

New measurements in fixed-target collisions at LHCb

Università degli Studi di Ferrara

Shinichi Okamura, sokamura@cern.ch On behalf of the LHCb collaboration

XXIX International Workshop on Deep-Inelastic Scattering and related subjects, Santiago de Compostela, 03/05/2022

Fixed-target programme at LHCb: SMOG

- Fixed-target measurements at LHCb are possible thanks to the **SMOG device** (System for Measuring the Overlap with Gas)
- Injection of noble gases at a pressure of $O(10^{-7})$ mbar in the **VELO**
- Conceived for precise luminosity measurements based on the beam-imaging technique

- Rich and unique fixed-target research programme became possible during the LHC Run 2
- Dedicated SMOG runs at LHCb, exploiting only the LHC non-colliding bunches
- Previous SMOG results: first measurements of charm production in pNe and measurements of antiproton production in pHe

Fixed-target kinematics

- Backward to mid rapidity coverage in the c.m. frame
- High-x of the nucleon target at intermediate Q^2 corresponding to large and negative x_F
- Poorly explored kinematic region

Charmonium in pNe at $\sqrt{s_{NN}} = 68.5$ GeV

- Cold Nuclear Matter effects (CNM) that can suppress charmonium production: nuclear absorption, comover scattering, and modification of the parton flux
- \blacksquare HELAC-ONIA parametrisation **underestimates** the J/ψ differential cross-section, as a function of y^* and p_T [1]

- Good agreement with R. Vogt's predictions with (1%) or without Intrinsic Charm contribution
- The first measurement at SMOG of the $\psi(2S)$ to J/ψ ratio is in agreement with other results at small A

 J/ψ and D_0 in PbNe at $\sqrt{s_{NN}}=68.5$ GeV

- Improve the interpretation of $c\bar{c}$ suppression by measuring charmonium yields together with the D_0 production
- $lacksquare \sigma_{J/\psi}/\sigma_{D^0}$ ratio strongly depends on p_T significant dependence on y^* [2]

- The energy deposited in the EM calorimeter is used to determine the centrality classes N_{coll}
- No anomalous suppression that could indicate the formation of a deconfined medium

Detached \bar{p} in pHe at $\sqrt{s_{NN}} = 110$ GeV

- The uncertainties on the \bar{p} production limit the interpretation of cosmic \bar{p} data (AMS, PAMELA)
- Extend the first measurement of prompt \bar{p} in pHe collisions at $\sqrt{s_{NN}} = 110$ GeV including contributions from detached \bar{p} [3]
- The generators underestimate the Λ (anti-hyperon) contribution to the overall \bar{p} production
- Increased \bar{H} contributions compared to data at $\sqrt{s_{NN}} = 10$ GeV
- Underestimation of detached \bar{p} contribution in cosmic ray models

0.6 LHCb preliminary - Data $_{0.5} \models p \text{He } \sqrt{\text{s}_{\text{NN}}} = 110 \text{ GeV}$ **─** EPOS199 → EPOS-LHC HIJING138 Exclusive 0.4 → PYTHIA $R_{\bar{\Lambda}} = \frac{\sigma(pHe \to \bar{\Lambda}X \to \bar{p}\pi^{+}X)}{\bar{\Lambda}X \to \bar{p}\pi^{+}X}$ 0.10.8 0.6 \overline{p} transverse momentum [GeV/c]

The upgraded fixed-target: SMOG2

- SMOG2: a storage cell, installed upstream of the VELO, and a new gas feed system (GFS) [4]
- Precise determination of the target density (luminosity) and increment of the gas density by up to two order of magnitude
- More gas species including H_2 and D_2 , N and O_2 in addition to noble gases
- Run in parallel with collider mode, thanks to well displaced interaction regions and high tracking efficiency

Physics opportunities [5]

- Intrinsic heavy-quark
- p-Gas collisions: nPDFs, gluon anti-shadowing at large x, CNM effects
- Pb-Gas collisions: QGP formation, rapidity scan at lower energy, quarkonium sequential suppression
- Input to astrophysics

References

- [1] LHCb collaboration, "Charmonium production in $\sqrt{s_{NN}}=68.5$ GeV pNe collisions", LHCb-PAPER-2022-014, in preparation
- [2] LHCb collaboration, " J/ψ and D_0 production in $\sqrt{s_{NN}}=68.5$ GeV PbNe collisions", LHCb-PAPER-2022-011, in preparation
- [3] LHCb collaboration, "Measurements of antiproton production from anti-hyperon decays in pHe collision at $\sqrt{s_{NN}} = 110$ GeV", LHCb-PAPER-2022-006, in preparation

[4] LHCb collaboration, "LHCb SMOG Upgrade", CERN-LHCC-2019-005, May 2019, https://cds.cern.ch/record/2673690/ [5] A. Bursche et al., "Physics opportunities with the fixed-target program of the LHCb experiment using an unpolarized gas

Simulated PVz [mm]