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Abstract

We use a coupled-channel quark-hadron model to provide a description of correlated two-
pion exchange. We consider the amplitudes for N + N-x+x and q + q— = + = for positive
t-channel energy, where two-pion production is a physical process. As is well known, when the
Mandelstam variable ¢ becomes spacelike, one can replace the two-pion exchange process by the
exchange of an effective low-mass scalar-isoscalar (sigma) meson. In the context of our
coupled-channel model, we show that that sigma meson is the chiral partner of the pion. This
identification proceeds via the bosonization of a generalized Nambu —Jona-Lasinio (NJL) model
which provides the basis for our coupled-channel model. In our analysis, we find that the linear
sigma model, that may be obtained by bosonization of the NJL model, is useful if the meson
momenta are spacelike. (That is the case in studies of nuclear structure and nucleon-nucleon
scattering made using boson-exchange models.) Although some aspects of our work are
qualitative, we believe our analysis provides an advance in our understanding of the physical
significance of correlated two-pion exchange and relates that description of the origin of the

intermediate-range nucleon-nucleon interaction to chiral symmetry.



I. Introduction

The origin of the scalar attraction in the intermediate-range nucleon-nucleon interaction
has been of interest for some time. For example, in the one-boson-exchange model of the
nucleon-nucleon interaction that potential arises from the exchange of a sigma meson of mass
m, = 550 MeV [1]. Since there is no such meson in the data tables, sigma exchange is
thought to approximate other effects. In a rather elegant body of work [2-5], that made use of
dispersion relations and our knowledge of the amplitude N + Nox+x (taken from the study
of = - N scattering), it was seen that the exchange of the sigma could be understood as
representing "correlated two-pion exchange”. (We will define that term in the following
discussion.) When obtaining an understanding of the origin of an (effective) sigma meson in this
manner, one does not have an understanding of the role of chiral symmetry in the nucleon-
nucleon force. For example, we may ask if the chiral partner of the pion plays an important
role in the nucleon-nucleon force. We may also ask for the relation of the (effective) sigma that
substitutes for correlated two-pion exchange and the chiral partner of the pion. This entire issue
is made more confusing by the fact that there is no physical low-mass sigma meson and,
therefore, the nonlinear sigma model is the model most extensively used in elementary particle
physics [6].

One may also note that the Nambu—Jona-Lasinio (NJL) model [7] yields a low-mass
sigma meson (m, = 2mq) upon bosonization [8]. In earlier work we have shown how to
extend the model to include confinement and how to take into account the coupling of the sigma
to the two-pion continuum. We have also shown how those features can eliminate the sigma as

a low-mass physical particle. However, we found that if the sigma momentum is spacelike, the
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sigma is a useful degree of freedom [9,10]. (We note that, for spacelike momentum, the sigma
is largely uncoupled from the two-pion continuum.)

In this work our goal is to use our coupled-channel quark-hadron model to understand
the nature of correlated two-pion exchange and to make the connection to chiral symmetry. Our
result will identify the (effective) sigma that simulates correlated two-pion exchange with the
chiral partner of the pion. In this fashion we obtain a unified point of view relating Dirac
phenomenology [11], QCD sum rules in matter [12] and the boson-exchange model of the
nucleon-nucleon force [1]. As we will see, our work clarifies the role of chiral symmetry in

various aspects of nuclear structure physics.

[I. Correlated Two-Pion Exchange in Pion-Nucleon Scattering

In order to define correlated two-pion exchange and fix the notation, we will closely
follow the recent work of Schiitz, Durso, Holinde, and Speth [13]. The variables are as shown

in Fig. 1. The T matrix is defined in terms of the S matrix:

4 172
Sq = 85 - i@D*6 (P, P)) [(2_1)3/2] [TE’_V ?] Qu, - 20,015 . @D
T

p “p

2 2
Here Ep = (p2+mN)”2 and wg = (q2 +m1)1/2, etc. Then, for the s-channel process,

x + N- 7 + N, the T matrix is written as

T.(p'.q;p,q) = u(p' , N)E W BTG, Hu@, NEW (@) 2.2)

where \ is a helicity index, while ¢ and { are isospin wave functions of the nucleon and pion,

respectively. One then writes



T, = TO6,0-TOs,nr-1 2.3)
where 7 and ¢ are the isospin matrices for the nucleon and pion, respectively. With

