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Molecules and atomic highly charged ions pro-
vide powerful low-energy probes of the funda-
mental laws of physics: Polar molecules possess
internal fields suitable to enhance fundamental
symmetry violation by several orders of magni-
tudes, whereas atoms in high charge states can
feature large relativistic effects and compressed
level structures, ideally posed for high sensitiv-
ity to variations of fundamental constants. Po-
lar, highly charged molecules could benefit from
both: large internal fields and large relativistic ef-
fects. However, a high charge dramatically weak-
ens chemical bonding and drives systems to the
edge of Coulomb explosion. Herein, we propose
multiply-charged polar molecules, that contain
actinides, as promising candidates for precision
tests of physics beyond the standard model. Ex-
plicitly, we predict PaF3+ to be thermodynami-
cally stable, coolable and well-suited for precision
spectroscopy. The proposed class of compounds,
especially with short-lived actinide isotopes from
the territory of pear-shaped nuclei, has poten-
tial to advance our understanding of molecules
under extreme conditions, to provide a window
into unknown properties of atomic nuclei, and to
boost developments in molecular precision spec-
troscopy in various areas, such as optical clocks
and searches for new physics.

As of today, important aspects of our universe are
hardly understood, such as the nature of dark matter
[1] and the origin of the imbalance between matter and
anti-matter [2]. Thus, theories that go beyond the cur-
rent standard model of particle physics are invoked, usu-
ally referred to as new physics. Such new physics intro-
duces additional sources of symmetry violations, like the
simultaneous violations of the symmetries with respect to
spatial inversion (known as parity P ) and of the relative
direction of time (known as time-reversal T ) [3]. Polar,
heavy-elemental molecules like ThO allow currently some
of the most precise low-energy tests of P, T -violation [4]
as they are easy to polarize and possess large internal
fields that enhance effects of new physics by several orders
of magnitude compared to atoms [5]. Complementary
opportunities to probe new physics are offered by atomic

highly charged ions (HCIs) [6]. In these systems the elec-
tronic spectra are often compressed due to the deshielded
nuclear charge which results in energetically close-lying
levels as well as large relativistic effects. This special
electronic structure can for instance provide favourable
enhancement of hypothetical spatio-temporal variations
of the fine structure constant [7] by several orders of mag-
nitude [8]. In contrast to neutral systems, HCIs can be
trapped comparatively easily in deep potential wells and
cooled by different mechanisms such as sympathetic cool-
ing [9, 10] with well understood atomic ions such as Be+,
paving the way to high-precision experiments and addi-
tionally to direct laser-cooling [6].

Small polar molecular HCIs (PMHCI) can combine ad-
vantages of polar molecules and atomic HCIs. In addi-
tion to the unification of large relativistic effects of HCIs
with large internal fields of polar molecules, as HCIs the
PMHCIs could induce a transition from Madelung to
Coulomb ordering of electronic levels. Coulomb ordered
levels could pave the way for first direct laser-cooling of
a molecular ion, as until now laser-cooling of molecu-
lar ions was limited due to unfavorable arrangement of
electronic states compared to neutral molecules [11, 12].
However, several hurdles have to be overcome: i) Few
stable and meta-stable small molecules with charge num-
ber larger than two are known [13, 14]. Most long-lived
meta-stable triply and quadruply charged polar diatomic
molecules, which were proposed theoretically or observed
experimentally, are fluorides, oxides or nobel gas com-
pounds of metals [13, 14]. But only one stable triply
charged polar diatomic molecule, UF3+, is experimen-
tally confirmed as of yet [15]. The difficulty lies in the
requirement of very stable bonds that are able to counter
the large electrostatic repulsion of two or more positive
charges that usually lead to spontaneous Coulomb explo-
sion. ii) Heavy-elemental molecules are preferred for the
search for new physics, which severely limits the choice of
possible systems, as P, T -violating effects are relativistic
in nature and scale steeply with increasing nuclear charge
Z [16], Moreover, actinide nuclei such as Pa (Z = 91) are
predicted to enhance the sensitivity to P, T -violating nu-
clear properties by up to 5 orders of magntiude when
compared to molecules with stable nuclei [17]. iii) For
precision spectroscopy, it is is essential to cool and per-
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fectly control the molecule. iv) And finally a simple elec-
tronic structure is desired to minimize systematic effects.

