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elements.

the tracking code SIXTRACK [1] to allow the treatment of both thick and thin linear
velocity, i.e. below and above transition energy. This formalism has been used to extend
matrix for solenoids is derived. The equations derived are valid for arbitrary particle
manner by using symplectic kicks. In particular a thin — lens representation of the transfer
equations of motion for various kinds of magnets and for cavities in a straightforward
and storage rings. It is shown how to solve the (six—dimensional) nonlinear canonical

In this paper we introduce a thin—lens formalism for tracking particles in accelerators
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In this report we use the CGS unit system.

(2.1) OCR Output.. H(F,1>,»:) : c· {sz + mgczl + ea
1/2

classical Hamiltonianl, 'H:
The starting point of the description of classical dynamics in storage rings will be the

2.1 The Starting Hamiltonian

The solutions of these equations in the thin—lens approximation are derived in chapter 3.
equations of motion for various kinds of magnets and for cavities are presented in section 2.5.
effect of relative energy deviation on the focusing strengths is automatically accounted for. The
Hamiltonian into a power series. In this report we shall use an approximation in which the
then be conveniently calculated (2.4) to various orders of approximation by expanding this
by the application of suitable canonical transformations (section 2.3). The particle motion can
scribe synchrotron motion, the Hamiltonian expressed in machine coordinates may be obtained
natural coordinates 1:, z, s, (2.2) combined with two additional variables 0* and T] which de
from the Hamiltonian in a fixed Cartesian coordinate system (section 2.1) and introducing the
planes) and by non-vanishing dispersion in the cavities (synchro—betatron coupling). Starting
all kinds of coupling induced by skew quadrupoles and solenoids (coupling of betatron motion
rings by a simultaneous treatment of synchrotron and betatron oscillations, taking into account

The aim of this chapter is to derive the canonical equations for particle motion in storage

2 The Canonical Equations of Motion

Finally Appendix C gives some useful formulae used in this paper.
Appendix B the tracking results a.re compared for a thin and thick lens lattice of the LHC.
plecticity condition and its relation to the canonical structure of the equations of motion. In
A summary of the results is presented in chapter four. Appendix A treats in detail the sym—
thin—lens approximation the equations of motion are solved for each element in chapter three.

In the second chapter the general canonical equations of motion are derived. Using the
In detail, the paper is organized as follows:

to show how this approximation can be done and to demonstrate its inherent symplecticity.
operations as necessary while fulfilling the symplecticity conditions. The aim of this study is
to make sure that the thin linear lens approximation in the six-dimensional case uses as few
approximate the long linear elements by drifts and linear point-like kicks. Of course we want
time—consuming even on state of the art computer farms. It has therefore been desirable to
compared to the total length of the accelerator. Moreover dynamic aperture studies are very
the curvature of the dipoles is very small and the length of individual elements is negligible
very large machines like for instance the LHC, a hadron collider currently in its design stage,
dipoles, quadrupoles and others by giving them their correct length (see [4, However, in

The intuitive approach to modelling an accelerator is to treat the elements like drifts,



accompanying the particles and comprising OCR Output
The vector 61* can as usual be described using an orthogonal coordinate system ("dreibein”)

F(s) = F0(s) + 6F(s) (2.6)

from the design orbit F0(.s):
arbitrary particle orbit F(s) is then described by the deviation 6F(s) of the particle orbit F(s)
the following be described by the vector F0(.s) where s is the length along the design orbit. An
so that it has no torsion. The design orbit which will be used as the reference system will in
design orbit comprises piecewise flat curves which lie either in the horizontal or vertical plane
and assuming that there are no field errors or correction magnets). We also assume that the
of constant energy Eg (neglecting of course energy variations due to cavities and radiation loss
this in mind we assume that an ideal closed design orbit exists describing the path of a particle
in terms of the natural coordinates 2:,z,s in a suitable curvilinear coordinate system. With
coordinates X1, X2 and X3. However, in accelerator physics, it is useful to describe the motion

The position vector F of the particle in eqn. (2.1) refers to a fixed coordinate system with the

2.2 Reference Trajectory and Coordinate Frame

(k = 1, 2, 3)

dt 8Xk
P = —;¥; ; k

2.5¥ X : ¥; ;

With this Hamiltonian (2.1) the orbital equations of motion are:

77 Z X]•é‘1+X2·€2+X3·é·3;

E1, 52, E3 we can write Fand P as:
In terms of the three unit cartesian coordinate vectors in the fixed laboratory frame,

B = curl A . (2.3b)

C 6,
gra ¢ ( ¤)

1 GA

which the electric field E and the magnetic field B, are derived as:
The quantities A and ¢ appearing in eqn. (2.1) a.re the vector and scalar potentials from

(2.2)yr Z P - $,1 .

vector if is given by:
where F and P are canonical position and momentum variables and where the kinetic momentum



has thereby been defined under the restriction that the accelerator is torsion free. OCR Output
within a straight section where K, = K, = 0. A global and continuous coordinate system

The (x, z, s) coordinate system constructed above for bending magnets may also be used
coordinate é°,(,s) is pointing upwards.
horizontal coordinate é°,(s) is directed towards the machine center. In both cases the vertical
tangential coordinate é`,(s) is chosen to move counter—clockwise around the machine, then the
the horizontal coordinate é°,,(.s) is directed outwards, i.e. away from the machine center or the
coordinate é°,(s) is chosen to move clockwise (in a right hand sense) around the machine, then

There is still some freedom in how to define this orthonormal system: either the tangential
horizontal plane and é', in the vertical plane.
i.e. (é',(s), é`,(.s), é°,(s)) represents a r.h. orthonormal system, whereby é', lies always in the

: é',(s) , (2.9)