Q = 2(q+q'), we have

T (s, 7 = -[A H(s, 1) + QB(i)(S, [)] ) (2.9

In the ¢ channel (NK/ - 27) the amplitude T is

T(q',q';D0,p) = v(@, N)E W) ET@ TG, Hup, NEW @) , (2.5)

with p = -p’ and q' = -q. Here v is the Dirac spinor of an antinucleon, etc. [13].

The next step is to perform a partial-wave decomposition for A in the ¢ channel,

ADs, =¥ .;(21 s )P, 0AT @) (2.6)

with the same expression for B‘¥). Here P ;(x) is a Legendre function of x = cos 6,, where
8, is the scattering angle in the ¢ channel, which may be expressed in terms of s and ¢ [13]. One

defines

R A my +) 0 Q2.7
()= —|—4;, r—— |(J+1)B; [, +JB,_
7 o ks i My s [ 7+ 1 J 1]

and also an amplitude f_/ (©). Here p, = |p| and q, = | q| are defined in the c.m. system for

the s-channel process.

If we limit ourselves to consideration of f? (1), we have

£20 = =-pHa"0 2.8)
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Note that f_J:O(t) = (0 and that, in general, p% = 1/4 -m,%,.

One can write a dispersion relation for f?(t)/ @4 -m ,%,) and make use of the knowledge

of ImfJ(1). [See Fig. 2.] With a = 4m>(1 - m>/4m>), we have

20
2

/4 -my

dr' 1 lmff) )

U-t-ie fr 2
7 "N

|-

(2.9)

\ r-r-ie -
A ? N,
ks

The second term in Eq. (2.9) represents the contribution of correlated tWo—pion-exchange [13].

For that contribution alone, one defines f ?(t) and an amplitude

(+) -0
A" =-ZF0 (2.10)
p;
= Im £2¢")
=~ 16 [ dr’ ; 2.11)
2 ' -n(@ -4my)
4m1r

(See Eq. (30) of Ref. [13].)

We anticipate that A y)(t) can be written as

+ 28,,.G
A = - BexeZeww (2.12)

with g,, . and G,y of the same sign. (That sign choice follows from the structure of Eq.

(2.9), for example.) We may use a value for the sigma-nucleon coupling constant, G,NN>

obtained from the one boson-exchange model of the nucleon-nucleon interaction. The value
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given in Ref. [1] is about 9 or 10 for G,yy, if no explicit reference is made to the delta
(1232 MeV) resonance. The value of g, , may be obtained from the linear sigma model, if
the sigma is to be identified with the chiral partner of the pion. (We will return to this point
shortly.)

We note that the authors of Ref. [13] perform a subtraction so that the subtracted
amplitude, Aé")'(t), is zero at the Cheng-Dashen point [14]. If Eq. (2.10) is a correct

representation, we would define

AP0 = aPw -4 em}) , @.13)

- Zgarr GaNN t -2'"'; (2 14)
B 3 B ’ )
m>-2md  oml-r

which has the structure of Eq. (38) of Ref. [13]. We will not be concerned with the subtracted

form, since that can easily be obtained.

Returning to Eqgs. (2.11) and (2.12), we see that we can obtain a measure of the product

8sxx G,nN by comparing Eq. (2.11) and Eq. (2.12) forlarge -#. We have

{
Im £
8oxx UonN = -8 I dr — (2.15)

(' -4my)
4m3 N

where ¢, is the maximum value of ¢ considered (r, ~ 1 GeV?). If we useG yy ~ 385gq = 9
and g,y = m3/2f,, with m, = 0.50 GeV, we find that Eq. (2.15) is well satisfied indicating
that Fig. 1(b) provides a satisfactory model for the process N + N- 7+ . Here, the use of
8oxx = mg/ 2f, identifies the sigma meson as the chiral partner of the pion. This identification
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will be made more precise in the next section, where we study the amplitude for a quark and

an antiquark to go to two pions (¢ +g—= 7 + 7).