In this article we demonstrate that a variety of small
PMHCIs suitable for precision tests of fundamental
physics exist and propose PaF3+ as a promising candi-
date. We show its stability with respect to Coulomb
explosion, characterize its electronic levels, propose how
to cool it for precision spectroscopy, and compute its sen-
sitivity to new physics. Moreover, we point out further
possibly stable highly charged molecules and anticipate
the impact that our results will have on molecular preci-
sion experiments in future.

The stability of a triply charged molecule AX3+ can
be deduced from a simple rule of thumb [13, 18]: The
third ionization energy Ei

(
A2+

)
of atom A should be

lower or at least nearly equal to the first ionization energy
Ei(X) of atom X. Indeed, the third ionization energies of
the first five actinides (Ac, Th, Pa, U and Np) are low
compared to those of other elements (< 20 eV) [19–21].
The first ionization energies of neon (21.564 eV), fluorine
(17.4 eV) [22] oxygen (13.6 eV) and nitrogen (14.5 eV)
are relatively large in comparison [22–24]. Whereas tri-
cations with rare gas atoms such as CNe3+ have been
considered theoretically early on by Koch and Frenking
[25], corresponding bond dissociation energies are com-
paratively low. Instead, we expect actinide fluorides to
be most stable followed by nitrides and oxides. UF3+

was already shown to be stable [15], but it has two un-
paired f-electrons, which may complicate the extraction
of fundamental parameters from precision spectroscopy
experiments. As uranium has a higher ionization energy
than Ac, Th and Pa we can expect that the molecules
AcF3+, ThF3+ and PaF3+ are stable as well. In the
following we focus on PaF3+ as this molecule is isoelec-
tronic to RaF, which has a comparatively simple elec-
tronic structure and is known to be well suited for the
study of fundamental physics [26–29]. Moreover, the iso-
tope 229Pa attained much attraction as it is supposed
to possess an extraordinary large static octupole defor-
mation [30–32], which would render 229Pa highly power-
ful for the search for P, T -violations in the quark-sector
[33, 34]. Until now, experimental knowledge of Pa iso-
topes is scarce, and molecules containing Pa isotopes are
promising systems to access electroweak properties of Pa
nuclei. To our knowledge no molecule containing 229Pa
that is suitable for precision spectroscopy was proposed
so far. Here, we show that PaF3+ offers a versatile labo-
ratory for precision studies of fundamental physics.

We study the stability of PaF3+ with respect to the dis-
sociation into Pa2+ + F+, Pa3+ + F and Pa4+ + F– with
state-of-the-art coupled cluster calculations and quasi-
relativistic density functional theory. The charge separa-
tion dissociation channel Pa2+ + F+ is at 4.1 eV, whereas
the dissociation channels Pa3+ + F and Pa4+ + F– lie
above this at 4.9 eV and 32.1 eV, respectively. More de-
tails can be found in the methods section. An overview of

the dissociation channels of PaF3+ and PaF4+ is shown
in Fig. 1B and in Tables I to III. We can conclude that
PaF3+ is very stable. Crude estimates of the repulsive
potential for Pa3+ + F+ suggest that even PaF4+ could
be meta-stable, i.e. the charge separation channel lies be-
low the ground state potential but the potentials cross far
from equilibrium, with a dissociation barrier > 1 eV (see
methods section for details).

We computed vertical excitation energies, equilibrium
bond lengths and harmonic vibrational wavenumbers
of PaF3+ on the level of Dirac–Coulomb Fock-Space
Coupled Cluster with Singles and Doubles amplitudes
(DC-FSCCSD) and within a Zeroth Order Regular Ap-
proximation complex Generalized Hartree-Fock (ZORA-
cGHF) self consistent field maximum overlap approach.
With the ZORA-cGHF approach we determine transi-
tion electric dipole moments, projection of the orbital
angular momentum on the molecular axis and hyperfine
coupling constants, here reported for 231PaF3+, as nu-
clear magnetic dipole moments for other Pa isotopes are
lacking. ZORA-cGHF calculations can be assumed to be
accurate within about 10 % in comparison to FSCCSD
calculations. And effects of larger basis sets are on the
order of 5 % (for details see the methods section and Ta-
ble IV).