é°B(s) ><é°N(s) , if the orbit lies in the vertical plane;
E, (8) X é. (8) _ °° z _

+é°N(s) ><é°B(.s) , if the orbit lies in the horizontal plane;

As a result of these definitions we then obtain:

+é°N(.s) , if the orbit lies in the vertical plane .
e.,(s) _ Z _

+é°B(s), if the orbit lies in the horizontal plane;

é`B(s) , if the orbit lies in the vertical plane;
6.,05) _ ” _

+é`N(s), if the orbit lies in the horizontal plane;

é', and é`, which change their directions continuously. This is achieved by putting
horizontal plane and vice versa. Therefore, it is advantageous to introduce new unit vectors EI,
EN changes discontinuously if the particle trajectory is going over from the vertical plane to the

However this representation has the disadvantage that the direction of the normal vector

definition).
(since the “dreibein” accompanies the design particle the é°,—component of 6F is always zero by

6·F°(s) : (6·F~é'N)·€N+(6F-é'B)·é'B (2.8)

In this natural coordinate system we can represent 6·F(s) as:

Z22 CB (2.7c)

E5 e" +K(·¤) ·€.(¤) ; (2-Vb)

ds W K(—·>) - €N(~¤) ; (2-7¤>

The Serret—Frenet formulae corresponding to this dreibcin read as:

and a. unit binormal vector €B(.s) = é°,(s) ><é°N(s)

a unit normal vector €N(5) ;

@(3) : i’°¤(S) E T?/(8) ;



°Note that in Refs. [4, 5] p, is defined without the sealing factor gg. OCR Output

P0 · C
(2.15)[1+K,,·z:+K,-z]·——`Z—A,,

(1 + fz)’

(px _ Az)2 __[_ (pz __ Az)2 11/2
’H(:c,p,,,z,p,,0·,p,,;s) = p, — (1 + fy) · [1 + K, · 1:+ K, - z] ><

Choosing a gauge with qi = 0 (e.g. Coulomb gauge) we then obtain:

transformations and a scale transformation [4, 5].
of the orbital motion with respect to the new variables 1:, z, 0 by a succession of canonical
orbit as the independent variable (instead of the time t), we can construct the Hamiltonian

Starting from the orbital Hamiltonian (2.1) and introducing the length s along the design

relative energy deviation of the particle.
longitudinal separation of the particle from the center of the bunch. The quantity 1] is the

The variable 0 describes the delay in arrival time at position s of a particle and is the

where the term 1] is defined in (C.1).

p, : BE -1] , (2.14)

and 2

0* = .s——*v0·t (2.13)

additional sma.ll and oscillating variables 0* and pt, with
In order to provide a.n analytical description for longitudinal oscillations we introduce two

The variables ac and z in eqn. (2.10) describe the amplitudes of transverse motion.

2.3 The Hamiltonian in Machine Coordinates

of the coordinates (see above).
Note that the sign of K,,(s) and K,(s) is fixed by eqn. (2.11) and the choice of the direction

where K,,(s), K,(s) denote the curvatures in the sv-direction and in the z—direction respectively.

(2.12)K,(s)·K,(.s) = 0

with

ds
K¤(¤) ·é°,,(s) —- K,(.s) ·é',(.s)gis) (2.11c)

d s
+K,(·9)‘ €·(¤) aé’,(.s) (2.111))

ds
@(8) ;648) +K:(¤)· (2.11a)

and thc Scrrct—Frc11ct formulae (2.7) now read as:

(2.10)F(x, z, 5) : F'0(.s) + z(s) ·é°,,(.s) + z(s) ·é°,(s)

Thus, thc 0rbit—vcctor F(s) can bc written in the form
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(2.21c)

3 A,——§A,,
(1+K,·:c+K,·z) (Bs 823

A —-—[(1+K·z+K·z)·A,]}· (2.21b) “ x Z ’G(?

(1+Kz_x+Kz·z) l6z
[(1+K,·z+K,·z)·A,]—A,, (2.21a)6 E}

and

(2.20)E : ,50-:9;;

variables z, z, s, 0, eqns. (2.3a, b) become (with ¢ = 0):
A is known the fields 8 and B may be found using the relations (2.3a,b). Expressed in the
for the cavities and for commonly occurring types of accelerator magnets must be given. Once

A: A(z, z, 0; s),
i ·

corresponding vector potential,
In order to utilize this Hamiltonian, the electric field E and the magnetic field B or the

0 __l52 Q Q Q Q liz
where the matrix § is given by:

(2.18)@41- 2 (z) PZ) Z1 PZ) 0} }

with

ds
(2.17)27 = —§·%

or, using a matrix form:

60,ds 3p,, ds
__ pa _, (2.16c)

671 d

ds 8p,° ds az ,
pz Z (2.16b)

GH d

ds 6p,, ds Bx ,
px : (2.16a)

BH d

The corresponding canonical equations read as:

whcrc thc relative momentum deviation 1} is defined in Appendix C (see eqn. (C.4)



the same sign. OCR Output
e.g. g, A, p and also K, are defined opposite in sign compared to 2.23, while the skew components like N have

In the coding of SIXTRACK there is, for historical reasons, one important diference: all regular multipoles
up to 10"‘ order are included in the SIXTRACK code.