III. Coupled-Channel Quark-Hadron Models

We have developed coupled equations describing the scattering of a quark and antiquark,
with the coupling to the two-pion continuum included in the model [9,10]. For this purpose we
make use of the NJL model, generalized to include a description of confinement [15]. One form
of the coupled equations is shown in Fig. 3. There we define T matrices, ¢,,, Iy, and ¢,,.
Tﬁe first of these T matrices describes quark-antiquark scattering, the second describes pion-pion
scattering and the last is the amplitude to go from the gq channel to the two-pion channel. In
our work we did not aim to provide a good fit to elastic = - = scattering, nor did we attempt
to impose crossing symmetry on the amplitudes. We were mainly concerned with demonstrating
how the coupled-channel aspects of the problem affect the simple results obtained in the
bosonization of the NJL model at one-loop order [8]. (We do not solve the coupled equations
in their most general form, but limit ourselves to approximations Athat allow us to express the T
matrices in terms of two basic loop integrals.)

Some of our results are best understood by inspection of a series of diagrams. In Fig.

4(a) we show the basic quark-loop integral of the NJL model, for ¢ = P?,

- iIg(P?) = (- 1)ncnf[ d%k iS(PI2 + k) iS(- PI2 +K) | G3.1)

where n, = 3 and ne = 2 are the number of colors and flavors, respectively. Further, the

quark propagator 1s S(p) = (p-m g* i)', with m g being the constituent quark mass. As we
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have discussed in earlier work, it is possible to generalize the analysis to include a model of
confinement through the introduction of a linear potential vC. Upon summing a ladder of
interactions, the confining potential gives rise to a vertex shown as a cross-hatched area in Fig.
4(b). That vertex has the property of vanishing when both the quark and antiquark go on mass
shell [15]. If that vertex is included, we replace J S(Pz) by J S(Pz), where J S(PZ) is a real
function. That function is real, since our model of confinement serves to remove the qq cuts
that are unphysical aspects of the NJL model. Because of that feature, we are able to write
dispersion relations for various amplitudes. The dispersion relations involve discontinuities
acfoss only physical cuts that correspond to hadrons going on mass shell (16, 17]. The important
cut in our analysis appears for 1 = 4m3.

In Fig. 4(c) we define the function KS(PZ). There, the wavy lines are pions and
K S(Pz) has an imaginary part corresponding to the two pions going on mass shell. Cuts that
would arise when the quark and antiquark go on mass shell are eliminated in the function
K S(Pz) of Fig. 4(d) by including the vertex function of the confining potential. It is also useful
to define the function M(P?%) = - G_Z"RS(PZ). Values for the real and imaginary parts of
M(P?) are given in Fig. 5, which is taken from Ref. [9]. (Recall that ¢ = P? in this analysis.)

We have considered various approximations in the solution of the coupled equations. We
will refer to two of these models: model B[9] and model C[16]. Both of these models neglect
the box diagrams that have the structure indicated in Fig. 6(a). Model B differs from model C
in that we also neglect the diagram shown in Fig. 6(b) in model B.

The T matrix of model C is particularly simple in the scalar-isoscalar channel of the

quark and antiquark,



C GS

tig® = - . . (3.2)
1 -GglJs() +Ks(0)]

(We have now replaced P? by ¢ in accordance with the notation of Sec. II.) The T matrix of

model B is [9]

B Ggll + GgKs(0)]

tyg® = - - - (3.3)
1 - Ggll + GsKs()1J5()

The various diagrams summed by this T matrix are shown in Fig. 6(c). (Note the absence of
adjoining factors of K s(t).) The T matrices of Eqs. (3.2) and (3.3) do not represent the most
general T matrices one can construct. They are T matrices that may be expressed in terms of
Jg(t) and K(¢) only.

It is also useful to define
DC(@) = 1-GgJg(t) - GsKs(t) (3.4)

and

DB = 1-Gglg() - GiRs)Isr) (3.5)

which are the denominators of Eqgs. (3.2) and (3.3), respectively.

