Author(s)
|
Black, K. (U. Wisconsin, Madison (main)) ; Colaleo, A. (U. Bari (main) ; INFN, Bari) ; Aimè, C. (U. Pavia (main) ; INFN, Pavia) ; Alviggi, M. (Naples, Inst. U. Navale ; INFN, Naples) ; Aruta, C. (U. Bari (main) ; INFN, Bari) ; Bianco, M. (CERN) ; Balossino, I. (INFN, Ferrara) ; Bencivenni, G. (Frascati) ; Bertani, M. (Frascati) ; Braghieri, A. (INFN, Pavia) ; Cafaro, V. (INFN, Bologna) ; Calzaferri, S. (INFN, Pavia) ; Camerlingo, M.T. (Naples, Inst. U. Navale ; INFN, Naples) ; Canale, V. (Naples, Inst. U. Navale ; INFN, Naples) ; Cibinetto, G. (INFN, Ferrara) ; Corbetta, M. (CERN) ; D'Amico, V. (Rome III U. ; INFN, Rome3) ; De Lucia, E. (Frascati) ; Della Pietra, M. (Naples, Inst. U. Navale ; INFN, Naples) ; Di Donato, C. (Naples, Inst. U. Navale ; INFN, Naples) ; Di Nardo, R. (Rome III U. ; INFN, Rome3) ; Domenici, D. (Frascati) ; Errico, F. (U. Bari (main) ; INFN, Bari) ; Everaerts, P. (U. Wisconsin, Madison (main)) ; Fallavollita, F. (Mainz U., Inst. Phys.) ; Farinelli, R. (INFN, Ferrara) ; Felici, G. (Frascati) ; Fiorina, D. (INFN, Pavia) ; Garzia, I. (INFN, Ferrara) ; Gatta, M. (Frascati) ; Giacomelli, P. (INFN, Bologna) ; Giovannetti, M. (Frascati) ; Gramigna, S. (INFN, Ferrara) ; Guida, R. (CERN) ; Hohlmann, M. (Florida Inst. Tech.) ; Iengo, P. (INFN, Naples ; CERN) ; Iodice, M. (INFN, Rome3) ; Lavezzi, L. (INFN, Turin) ; Maggi, M. (INFN, Bari) ; Mandelli, B. (CERN) ; Melchiorri, M. (INFN, Ferrara) ; Merlin, J.A. (Seoul U.) ; Mezzadri, G. (INFN, Ferrara) ; Montagna, P. (U. Pavia (main) ; INFN, Pavia) ; Morello, G. (Frascati) ; Papalino, G. (Frascati) ; Pellecchia, A. (U. Bari (main) ; INFN, Bari) ; Petrucci, F. (Rome III U. ; INFN, Rome3) ; Lener, M. Poli (Frascati) ; Radogna, R. (U. Bari (main) ; INFN, Bari) ; Riccardi, C. (U. Pavia (main) ; INFN, Pavia) ; Rigoletti, M.G. (CERN) ; Salvini, P. (INFN, Pavia) ; Scodeggio, M. (INFN, Ferrara) ; Sekhniaidze, G. (INFN, Naples) ; Sessa, M. (Rome III U. ; INFN, Rome3) ; Simone, F.M. (INFN, Bari) ; Sharma, A. (U. Bari (main) ; INFN, Bari) ; Stamerra, A. (U. Bari (main) ; INFN, Bari) ; Vai, I. (INFN, Pavia) ; Venditti, R. (INFN, Bari) ; Verwilligen, P. (INFN, Bari) ; Vitulo, P. (U. Pavia (main) ; INFN, Pavia) ; Zaza, A. (U. Bari (main) ; INFN, Bari) |
Abstract
| In the next years, the energy and intensity frontiers of the experimental Particle Physics will be pushed forward with the upgrade of existing accelerators (LHC at CERN) and the envisaged construction of new machines at energy scales up to hundreds TeV or with unprecedented intensity (FCC-hh, FCC-ee, ILC, Muon Collider). Large size, cost-effective, high-efficiency detection systems in high background environments are required in order to accomplish the physics program. MPGDs offer a diversity of technologies that allow them to meet the required performance challenges at future facilities thanks to the specific advantages that each technology provides. MPGDs allow stable operation, with environmentally friendly gas mixtures, at very high background particle flux with high detection efficiency and excellent spatial resolution. These features make MPGD one of the primary choices as precise muon tracking and trigger system in general-purpose detectors at future HEP colliders. In addition, the low material budget and the flexibility of the base material make MPGDs suitable for the development of very light, full cylindrical fine tracking inner trackers at lepton colliders. On-going R&Ds; aim at pushing the detector performance at the limits of each technology. We are working in continuing to consolidate the construction and stable operation of large-size detectors, able to cope with large particle fluxes. In this white paper, we describe some of the most prominent MPGD technologies, their performance measurements, the challenges faced in the most recent applications, and the areas of improvement towards efficient tracking and Muon detection at future high energy physics colliders. |