It has to be mentioned that the formalism can be generalized to higher order multipoles. In fact multipoles

cavity.K,=K,=g=N=X:;1.=H=0:V#0;
K,=K,:g=N=X=;L=V=U: solenoid;Hgéll;
K,=K,=g=N=X=H=V=U: octupole;##0;

sextupole;MH);
K,=K,=g=X=;1:H=V=O: skew quadrupole;N;éU;
K,=K,==N=X=;L:H=V=0: quadrupole;y¢0;

bending magnet;K3+K3#0; g==N=X=;1,=H=V=O:

In detail, one has:

5 ' ‘ B_,(0,0, 5) (2.23e)
1 e

(2.23d)e 338, pq · c 3::3 ::;:0
(2.23c)e 628, po - c 3:1:2 ::::0
(2.2sb)1.;. €€=;_?E 2 po · c Ox 6z ::::0

(2.23a)C . ?& po · c 6x ::::0

(h = harmonic number) with the following abbreviations4

P0‘€P0 · 6
(2.22b)Az Z H·z; —¥—A, = +H·:2:

1 2*rrL eV(s)

5%-(z‘—6x2z”+m‘

——§·(a:3—3zz2)

P0 · C
A, : [1+K,·z+K,-z]+§g·(z2—:c2)+N·2:z

be written as [4, 5]:
_quadrupolcs, sextupoles, octupoless, solenoids and cavities. Then the vector potential A can

We assume that besides drift lengths the ring contains bending magnets, qua.drup01es,skew
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average energy uptake in the cavities average energy loss due to radiation

· ds · eV(.s) - sin <p = 2 2 ds · Eg ~ C1 · [Kg + KZ] . (2.27)[ lo

radiated in the bending magnets. Thus:
case, the cavity phase gp in (2.22a) and (2.24) is determined by the need to replace the energy
(for vu z c) in order to describe the energy loss by radiation in the bending magnets In this

where C1 : ezj4 gi)

(2.26)'H,.,,,; = C1 · + K3] · a·

Hamiltonian

2) Equation (2.24) is valid only for protons. For electrons we need the extra term in the

equations of motion for constant energy Eg in the absence of cavities and correction coils
These relations may be obtained using the fact that the design orbit is a solution of the

P0 ‘ 6
(2.25b)B;*"*(.·») Z +K,(8)

Po · C
(2.25a)B;(.s) : -1<,(3) ;8 °"d

is determined by:

(°‘”‘°g(¤) = (B£"'”‘°($),B£°""°(¤)» 0)

bending field
1) If the curvatures K, and K, of the design orbit appearing in (2.24) are given, the magnetic

Remarks:

(2.24)
L V1 2 B;·§lTZ~E-E@—cos[h·%·0‘+<p] 0 ‘ 0

1+-;,- · (z4 — 632 z2+ 2:4)
+-3 · (2:3 — 3:cz2)

+;:—·[1+K,,-2:-}-K,-z]2——§·g·(z2—:c2)——N·2:z

(1 + #5)*
1-— [px+H_z]2+[pz_H_x]2@1/2

H(x7p$7z7PZ7U7PU;3) : Pc ` (1 +72) ’ [1 'l' Ka: ’ 77 + K: ` zl X

Thus the Hamiltonian (2.15) takes the form:
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Pv`l1`l'K='x+Kz'zl'f(p¤)+

ll + f(Pv
1 [p,+H·z]2+[p,—H-xlz #H : T . ._..._._..._.._..

whence:

in (2:, z, ri, (p, + H- z) and (pz -— H· az) ) and thirdly the denominator (1 + v})2 is retained,
of the resulting terms in the numerator only those are considered which are up to quadratic
only terms of (2.29) up to quadratic in (p, + H- z) and (p, — H- :1:) will be kept, secondly

The second term on the r.h.s. of the Hamiltonian (2.24) is approximated as follows: firstly

motion.

The power at which the series is truncated defines the order of the approximation to the particle

(1 + #7)
(2.29). 2 - . 2 1_1.[p,+H z] H az]

(1 + 11)
[pz+H_z]2+[pz __ H_x]z'Il/2 1 `

in (2.24) may be expanded in a series:

(1 + W
1_ [pz+H·z]”+[p. —H·=¤l”]`/2

the square root

p, — H - xl < 1

pz + H · zl < 1 ;

Since

2.4 Series Expansion of the Hamiltonian

ga = 1r below "transition"

cp = 0 above "transition" ;

and the choice for cp is determined by the stability condition for synchrotron motion:

sin<,0 = 0 => 50 = 0, vr (2.28)

energy gain in the cavities so that:
For those proton storage rings where radiation effects can be neglected there is no average

the equation of motion.
average due to stochastic radiation effects and damping introduce non—symplectic terms into

Note that the 71,,,,; term only accounts for the average energy loss. Deviations from this
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ds Gp,

3 2 (2.31d)+A - scz — Q · (z— 32:z);

·H—[K3—g]·z+N·a:+K,·f(p,,)

62$"=

u + f(1>»)]
C (ml )

p, —— H- x

ds Op,

22··3 "···2 (2.31b)g·(a:—z)—%·(

·H·[KZ+y]·¤+N·z+ Ks·f(1>s)

82:Zz§"·

u + moi
at (231 )

pz + H · Z

ds Bp,

6'H

The Hamiltonian (2.30) now leads to the canonical equations of motion:

2.5 Equations of Motion

Constant terms in the Hamiltonian with no inHuence on the motion have been dropped.
its derivative f’(1>,) E % are given in Appendix C by eqns. (C.6) and (C.9) respectively.
We have replaced 1} by f(p,) to stress its dependence on p,. The power series of f(p,) and

2_3g ( )1 L eV(.s) 21:* 1 .. . ..... . _... . . .. . pgzw-1. E., °°S{h L ”+“°

(2:3 — Bzzz) + —£—· (z4 —— Gzzzz + m4} +

[K3+a1·¤=’+§[KZ—y}·¤2-N·=¤¤+
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(see eqns. (2.31a), (2.31c) and (2.14)