We recall that Im Ii’s(t) is nonzero for ¢ = 4m2

T

It is very important to see that the
approximation of neglecting the third term on the right-hand side of Eq. (3.4) or Eq. (3.5) is
good for + < 0. For example, at ¢+ = 0 we find D B0y = 1-0.63 -0.044, so that we see that

the last term is only a rather small correction. As r becomes increasingly negative, the third
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term becomes even smaller. [See Fig. 5.] Therefore, for 1 < 0 we will drop 135([), with the

result that for both of the T matrices given above, we have

G

[qq(t) = - _'—‘S;A_— ’ (3'6)
2

Bogd 3.7)

t -mf(t)

2

8044 , : (3.8)

t—m2

a
where g;.. = 8544(0) and m, = m (0). Equation (3.7) is an exact result of the momentum-
space bosonization scheme of Bernard, Osipov, and Meissner [8], while Eq. (3.8) is an
approximation valid if ¢ does not go over a large range. (These forms are to be used for
spacelike ¢, as specified above.)

To make contact with the work of the last section, we consider the amplitude
q+q —= m+ 7 in the scalar-isoscalar channel. The formalism describing the amplitude
NN — x + = in the last section may be used with my replaced by m,. However, because of
the model of confinement we have introduced, we may drop the factor (/4 - mj) that could
be used to relate f? (0 to Aé*)(t), since there are no cuts associated with the quark and the
antiquark going on mass shell.

Now consider the ¢ + ¢ - = + = amplitude shown in Fig. 7(a). In Fig. 7(b) we indicate

the diagrammatic expansion of that amplitude. We write
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L) = 1L OF@ (3.9)

where F(t) denotes the diagrammatic element shown in Fig. 7(c).
For + < 0 we can neglect K s(?) to a good approximation. We then have the series of

Fig. 8(a). An approximation to the process shown in Fig. 8(a) is shown in Fig. 8(b). Again,

if Ii’s(t) = 0, we have from Eq. (3.9)

GoF(t
@ = - —2 S) (3.10)
1-GgJs(

2 F
T 3.11)

- m?

Therefore, we can see that

8qqgF®) = 2850 s (3.12)

for small . Here, g,,, may be obtained from direct evaluation of F(t), or from the linear

sigma model, where

Corn = 7 , (3.13)

if the o coupling of the linear sigma model is written as

LX) = - gorn0(O)TX) + W) . (3.14)
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Now let us make contact with the formalism of correlated two-pion exchange. We have
considered correlated two-pion exchange in detail in a calculation of the scalar-isoscalar

correlation function,

iC(P?) = | a*xe'”" (0| T(@W qw ) 9(0) 10) (3.15)

in Ref. [9]. In the calculation of Im C(PZ) we took into account only the right-hand cut starting

at P2 =1 = 4m12,. We then obtained Re C(P?) via a dispersion relation,

. - '2 :
cPY = -iqpy -1 J Iz_mg%_L . (3.16)
T 2 Pc-P'“ +ie

am

In practice, the upper limit for the integral is about P? = 1 GeV?. [See Fig. 9.] We should
note that in Ref. [9] we wrote the dispersion relation of Eq. (3.16) without including J S(Pz).
Therefore, Re C(P2) obtained there via the dispersion relation should be properly defined to be
Re C(Pz) +J S(Pz). (See Fig. 9, where the caption has been corrected relative to the
corresponding figure in Ref. [9].)

The relation of tqq(t) to C(r) was discussed in a previous work [16]. ‘However, the
C() given in Ref. [16] was defined as the negative of the C(f) used here and in Ref. [9]. For
the sign convention of the current work, we have for t+ < 0, where we can neglect K s in a first

approximation,

Cty = -Js@ +Js(1,,0Is@) (3.17)

or
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)+ T )

‘ (3.18)
P

qu

The approximation relations given in Egs. (3.17) and (3.18) should not be used for ¢ > 0, or
where an accurate calculation is desired.