All electronic states explicitly studied herein are below
the lowest dissociation channel at 4.1 eV (see Fig. 2 on the
left and Table IV; potential curves at other levels of the-
ory are provided in Supplementary Figures S1 – S5). A
short bond length of about 1.85�A and a large harmonic
vibrational wavenumber ∼ 850 cm−1 indicate a strong
Pa–F bond. The level of mixing due to spin-orbit cou-
pling is estimated from the projection of the orbital an-
gular momentum on the molecular axis Λ. We find that
the (X)5/2 ground state is of 90 % Φ and 10 % ∆ char-
acter and the first two excited states are of 80 % ∆ and
20 % Π character [(1)3/2 state] and 60 %Π and 40 % Σ
character [(1)1/2 state], respectively. As can be seen in
Fig. 2 on the left all electronic states of PaF3+ appear to
have almost parallel potential curves, with bond lengths
and harmonic vibrational wavenumbers varying less than
5 %. This indicates that electronic excitations are de-
termined by transitions between non-bonding spinors or
spinors with nearly the same bonding or anti-bonding
character. To characterize the involved atomic orbitals
we compare the complex singly occupied ZORA-cGHF
spinor to the large component of the analytic solution of
the Dirac equation for the hydrogen atom for principal
quantum number n = 5 (see Fig. 2 on the right). This
confirms that the excited states are dominated by single-
electron transitions between non-bonding or weakly anti-
bonding orbitals. The seven lowest states are dominated
by a singly occupied f-orbital located at Pa, of which the
three lowest electronic states are characterized by a 5f5/2
orbital, and the next four states are characterized by a
5f7/2 orbital.
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FIG. 1. Schematics of a search for P, T -violation in the quark-sector with the stable highly charged molecule PaF3+. (A)
Sketch of an experimental set-up for precision spectroscopy with PaF3+. A decelerated beam of PaF3+ is trapped in a Paul
trap, sympathetically cooled by Sr+ ions and probed by the dark red laser. Further lasers for a potential direct cooling of the
molecular ion PaF3+ are omitted for clarity. (B) Sketch of dissociation channels of PaF3+ (solid lines) and PaF4+ (dashed
lines) as diabatic potentials. Ground state electronic potentials of PaF3+ and PaF4+ are shown as a spline interpolation of
points computed at the level of ZORA-cGKS-PBE0, indicated as circles (molecular calculations) and crosses (separate atomic
calculations). Potential curves for the repulsive channels Pa2+ + F+ and Pa3+ + F+ as well as the attractive channel Pa4+ +
F– are represented with the model described in the methods section. Total electronic densities and Mulliken partial charges
computed at the level of ZORA-cGKS-PBE0 are shown for the electronic ground states. (C) The parameters of the P, T -odd
spin-rotational Hamiltonian of PaF3+ at the level of ZORA-cGHF relative to those of RaF computed in Ref. [35] scaled by
6/1.16 (for details see the methods section).

The lowest six transition energies are narrowly spaced
and squared transition electric dipole moments |~µ|2 in-
dicate low transition rates. This is in accordance with
electronic transitions involving primarilly f-type atomic
orbitals. Einstein coefficients for spontaneous emission
roughly estimated from |~µ|2 and Te at the level of ZORA-
cGHF considering only electronic degrees of freedom are
provided in Table V. From these we infer that the ra-
diative lifetimes of the three lowest electronically excited
states [(1)3/2, (1)1/2, (1)7/2] could be on the order of
ms, which is on the same order as the lifetime of the
H3∆1 state in ThO that was used to provide the so
far tightest upper bounds on molecular P, T -violation [4].
PaF3+ can be trapped and, due to a mass to charge ra-
tio of about 83 u/e, efficiently cooled sympathetically
with Sr+ ions as sketched in Fig. 1A. Moreover, other
cooling schemes, for instance with buffer gases, can be
considered. In addition we find almost diagonal Franck–
Condon matrices for all electronic transitions (see Table
V) because of the non-bonding or weakly anti-bonding
character of the highest occupied spinor and consequently
almost parallel potential curves. When combined with an
efficient pre-cooling scheme, direct laser-cooling of PaF3+