(2.32c) OCR Outputn(¤) = B3 -1>~(¤)

and

u + x<p,>1
(2.32b), pz — H · =v Z 8 :—` T·**‘*— ( )

ll + .f(Pv
(2.32a)__ P3 + H · Z

z’(.s), and 1y(s) by the relations:
If the variables (x, pz, z, pz, 0, p,) at position s are known, one obtains the terms z’(s),

Remark:

SyI1ChIOtIOD, mOtiOH BIC 3lW3.yS I1OH].iI1C3I.
oscillations. Equations (2.31f) relates to energy conservation. Note that eqns. (2.31e,f) for

In (2.31) the Hrst four equations describe betatron motion and the last two synchrotron

.Sin;,..,,+( (2.31f)é.?%?[%p]

60Z;P¤

(MIC)§‘[(=v’)” + (Z')°] · f'(P·») $

1—[1+K,·=¤+K.·¤l·f’(pa)

[1 + f(1>a)}
_Mpc)

1 {1>»+H·Z}2+[1>=—H·¢}2,
1·[1+Kz·¢+K»·Zl·f’(p¤)
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E Pa (3.1f)

(3-ls)é‘ l(==’)’ + (z’)”l · f’(1¤») s
ds

1 - f'(1>¤) — [K: · == + KZ · Z] · AS · 6(S — S0)-f’<1>»)

E P; [K,(s0)]°· As- 6(s — $0) · z + K,(s0) · As - 6(.s — 80) · f(p,); (3.1d)

ds 0 + r<p.>1
““°)

zi; Pa [K,(s0)]2 · As- 6(s - su) - z .0 K,(s(,) - As - 6(s - sc) · f(p,,) ; (3.1b)

ds 0 + r<p.>1
(3**

whereby As denotes the length of the bending magnet we obtain from (2.31):

K,,,(s) = K,,,(s0) - As · 6(.s — 30) ,

and assuming K¤,z(8) to be taken in the form (thin—1ens approximation):

KZ,z(—·>) = K»,.(—¤¤)·K:,z(—¤)

Writing for a. bending magnet at position so:

g: N:/\:;i:H:V==0

and

Kj+K§ qé 0; K,-K. : 0

For a bending magnet we have:

3.1.1 Canonical Equations of Motion

3.1 Bending Magnet

all cases using the Jacobian matrix.
and for cavities using the thin—1cus approximation. The symplecticity condition is checked in

The canonical equations of motion (2.31) shall now bc solvcd for various kinds of magnets
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°Note that the factors in (3.1b, d, c) which multiply the 6-function are continuous functions of s at so.

Gp62:* 3;* Bp.}6z>§ 30*
3Pgap!6p} Gp; 6p! GP}

32:* Gzi BP2 60** 6p%
Bcf 8,,: 6,: 60** Gai Bwf
6:0:* ap 6zi 6p} 60* 61%

<9<¤·. p;. zz p;. ¤·. P;) 6p8p! Bp; aplfGp! Gp}
_J : —"""’

6::* azi Gp} ap;30*@(=¤’,1>£.¤’°,1>Z,<r’°.1>})
Gzf 6zr Gzf GZ?by 5;
6:::* agi 30*

6146p! Gp; 61;:: P5@14
Bp6x* Gzi Gp! 3*):80*

Gzf 83} 83} Ga: f 8a:f32: f

The Jacobian matrix resulting from eqn. (3.2) reads as:

3.1.3 Jacobian Matrix and Symplecticity Condition

(y Z xspxszvpzaaspv)

y' 5 y(¤¤+0);
y’ 5 y(s¤-0);

with

PJ PQ (3.2f)

(3.2e)<’l‘lK=‘¤*+K=‘Zl·A8·f'(P.;)5

PZ (3.2d)P2 ·· lK.(—·>¤>1‘·A¤—z‘+ K.(3¤)-A8-f(1¤$) ;

(3.2c)

(3.2b)P1 · [K»(¤¤)]’· As - ¤‘ + K.(¤¤)-A.-f<1>§) ;

(3.2a)

leading to

0 < e -4 0

with

so — c to so + E

Equations (3.1) can bc solved by integrating both sides from

3.1.2 Solution of the Equations of Motion
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ds
p, = —g(s0)- As- 5(s — so) · :1:; (3.5b)

ds {1 + f(1>¤)}
. (3 5a)pl I Z *1;

Then we obtain from (2.31):

y(¤) = y(30) · A8 · 6(S ~ S0)

Using thin—lens approndmation we write for a quadrupole of length As at position so:

and

y ¢ 0

For a. quadrupole we have:

3.2.1 Canonical Equations of Motion

3.2 Quadrupole

described by (3.2a—f) is indeed symplectic (see Appendix A).

0* ..» af

Equation (3.4) proves that the transformation

(3-4)lim..1'§‘.~Z.sm4 I 5 ·

Using eqn. (2.12) it can be verified that Jbmd obeys the symplecticity condition

+K,($0> - As — Hp;)

Q: (3%)+z<,0».,>» A3 - r<p;> ;

[K, . z + K, · Z] · As · f"(1>;)s

with

0 1

-Qz 0—Qx 0
,..L .0 ·A·¤ 1 0 +Q,0 - r1<r.g>1’ (3.3a.)