Again considering the region ¢ < 0, we saw that tqq(t) and C(r) were very well

approximated in a sigma-dominance model [9]. We have, if Re Ii’s(t) =0,

22 2
u Jo(t
o +Js) = —S(-—)—%%q—q <0, (3.19)
t-mg
(see Fig. 9) and we also have
gz
tqq(t) = """2 (3.20)
t-mg

to a good approximation. Thus, from Eq. (3.9) we see that, for 1 < 0,

2
L) = g"‘?"z Fry . (3.21)
t-m;
We may also define an amplitude
70\ _ m; B (3.22)
fq([) - _4—7|'th (t) s

so that, for r < 0,
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2 2
_4q gaqq F@) . (323)
ar ~m3

Fow = -

This amplitude is the analog of the amplitude f ? (¢) considered in Sec. II. (See Eq. (2.10).)
At this point we have reached our goal of demonstrating that the dynamics of correlated

two-pion exchange can be represented (for r < 0) by a sigma dominance model, where the

sigma is the chiral partner of the pion. That identification appears in the passage from Eqg.

(3.10) to Eq. (3.11), where we use the basic relation for the bosonization of the NJL model at

one-loop order [8].

IV. Calculation of J¢(s) and F(s).

We are interested in values of J s(#) and F(r) in both the spacelike and timelike regions
of t. For ¢t < 0, the inclusion of confinement leads to only a small difference between
Jg(r) and J s(t). Therefore, in the spacelike domain we can neglect confinement and calculate
J(?) and F(r) by going over to a Euclidean momentum space and making use of the Feynman
parametrization of the integrals. For r > 0, however, we work in Minkowski space and
incorporate the vertex functions of the confining field, ve [15].

Resuits obtained in this manner are shown in Figs. 10 and 11. In Fig. 10 we see a small
difference between J4(f) and Jg(r) at r = 0. That reflects the fact that J5(0), which is
calculated with the inclusion of the vertex functions of the confining potential, is slightly smaller
than J¢(0) calculated without the vertex function. The dashed curve gives the values of J¢(r)
for t > 0. (Use of that curve for + > 0 would lead to a physical sigma meson of mass
m, = (4m§ + m,%)”2 = 542 MeV [8].) We note that for the calculation for 1 < 0, we used
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a Euclidean momentum space cutoff of A = 1.0 GeV, while in Minkowski space we used a
cutoff on all three-momenta appearing in our integrals of A; = 0.702 GeV. (This difference
in the values of the cutoffs used in the two types of calculation is typical of other work in this
field.)

In Fig. 11 we exhibit values calculated for F(z). The solid line for ¢ < 4m3 is
calculated in Euclidean momentum space neglecting confinement, while for ¢ > 4mf we
include the effects of confinement.

Before going on to a discussion of the nucleon-nucleon interaction, in Fig. 12 we
illﬁstrate the sigma-dominance results obtained for the quark-quark scatteﬁng amplitude 7., the
pion production amplitude, Laxs and the correlation function C(¢) +J s(®. These various
representations are valid for r+ < 0. For completeness, we present values of tqq(t) andtq,(t)
in Figs. 13 and 14, respectively. There we make use of model B. [See Eq. 3.3).]

Inspection of Fig. 10 indicates that model B and C would have a scalar-isoscalar
resonance with m ~ 850 MeV for Gg = 7.91 GeV 2. While there is a scalar-isoscalar
resonance, the f;(975), in the data tables, it is thought that resonance may not be of
qq structure. (It has been suggested that the state at 975 MeV may be a multiquark state or a
state with KK structure.) Therefore, in Ref. [9] we used a G that was reduced somewhat for
the larger values of P2. That had the effect of moving the scalar-isoscalar resonance of the

model to energies higher than 1 GeV. Therefore, that resonance does not appear in the figures

representing C(?), tqq(t), tqr(t), etc.
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V. The Nucleon-Nucleon Interaction

Recently there have been a number of attempts to describe the nucleon-nucleon
interaction making use of various ideas concerning chiral symmetry [20-23]. However, it has
been pointed out that the advantages of using the boson-exchange model are such that one might
suspect that the implementation of chiral symmetry is not all that important for the description
of the nucleon-nucleon interaction [24].

