Главная страница > Modeling Particle Stability Plots for Accelerator Optimization Using Adaptive Sampling |
Article | |
Title | Modeling Particle Stability Plots for Accelerator Optimization Using Adaptive Sampling |
Related title | MODELING PARTICLE STABILITY PLOTS FOR ACCELERATOR OPTIMIZATION USING ADAPTIVE SAMPLING |
Author(s) | Schenk, Michael (Ecole Polytechnique, Lausanne ; CERN) ; Coyle, Loic (CERN ; Ecole Polytechnique, Lausanne) ; Giovannozzi, Massimo (CERN) ; Krymova, Ekaterina (Ecole Polytechnique, Lausanne ; Zurich, ETH) ; Mereghetti, Alessio (CERN ; CNAO, Milan) ; Obozinski, Guillaume (Ecole Polytechnique, Lausanne ; Zurich, ETH) ; Pieloni, Tatiana (CERN ; Ecole Polytechnique, Lausanne) |
Publication | Geneva : JACoW, 2021 |
Number of pages | 4 |
In: | JACoW IPAC 2021 (2021) 1923-1926 |
In: | 12th International Particle Accelerator Conference (IPAC 2021), Online, 24 - 28 May 2021, pp.1923-1926 |
DOI | 10.18429/JACoW-IPAC2021-TUPAB216 (publication) |
Subject category | Accelerators and Storage Rings |
Abstract | One key aspect of accelerator optimization is to maximize the dynamic aperture (DA) of a ring. Given the number of adjustable parameters and the compute-intensity of DA simulations, this task can benefit significantly from efficient search algorithms of the available parameter space. We propose to gradually train and improve a surrogate model of the DA from SixTrack simulations while exploring the parameter space with adaptive sampling methods. Here we report on a first model of the particle stability plots using convolutional generative adversarial networks (GAN) trained on a subset of SixTrack numerical simulations for different ring configurations of the Large Hadron Collider at CERN. |
Copyright/License | publication: © 2021 (License: CC-BY-3.0) |