0 0

0 o 0 +Q.,[1<,(..,)]*- A8 1
0 0
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i;w_§.g_qm : §_. (3.8)

From eqn. (3.7) it can be verified that _,_]_qm obeys the symplecticity condition

0 0 0

0

0 0
(3.7)

0 0 1 0

g<s.).A8 1 0 0

1 0 0 0

.7 _ _`°““ " 6 1 (z’pgzf" af r
The Jacobian matrix resulting from eqn. (3.6) takes the form:

3.2.3 Jacobian Matrix and Symplecticity Condition

(3.6f)

(3.6e)

Pi P; +g(s¤) · A.s~z‘; (3.6d)

(3.6c)

Pl ··y(¤¤) · As-my (3.6b)

(3.6a,)

The solution of cqu. (3.5) reads as:

3.2.2 Solution of the Equations of Motion

5 P6 (3.5f)

ds
(3-5e)f’(1>») - · [(¤=’)” + (¤’)”} · f’(1>~) ;

g PZ +g(8q) · As · 6(.s —- so) · z; (3.5d)

ds u + 1<p.,>1
“"‘5°’
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synchrotron magnets.
order terms in the Hamiltonian (2.24). This terms are considered small and are omitted in the treatment of

Note that due to the condition (3.9) cross—terms of g and KL, exist that lead to sextupole and higher

G1 Z [(:+93 G2 Z K;‘9·

with

E; Pa (3.10f)

(3.10c)§·[(¢')2 + (Z')2] · f'(P¤) ;

ds
1 — f'(p,) — [K, - z + K, · z] · As · 6(s — so) · f/(pt,)

:1; Pe (3.10d)G2(s0) · A.s· 6(s — so) - z + K,(.s0) — As - 6(.s — so) · f(p,) ;

ds i1+ f(Pv)]
(3.10c)&- ..

E; Pe (3.10b)G1(s0) · As · 6(s — sq) · z + K,(s0) - As · 6(.s —— so) · f(p,);

ds [1 + f(z>¤)}
(3.10a)

Pe

we obtain hom (2.31):

a(8) = y(¤¤)·A~·¤·6(¤—80)

K,,,,(s) = K,_,(.s,,) · A.; - 6(.s — so) ;

and assuming K,,z(s) and g(s) to be taken in the form (thin—1e11s appr0xima.ti0n):

Kf,.(¤) = K:.»(¤¤)·K:.»(5)

Writing:

N: /\:p:-·H:V:0.

and

(3.9)9 ye 0;1<3+K§¢ 0 with K,-K, : 0

For a synchrotron magnet ° we have:

3.3.1 Canonical Equations of Motion

3.3 Synchr0tr0r1—Magnet
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i€W.§.__Zm Z g (3.14)

Using eqn. (3.13) it can be verified that J nm obeys the symplccticity condition

= +K.(s¤)-A·¢·f'(PJ)

= +K.(¤¤)·A8·f'(P.Z)% (3.13b)
Z ‘[Kz ...+K,·z]·As·f"(P$>;

with

0 0 0 0 1

0 —Q. 0
0 —G2(s0) · As 1 0 +Q,

(3.13a)
0 1 0 0 0

1 0 0G1(.s0) · As 0 +Q,

0 0 0 0 0

<?(¤=‘. P;. Z', P;. 6*. P;)
J :_"’"

6(=¤’.pLz’.1>;°.¢r’.1>.f)

The Jacobian matrix resulting from eqn. (3.12) reads as:

3.3.3 Jacobian Matrix and Symplecticity Condition

P.}PJ (3.12f)

¤’—[K»·¤+K.·z]·A¤·f’(1>.£)s (3.12e)

P2 p; — G2(.s0) · As- z` —|— K,(.s0) · As · ; (3.12d)

(3.12c)

PQ — G1(·90) ‘ A8 ·¢° + K¤(s0) · As · ; (3.12b)

(3.12a)

leading to :

0 < 6 -—> 0

with

so —— e to so + e

Equations (3.10) ca.11 be solved by integrating both sides from

3.3.2 Solution of the Equations of Motion
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pé . (3.16f)

cr` z (3.16e)

p; + N(.s0) · As · :1:* ; (3.16d)

(3.16c)

p; + N(s0) · As · z` ; (3.16b)

x` : (3.16a)

The solution of eqn. (3.15) reads as:

3.4.2 Solution of the Equations of Motion

g PU (3.15f)

ds
(3.15e)f’(1>a) - · [<¤=’)’ + (¤’)2] · f’(1>¤) ;

5 P; ~6(s—.s0)·2:;N(.s0) · As (3.15d)

ds [1 + f(p.,)}
(3.15c)

5 P: ·6(s—.s0)·z;N(s0) · As (3.15b)

ds [1+ f(p¤)]
(3.15a.)

Then we obtain from (2.31):

N(s) = N(s0) · As · 6(.s — so)

Using thjn—lc11s approximation we write:

K, : K,=g=A:p=H=V=0.

and

N ¢ 0

For a skew quadrupole we have:

3.4.1 Canonical Equations of Motion

3.4 Skew Quadrupole
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E P. (3.19f)

di
(3-19¢)1 — f’(1>¤) — % · [(=¤’)" + (¤’)’l · f’(z>¤) a

EQ P. + »\(s¤) · As · 6`(8 — $0) · 23 z; (3.19d)

ds [1 + f(1>¤)]
‘3·“’°)

E P. (3.19b)»\(s0)· As- 6(s — 80) · {172 —- zz] ;

ds 11 + f(p¤)1
(319**)

Then we obtain from (2.31):

X(s) : Msg) - As- 6(s — sg)

Using thin—1ens approximation we write for a sextupole of length As at position so:

K, = K,:g=N=;z:H=V==0.

and

A yé 0

For a. sextupole we have:

3.5.1 Canonical Equations of Motion

3.5 Sextupole

@.18).1£;,.·5.·.1..,. = £

From eqn. (3.17) it can be verified that J md ebeys the sympleetieity condition

0 0 0 0

0 0 0 0

N(s0) · As 0 0 1
(3.17)

0 0 1 0

0 1 N(s0) · As 0

1 0 0 0

@(=¤‘» P;. Z5 pi, J2 P3)
i‘“"

@(¤=’°,1>j. z’.pZ, ¤".p.f)

The Jacobian matrix resulting from eqn. (3.16) takes the form:

3.4.3 Jacobian Matrix and Symplecticity Condition
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u vt 0

For an octupole we have:

3.6.1 Canonical Equations of Motion

3.6 Octupole

ifczt l 5 I iaext : 5

From eqn. (3.21) it can be verified that Q an obeys the symplecticity condition

U U 0 0

O O 0 0

+/\(s0)· As- z‘ 0 +X(s0) · As- z' 1
(3.21)

0 0 1 0

A(s0) - As- z' 1 +A(s0) · As- z' O

1 0 0 0

L"“‘ 6’(=v‘.p§. ¤‘.1>§.¤‘.p$)
<9(=v’.1>3`. ¤’.z>,’. ¤’.1¤.}°)

The Jacobian matrix resulting from eqn. (3.20) takes the form:

3.5.3 Jacobian Matrix and Symplecticity Condition

(see also Refs. [4,

(3.20f)

(3.20e)

P2 pg + A(s0) · As · z’z°; (3.20d)

(3.20c)

(3.20b)P1- §*(8¤) · A3 · [(=¤‘)” - (¤‘)’] s

(3.20a)

The solution of eqn. (3.19) reads as:

3.5.2 Solution of the Equations of Motion
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ds [1 + f(p,)]
(3.28c)

P= " H(·90) · As- 6(.s- 50).1,

[1 + f(1>.)]zig Ps ‘H($¤>‘ A5 · 6(S — su) ; (3.28b)

ds [1 + f(p,,)]
(3.28a)

we obtain from (2.31) the equations of motion for a solenoid in the form:

H(.s) : H(s0) · As · 6(.s — so) (3.27b)

and assuming H (s) to be taken in the form (thin-lens approximation):

(3.27a)[H(.s)]2 : H(s0) · H(.s)

Writing:

K, = K,:g=N:A=p=V=0.

and

H yé 0

For a solenoid we have:

3.7.1 Canonical Equations of Motion

3.7 Solenoid

(3-26)lid · 5 · lm = 5

From eqn. (3.25) it can be verified that im obeys the symplecticity condition

[(=¤‘)’ - (¤‘)’} 1+,u(.s0)-A.s·2:‘zi 0 +A,?2·A.s·
. (3.25)

As- z' z' 02 ·A¤· {(¤=‘)’ - (¤‘)”] 1 +u(¤¤)·__u§~¤)

3(x,) pg) Z`) pg) ati
J : tact

<9(=¤’.p£. ¤’,1>.’»¤’»PJ)

The Jacobian matrix resulting from eqn. (3.24) takes the form:

OCR Output3.6.3 Jacobian Matrix and Symplecticity Condition
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Bp,

GF3

+[p,_· cosG) —p, · sin®];
85:

BF3

+[5:·cos(·)+ 2·sin®];
Op,

GF3

which leads to:

(s) : · d.§·H(§) (3.31)

with

F3 = —[:i:·cos®+ 2·sin()] ·p, — [—i: · sin®+ 2·cosG·)] ·p, — 6-32,, (3.30)

using the generating function:

(*,19:, 2,16., 6,1%)

In order to simplify eqn. (3.28) we introduce a new set of canonical variables

can be seen from (3.28a, c).
since the factors :v(.s) and z(.s) of the 6—functio11 in (3.28b) and (3.28d) are not continuous, as

0 < e -——> 0

with

so -— 6 to so + e

In this form cqns. (3.28) cannot bc solved by integrating both sides from

(scc cqu. (2.31)

[1 + f(p¤)]
(3.29)HM Z %_[P¤+H·Z]2+[p,-H·x]2

resulting from the Hamiltonian

Ei; pv (3.28f)

ds
(3.28e)1 ‘ f'(P¤) · E · [(==’)’ + (z’)’] · f'(p,) s

@ "= (2.28d)[pz + H($()) · Z · HW) · A3 · 6(S - so) s
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pi = I3; ; (3-36b)

121 : 5;* (3.36a)

we furthermore obtain from (3.32):

$1 : 80 — 0

Choosing in eqn. (3.31) the lower limit of integration 3] as

Pé· (3.250

6* _ _ [H(80)]2 , As .g + ;

P2 (3.354)· [H(¤¤>}‘· As;°* [1 +;(@

(3.35c)

[1
(3.35b)'lH(·’0)lz‘A$ Q5

(3.35a)

leading to :

0 < E ·-·> U

with

so — e to so + c

Equations (3.34) can now bc solvcd by integrating both sides from

3.7.2 Solution of the Equations of Motion

(3.34f)

ds aa
——P" `

d ‘ 3HS0{

OCR OutputOCR Outputx+ + [H(s0)]2 . A.; . 6(.s — so). i+ 22} ; (3.34c)[z ]g
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chapter on magnet elements in the thi11—lens approximation.
cannot ignore the length in this case. The treatment of the long drift element concludes our
is equal to the sum of the drift spaces which are in between the various kicks. Of course we

Up to now all elements have been kicks of zero length. The actual length of the machine

3.9 Drift Space

lid'!} ' 5* · LGI) Z §•

From eqn. (3.45) it can be verified that law obeys the symplecticity condition

14/JO

·A.s · cos h- · a' + 30Q ; h...T.E. (3.46)l[211*.] LL21r 1 €V(80)

with

(3.45)

3(xn P;7 zi? P;) Ji)
.1... =

6(zf7 pg? Z}? Pzf7 af?