In this work we take a somewhat intermediate position, stressing that chiral symmetry
is extremely important at the level of quarks. After bosonization of a model such as the NJL
mt;del, one finds the various mesons that play an important role in the bboson-exchange model.
The problem is then to specify how these mesons are coupled to the nucleon. In this program
the interpretation of correlated two-pion exchange is particularly important. For example, it is
necessary to counter the argument that the intermediate-range nucleon-nucleon attraction is due
correlated two-pion exchange and that the relation to chiral symmetry of such dynamics is either
absent or obscure [24]. Our point of view is that the boson-exchange model is satisfactory and
that the challenge is to relate that model to an underlying quark model that exhibits chiral
symmetry. For example, on the left-hand side of Fig. 15 we show the generic diagram used in
the discussions of correlated two-pion exchange. From our point of view that process is best
evaluated as in Fig. 15. In the second figure in (a) the black filled circle denotes the quark-
quark interaction of the NJL model. The third diagra‘m of (a) introduces the quark-quark
correlation function C(z). In Fig. 15(b) the correlation function is expressed in terms of
J () and a general quark-quark 7 matrix. In this work, rather than using a general form for

. ) C 2 : _ )
the T matrix, we use either thq(t) or 1, q(t). For r > 4m_, these T matrices exhibit a two-pion
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cut and describe correlated two-pion exchange. However, as we go to ¢ < 0, we may use
tqq(t) = - Gg/[1 - st s(] for either model, as discussed above. That leads immediately to
Fig. 15(c). The implication is that we may obtain a unified approach to correlated two-pion

exchange and to a boson-exchange picture based upon chiral symmetry at the quark level.

VI. Discussion

We have seen that correlated two-pion exchange may be represented by the exchange of
a "sigma meson", if ¢ is less than zero. However, our analysis shows that that low-mass scalar-
isc;scalar meson is the chiral partner of the pion. That is most readily séen in the bosonization

of the NJL model [8], where the relation

1-Gs)  t-mi@

6.1)

is valid. The amplitude g +q — 7 + 7 in the region of spacelike 7, where Re K s() may be
neglected, is then given by the diagrams of Fig. 6. On the other hand, in the region where ¢ is
timelike (¢ > 0) our model essentially reproduces the structures expected from the consideration
of correlated two-pion exchange. Our ability to span both the timelike and spacelike values of
t depends upon having a coupled-channel quark-hadron model of the type developed in Refs. [9]
and [10]. (In this discussion, it is important to keep in mind that the sigma meson does not
appear as a physical particle in our model.)

Recently, we have seen a number of works that use a microscopic model of correlated
two-pion exchange to study nucleon-nucleon scattering [26] and pion-nucleon scattering [27].

These models make use of a meson-exchange model of pion-pion scattering introduced earlier
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[28]. In Ref. [28], pion-pion scattering in the J = 0%, T = O channel is mainly governed by
t-channel rho exchange and effects of the coupling to the K K-channel. There is also a quite
small effect due to the f,(1400) which appears as a distant s-channel resonance. (These models
have been extended to include a description of 7-p scattering, so that correlated 7-p exchange
may be included in the description of the nucleon-nucleon force [29].) It may be seen in these
studies that, in the description of correlated two-pion exchange, the exchanged system has either
a gqqq structure or a qqqqqq structure. Therefore, the model of correlated two-pion
exchange in Refs. [26] and [27] is quite different than the one advocated in our work.

Support for our analysis comes from the study of QCD sum rulesb in matter [12,18]. In
that work one finds large (attractive) scalar-isoscalar and large (repulsive) vector-isovector
density-dependent components in the nucleon self-energy in matter. The nucleon mass in matter
is reduced significantly, the reduction being as large as 30-35 percent. That feature may be
understood by noting that the nucleon mass in matter is largely dependent upon the value of the
condensate < qq> ,» Where the subscript p denotes an evaluation of the matrix element at finite
matter density.

