction is still missing.

• Another important direction is to extend the positive geometry construction beyond

the planar limit. The Grassmannian formulation for on-shell diagrams [40] does extend

to non-planar diagrams [227–231], and there is evidence that many of the analytic

properties that have been observed in the planar limit also persist outside of this limit,

such as the absence of poles at infinity and the existence of only logarithmic singularities

in the integrand [232–236]. However, how to uniquely define the non-planar integrand,

and whether it can be geometrically formulated, remain important open questions.

• As the POPE gives a non-perturbative formulation of this theory’s planar amplitudes

as expansions near two-particle collinear limits, it should in principle be possible to

resum the contributions at fixed loop order. Currently the technology for doing this

only exists at one loop [197, 198, 237, 238]. Barring a full resummation algorithm, it

would also be interesting to be able to read properties of the amplitudes off of these

sums, such as what combinations of kinematic variables these amplitudes depend on.

• While the general class of special functions that can appear in perturbative quantum

field theory remains unclear, this question can be answered for specific classes of am-

plitudes with the help of integrand-level basis reduction techniques [239–249]. It would

be interesting to catalog what types of functions might appear in N = 4 SYM theory

at a given multiplicity or loop order.
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• The bootstrap approach described in section 6 has proven to be wildly successful, and

has given rise to some of the highest-order results with nontrivial kinematic dependence

in any quantum field theory. However, these techniques currently remain restricted to

functions that can be expressed in terms of multiple polylogarithms. As such, it will be

important to extend them to function spaces involving elliptic curves and other higher-

dimensional varieties; see the Snowmass white paper [174]. A preliminary step could be

to bootstrap higher-point amplitudes first on suitable lower-dimensional surfaces.

• One of the main long-term goals in understanding the amplitudes of N = 4 SYM theory

is to find a closed-form representation of even the simplest amplitudes at finite coupling.

(One could argue this has already been done, up to constants, for the four- and five-

particle amplitude in the form of the BDS ansatz [27], but these amplitudes benefit an

exceptional amount from dual conformal symmetry [6, 16, 20, 250–252].) Some hints

as to what form amplitudes might take at finite coupling come from resumming ladder

integrals [253]; it would already be extremely interesting to find a similar finite-coupling

formulation of the planar six-particle amplitude, or the planar three-particle form factor

studied in [211–213]. Such a formulation would represent a resummation of the POPE

mentioned above.

• Amplitudes and form factors have been observed to exhibit interesting number-theoretic

properties under the Galois coaction, not only in N = 4 SYM theory [87] but also in

massless φ4 theory [118, 119], electromagnetism [3, 120], and string theory [121]. It

would be useful to find a physical explanation for these number-theoretic properties,

so as to be able to make predictions about the number-theoretic properties of as-yet-

uncomputed amplitudes.

• The Q̄ equation has been utilized in a number of impressive calculations to compute

amplitudes at all multiplicity [14, 209, 215, 217]. However, its utility currently remains

limited to the MHV and NMHV sectors, as amplitudes in other sectors involve contri-

butions that are in the kernel of the Q̄ equation. It would be extremely interesting to

understand these additional contributions in order to extend the reach of these methods.

• The analytic structure of amplitudes is not well understood beyond four-particle scat-

tering. One step that would improve our understanding of their analytic structure in

the case of N = 4 SYM theory would be to elucidate the physics behind the connec-

tion between the singularity structure of some of its amplitudes and cluster algebras

(and geometric structures closely related to cluster algebras, such as tropical fans and

polytopes) [40–42, 60, 62, 64–67, 69–81]. Progress is also being made on how the ana-

lytic structure of generic Feynman integrals can be better understood using the Landau

equations [88] and cut integrals [89]; see for instance [90–102].

• Almost all of the work on amplitudes in N = 4 SYM theory has been carried out at the

origin of the theory’s moduli space (although see [254–256]). It would thus be interesting
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to better understand how the mathematical structure of its amplitudes change when

some of its scalars are given a vacuum expectation value.

Of course, this list highlights just some of the topics that merit study over the next decade. In

particular, we expect that many unanticipated research directions will arise with the identifi-

cation of further types of mathematical structure in N = 4 SYM theory. With luck, some of

these discoveries will give us a glimpse into the appropriate mathematical language in which

our current descriptions of amplitudes in this theory can be seen to be encoded in expressions

that are valid both at finite coupling and in general kinematics.
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