The Jacobian matrix resulting from eqn. (3.44) takes the form:

3.8.3 J ar abian Matrix and Symplecticity Condition

(see also Refs. [4,

(3.44f)P; [%+<p]+é·iifg)2·As·sinh··¤*

(3.44e)

P, ;PZ (3.44d)

(3.44c)

P.; ; (2..44%))

(3.44a)

The solution of eqn. (3.43) reads as:

OCR OutputOCR OutputOCR Output3.8.2 Solution of the Equations of Motion
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pl; (3.49f)

.2 [1+ Rpm
_ C (3 49 )as _ I { _ (P;)2+ (Pi)? I s _ _ +i1 f(P..) ; f(P)i U

P2 pé ; (3.49d)

C (3.49 )a Pi _ z + · l ,

P; 2 (3-4%)

ai )s PQ _ I + * I ,

The solution of eqn. (3.48) reads as:

3.9.2 Solution of the Equations of Motion

between the point—Iike lenses.
These (n011]inea.r) differential equations describe the motion of the particles in the space

Eg Pa (3.48f)

ds
(3.4ac)I _f(1>.) 2 [1+f(pa)]2}_ z¤Z+pZ _ , _ f (pc).

g PZ (3.48d)

ds u + f<p,>1
(3·‘*8°)

E P: (3.48b)

ds u + ¢<p,>1
(3·‘*8a>

Then wc obtain from (2.31):

K, = K,=g=N=A=p=H=V=0.

For a drift space we have:

3.9.1 Canonical Equations of Motion
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easily be added.
SIXTRACK using this formalism. One exception is the solenoid element which can, however,

Almost all these elements including higher order kicks up to 10th order are available in
energy.

The equations derived are valid for arbitrary particle velocity, i.e. below and above transition

matrix.

We have checked in each case the symplecticity condition with the help of the Jacobian
strength.
cavities by using symplectic kicks, taking into account the energy dependence of the focusing
quadrupoles, synchrotron magnets, skew quadrupoles, sextupoles, octupoles, solenoids) and for
of the fully the six-dimensional formalism for various kinds of magnets (bending magnets,

OCR OutputWe have shown how to solve the nonlinear canonical equations of motion in the framework
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H = ((H¢r·))·

with

i’(¤,s¤) = .5l-E-i(¤,s¤) (A-6)

or that

6yr(¤)<?y¤(¤)
Haz Z HW; 8) (A.5)

with

2 Sin -+1,., · ,1,, (A.4)

nil

.m(·¤,-¢¤) · Sm · %(z7; 5)

2 {Sin ~ 3>l
ds

$»(¤, So) = yi<5>gyjsc) ;
Then it follows that:

6y:.(¤¤)
J Z <<.m>> ; .zk(.—,8.,> <A.3>

6 a y (8)

We now introduce the Jacobian matrix:

E (¤=,1>s, z,1¤z,<¢,p¤)

gT : (y11y2sy31y4>y51y6)

with the notation

ds8%
A.2 ( )g Z S; · LH A; y ¥». (y 3)

OI ill COmpOI1CDt fOIm. 3.SZ

$3/ Z 5* %. HW; 5) (AJ)

The canonical equations of motion can be written as

Appendix A: The Symplecticity Condition



37 OCR Output

can be written in canonical form.

Theorem II: The symplecticity of the Jacobian matrix implies that the equations of motion

We now show that the converse of theorem I is also true.

the Jacobian matrices.

Theorem I: The canonical structure of the equations of motion implies the symplecticity of

We thus have proved:

representing the “symplecticity—condition” for the (linear) transfer matrix M_(s, so).

(A.10)_1ir(s,s0)·§_·__1\i(.s, so) = Q

In this case eqn. (A.8) reads as

i(s, su) = M(s, so) . (A.9)

If the Hamiltonian is quadratic in yi, (i = 1, · - -6), one has according to (A.3):

(see also Ref.

(A.8)

_¤Z_T(30s 80) ' 5 ' g_(30s $0)

const..~ZT(~¢, So) · 5 · i(¤, em)

From (A.7) we obtain:

H .

—L;

-5;

whcrc wc have used the relations

(A.7)

·.~Z($» so) — i“`(—·¤, so) · H · ih, so)J.!-(Sv $0) `

.. ·§·i+iT(5,—¤¤)·§°·E‘i'HT.ST

-*-Z1·(·’» 80) ‘ zi ‘£(·’¤ 80)} : {§·2·.£.·i(¤,s¤)}T - §·i+iT(~w¤) ·£· {£·E·.·Z(¤»—*¤)}gg {

Thus we have:
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¢.k:1
8ye(¤0) Bw: ($0)

Z 5,,.
8f[§(¤)} 8q[§(¤)]

8a(a0) 8v(s0)
6f[sY(¤)]i5RQ` 6q[z7(¤)] <?f[9‘(¤)] _ <9q[s7(·#)]] 8Pv(·’0) OCR Output

8Z($g) 8Z($0)
6f[s7¤)] 6q§¤[(8Pz(·’0) 8q[1?(¤)] 0f[z7(¤)] [()]] BP: (·’0)

8z(s0) 8x(s0){f[s7(¤)], q[z7(¤)11;(..,) [66P=(’0)f[§(¤)] 6q[§(¤)l <9f(s7(¤)] <9q[z7(·)]"?¢H35i
arte Poisson-bmkm rm ew., sibnmy {ummm ;[g(8)], g[g(,)] me dcaued by:

1y,,<,>, y,.<»>1a.D, = st, - ·

Taking into account this relationship we obtain for the Poisson—brackets 8 :

J§.J“ = 5, (A-13)

OI

i§·_,ZT.~‘i_,Z·_,Z“1§T = li-5 ·!.`§1T

From eqn. (A.11) we get:

Proof:

(q1,pi, ‘12,P2» qs, pz)

27 I E (¤¤,1>q,z,1>z,¤,1>¤)

with thc notation

ds Pk = ——%7·( (A.12b)

Z qu. = + gl; H ; (A.12a)

in the canonical form:
Proposition : There is a function H(q;, pi; s) so that the equations of motion can be written

·i(¤,¤¤) = .61 (A.11)ii (31 $0) ' 5.

satisfies the symplccticity condition

83/k(50)
$k(—·¤, So)

61/¢($)
2 (($¤·)) ;

Suppositions The Jacobian matrix _7(s, so) with
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which proves the canonical structure of the equations of motion (see also Ref.