There exists a model-independent relation that relates the value of the condensate in

matter to the pion-nucleon sigma term oy. To first order in the density, we have

<qq>, = <qq>,

- ] , (6.2)

with gy = 45 + 8 MeV being the currently accepted value. In the simplest analysis, the ratio

of the nucleon mass in matter, 1y, to the mass in vacuum is then
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I [1- ‘;N"Z‘ . 6.3)
N Jemy
(See Ref. [19] for further discussion of these matters.)

The point we wish to stress is that the relevant order parameter is < qg> ,» Which does

not involve two-pion states. (Two-pion states would be represented by order parameters of

qq qq structure.) Further, the relation between the sigma field in matter and the condensate

<qq> , is obtained from a bosonization scheme. One may write

G - -
o= -3 [< qq>, - <qq>0] . (6.4)
gdqq

(Note that the total sigma field is oy = f, + ¢, where f, is the vacuum value.) Therefore, we
see that our analysis of correlated two-pion exchange is consistent with the QCD sum-rule
analysis, since, for spacelike values of ¢, the various amplitudes considered are dominated by

exchange of the sigma, a qq excitation that is the chiral partner of the pion.
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

(a)
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(b)

(©)

Figure Captions

The T matrix for = - N scattering in the s channel (#N — 7N) and for
pion production in the ¢ channel (N;l —27) is shown.

A r-channel exchange process defined forr < O and s > (m_+m N)2 is
shown. (The coupling of the sigma meson to the nucleon is taken as
GynN ~ 385qq — 9 [11. (It is possible to use a smaller value of
G,y if other sources of scalar-isoscalar attraction are treated explicitly.)
The N+ N7+ helicity amplitude, Im f?(t) , is shown. The values of
this amplitude were obtained in Ref. [25]. |

General form of coupled equations for the T matrices

gq> lgx and L.

(See Ref. [16].)

The form of the kernals, qu and k used in this work is shown.

g
The interaction &, is shown to be composed of the Born term of the NJL
model (black dot) and a confining field ve.

The basic quark-loop integral of the NJL model is shown. In the notation
of this work we have P% = r. [See Eq. (3.1).]

The function J S(Pz) is defined by introducing a vertex (cross-hatched
area) for the confining interaction VC. See Ref. [15] for a detailed

discussion of the construction of such vertex functions.

The function K(P?) is defined by the diagram shown. (See Ref. [9].)
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Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

(d)

()

(©

(@)
®)

©)

The function K S(Pz) is defined by including a vertex function for the
confining interaction (cross-hatched region). (See Ref. [15].)

The function Re M(Pz) is shown as a solid line. The dashed line is
Im M(Pz). Note that M(Pz) = - G_%IE’S(PZ). (This figure is taken from
Ref. [9].)

Some box-diagrams and s-channel meson exchange interactions neglected
in our solution of the coupled quark-hadron equations are shown.

A diagrammatic element that appears in model C but is absent in model
B. [See Egs. (3.2) and (3.3).] |

Some of the diagrams summed to obtain the qq T matrix of model C.
[See Eq. (3.2).] The black dots denote the basic interaction of the NJL
model.

The T matrix ¢, for the process g +q—>m + 7 is shown.

The T matrix for the process q + ¢— 7 + 7 in the ¢ channel with J = 0
and T =0 is shown in a schematic fashion. By expanding the
denominator, DB(t), the various diagrams shown are generated. [See
Eqs. (3.5) and (3.9).]

Basic diagrammatic element that connects the gq states to the two-pion
continuum. [See (b) above.]

The diagrammatic series of Fig. 7(b) is shown for ¢ < 0, where

ks(t) may be neglected.
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Fig. 9.

Fig. 10.

Fig. 11.

(b)

In the pseudophysical region of the ¢ channel (¢ < 0) the diagrammatic
series shown in (a) can be replaced by diagram shown. Here the coupling
of the sigma meson to the quark is g,... In this work we use

8sqq = 3.05.