W = f(q) — G(<1,1¤) (A-21) OCR Output

with a single function

8pi
A.20b ( )i' : —— L q (8) H

(A.20a)pi’(s) = + EQH ;

we may finally write:

<1£(-S) = —$7 [f(<1)— G(<1» P)l

Since eqn. (A.18b) can be replaced by

—;—— G Gm lflq) (<1»1>)]

1>£(¤) = 5*; [f(<1) + y(z>) · G(<1,1¤)]

OCR OutputThus in eqn. (A.18a) we can express F in terms of G:
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used in SIXTRACK.

of the bucket half—height has been considered. Note that the full nonlinear equation (3.44f) is
models have exactly the same sequence of errors and a momentum deviation of about two thirds
applied, only one random seed has been tested, special care has been taken to ensure that both
the detuning due to the sextupole and decapole components of the dipole field have not been
resulting from dipole kicks have been ignored, for simplicity the correction schemes to correct
the chromaticity correction. The lattices include the interaction zones properly, closed orbit
of dipole multipolar errors (with standard values [10] of up to order 9) and 384 sextupoles for

As an example we have chosen a model of the LHC lattice (version 2) which has 1280 sets
rough estimate of the loss in precision and the gain in tracking speed.
approximation we restrict ourselves to one relevant and complex example to obtain at least a
of the thin—lens approximation is more difficult to answer. As there is no direct proof or easy
aperture. The symplecticity has been proven in this report, however, the question of the quality
term behaviour as the thick lens version and that both versions give about the same dynamic

Of course it is also mandatory that the thin lens version allows to predict the same long—
without losing symplecticity.
today. This thin—lens formalism has therefore been welcome for speeding up tracking runs
of turns which may take months of CPU—time even on the most advanced computers available
enough. For these machines tracking runs are necessary which take single particles over millions
the planned new accelerators like the LHC, however, this performance may still not be good
when using the vectorized version (at present no faster code is known to the authors). For
fact SIXTRACK has been mostly used in this mode and runs at very high speed, in particular
elements (drifts, dipoles and quadrupoles) interleaved by thin non—linear (or linear) kicks. In

In most cases the accelerator structures to be studied are given as a sequence of thick lens
package SIXTRACK now has many users around the world.
maps ‘a la BERZ Due to its simplicity, user—friend1iness and a considerable post—processing
extensions have been added since then, such as for instance the production of differential algebra
has been extended to six dimensions in a symplectic manner in 1987. Many new features and

The single particle code SIXTRACK is based on A. Wrulich’s RACETRACK code [2] which
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thin lens LHC lattices (version 2).
Figure 1: Comparison of survial times and borders of the onset of chaotic motion for thick and

Amplitude [mm] at Bx = 100m

1.mE+O1

Thin Lens I Q Thick Lens Latt1ce
Chaotic Border;;;;_I g;1c

1.®E-om

1.00E+G

1.®E+D4

'*’Thin lens

“*‘“Thick Lens

1.005+%

(no detuning compensation)

Survival Plot for LHC Lattice Version 2

precision.

there seems to be no penalty to be payed, neither in terms of symplecticity nor in terms of
in tracking speed is relevant when CPU times of weeks or months are considered. Moreover
components of the dipole magnets) an accidental agreement seems unlikely. The gain of a third
is almost identical and the machine is very non—linear (e.g. chromaticity is dominated by the b3
behavior of a large and complex machine. We have tested only one case, but as the linear part

We conclude that the thin lens lattice ca.n reproduce with good precision the 1ong—term
6d linear and non—linear part respectively.
is 33% which is the maidmum that can expected from the ratio of calculation time between the
cases will probably become smaller for a finer stepsize of initial conditions. The gain in speed
numbers is very satisfactory and the difference of the borders of the onset of chaos for the two
chaotic motion in the full six-dimensional phase space. The agreement of the survival turn
lattice (40 twin irnjtial conditions each) are shown together with the border of the onset of

In Fig. 1 thc survival tum numbers (before reaching 105 turns) of the thick and thin lens
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70
(C.8)f(p¤ ; ) p0°T7__.p2i 2° "·;

1 1

leads to:

f(p.,) (0.7)fm) + r’(0)- pg + f"(0) · aw + `

A series expansion of f(p,)

(C-6)
2(1 + B3 ·P¤)_ (_2 &)

f(1>¤) E . _ ;q(1+n)" 7] _ Bo

as follows:

To stress that rj depends on the longitudinal canonical variable p, (see C.3) we define f(p,)

E0 B0 E0 P060
C.5) (A 1. TTLgC" l. p · C P 1+ : — 1+ 2——2:—·——=— ( *2) 1/( *2) ( )

P0 P0
(CA)— A 6: £_1:LE:_.£

The relative momentum deviation is:

Hg
6 ; "*‘ ' P n C.3 ( )

and

0* = s —— 1:0 · t (C.2)

The canonical coordinates of the longitudinal oscillations are:

= — n E0 C.] ( )
AE

The relative energy deviation is defined as:

p = m0·y ‘v = momentumE = m0’y cz = energy
7 = ——\/i—i$ vo = c,80 : design velocity

c : velocity of light B = \/1 —

mg = rest mass of the particlee = charge of the particle
s = longitudinal positiont : time

The following abbreviations have been used:

Appendix C: A Collection of Useful Formulae
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