The imaginary part of the correlator C(¢) is shown as a dashed line. The
calculation is made using model B and is described in Ref. [9]. The solid
line represents Re C(¢) +J s(t) and is obtained via a dispersion relation.
The dotted line denotes a sigma-dominance approximation with

3). Here a =0.0511 Gev* and

() +f5(t = a?'/(t2 -m
m, = 0.540 GeV. The dotted line provides a good fit to the solid line
over a broad range of ¢+ < 0.

The dashed line and the solid line for ¢+ < O denote the values of
J (1) calculated in a Euclidean momentum space with A = 1.0 GeV.
The solid line for + > 0 represents the result of a calculation of J s(D.
A three-dimensional cutoff of A; = 0.702 GeV is used for all the
momentum vectors in the integral. Here we use m g = 262 MeV and the
model of confinement described in Ref. [15]. Note that the inclusion of
the confinement vertex functions hardly affects the result for r < 0.
The figure exhibits the value of F(¢)/12 for both spacelike and timelike
values of z. Here 12 = 2n n, is a statistical factor. For ¢ < 4m3 the

solid curve represents a calculation made in Euclidean space. For

r > 4mq2, the solid line denotes the resuit of a Minkowski-space
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Fig. 12.

Fig. 13.

(@)

®)

©

calculation including a vertex function of the confining field. We use
m, = 262 MeV, 8xgqg = 3-05 and the same cutoffs as given in the
caption of Fig. 10. Note that from Eq. (3.12), F(0) = 2ga"/gaqq.
In our calculation, that relation is well satisfied, if we put
m, = 542 MeV in Eq. (3.13) and use g = 8sqq = 3-05. (We see that
Sz =mg/g = 0.086 GeV and F(0)/12 = 0.093 GeV.)

A sigma-dominance approximation for the quark-antiquark interaction,
valid for r < 0, is shown. [See Eq. (3.8).]

A sigma-dominance approximation for the amplitude q¢ + g— 7 + 7. (See
Eq. (3.11). Values of F(r) are shown in Fig. 11.)

A sigma-dominance approximation for the correlator 603} +J s 1s
shown. This approximation is valid for + < Q. (See the dotted line in
Fig. 9. For r < 0 the dotted line and the solid line representing
Re C(1) +J 4(1) are indistinguishable.)

The figure exhibits Re tqq(t) [solid line] and Im tqq(t) [dashed line]
obtained using model B where t,4(0) 1s given by Eq. (3.3). The dotted
line represents g2/(: -mf) with ¢ = 3.05 and m, = 0.542 GeV. The
values for js(t) to be inserted in Eq. (3.3) are taken from Fig. 10. (We
put fS(t) = Jg(®) for 1 < 0.) Note that if we were to neglect ks(t), we
would have 1,40) = -23 GeV?. The dotted curve provides a good fit

to the solid curve for -0.2 GeV? < ¢ <0. This is the range of
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Fig. 14.

Fig. 15.

@

®)

©)

momentum transfer that is particularly important for nuclear structure
physics and for nucleon-nucleon scattering.

The values of Re tq,(t) [solid line] and Im tq,(t) [dashed line] are shown.
Values of tqq(t) and F(¢) needed to form tqq(t) are shown in Figs. 11 and
13, respectively. [See Eq. (3.9).]

On the left-hand side we show a generic diagram used to represent
correlated two-pion exchange [2]. The first diagram on the right-hand
side denotes the quark-quark interaction of the NJL model. The last
diagram introduces the scalar-isoscalar conelaﬁon function.  That
correlation function has a cut for r > 4m3 and describes correlated two-
pion exchange.

The correlation function of (b) may be given in terms of J ) anda T
matrix of general form. In this work we limit our considerations to the
forms tqi(t) and [ql;([) given in Egs. (3.2) and (3.3). (These are T
matrices expressible in terms of J(r) and K(t) only.)

For r < 0, the diagrams of (b) may be replaced by the diagram shown.
That may be seen by noting that tqq(t) = -Gg/[1 - sts(t)] fort < 0,
where I?S (©) may be neglected. The coupling of the sigma to the nucleon

is approximately G,yy = 38544 = 9.
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