seems feasible. For instance the (1)7/2 ← (X)5/2 tran-

sition, which is at about 1800 nm has an estimated cu-
mulated Franck–Condon factor of 0.999997 when taking
the 0-0, 1-0 vibrational transitions into account on this
level of theory and an estimated lifetime of < 20 ms. An-
other possibility for direct laser-cooling could be a popu-
lation of the meta-stable (1)1/2-state and cycling in the
(2)1/2← (1)1/2 transition at about 1800 nm, which has
a similar estimated Franck–Condon factor (0.999992) but
a probably much shorter lifetime (<70 µs). These prop-
erties clearly point to favourable prospects to obtain cold
samples of PaF3+ for precision experiments.

In order to estimate the enhancement of new physics
effects in PaF3+ we compute the electronic structure pa-
rameters Wi of the P, T -violating spin-rotational Hamil-
tonian [35–37] that reads in good approximation (see
methods section for details)

Hsr = Ω (Wdde +Wsks) + ΘWMM̃
+ I (WTkT +WSS + (Wm +WSRvol)dp) ,

(1)

where Ω is the projection of the total electronic angu-
lar momentum on the molecular axis, I is the projec-
tion of total spin of Pa on the molecular axis and Θ
accounts for the electron and nuclear spin interaction
along the molecular axis [35, 37]. We account here for
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FIG. 2. Potential energy curves for the eight energetically lowest electronic states relative to the ground state of PaF3+

computed at the level of DC-FSCCSD/ANO-RCC. Lines between the points are shown to guide the eye. The two lowest
dissociation channels Pa2+ + F+ and Pa3+ + F, as computed on a highler level of theory (RECP-UCCSD(T)-SOC), are
indicated by black horizontal lines. The various electronic states are additionally characterized by the complex two-component
ZORA-cGHF spinor ψ = (ψ↑, ψ↓) of the unpaired electron and compared to the upper component of the analytic solution
of the Dirac equation for the hydrogen atom. Atomic hydrogen spinors are labelled as `j,mj , where ` is the symbol for the
electronic orbital angular momentum quantum number, j is the total electronic angular momentum quantum number and mj

is the magnetic total electronic angular momentum quantum number.

P, T -violation in a molecule via an electric dipole mo-
ment of the electron de, an electric dipole moment of the
proton dp, the collective Schiff moment S, the nuclear
magnetic quadrupole moment M, the P, T -odd scalar-
pseudoscalar nucleon-electron current ks, and tensor-
pseudotensor nucleon-electron current kT interactions.
Rvol is a nuclear structure factor. Ab initio results for
the various Wi parameters at the level ZORA-cGHF for
the eight lowest electronic states of PaF3+ are provided
in Table VI and are compared to the isoelectronic RaF
molecule in Fig. 1C. The large enhancement of P, T -odd
effects that stem from P, T -violation in the quark-sector.
In the X(5/2) state the collective Schiff moment is en-
hanced by WS ∼ −72 000 e/(4πε0)/a0

4, which is more
than three times larger in absolute value than in iso-
electronic RaF (∼ −21 000 e/(4πε0)/a0

4 computed with
the same method [35]). We analyse this large absolute
value of WS in comparison to RaF in Fig. 3. Whereas in
RaF the singly occupied molecular orbital (SOMO) has a
pronounced s-character, with its contribution to WS par-
tially cancelling the contribution from the highest dou-
bly occupied orbital (SOMO-1), there is no contribution
from the f-type SOMO in PaF3+. Furthermore, we see an

additive uncompensated contribution from the core or-
bitals in PaF3+ and a much larger contribution from the
(SOMO-1), which can be attributed to the pronounced
relativistic effects in PaF3+. Similar effects are observed
for the enhancement factors WT and Wm. Thereby, the
magnetic interaction with a valence proton Wm is up to
ten times larger than in RaF. We can thus conclude that
PaF3+ has a pronounced sensitivity to P, T -violation in
the quark-sector.

Atomic f-type orbitals, which determine essentially
the SOMO of PaF3+, have vanishing probability den-
sity within the nucleus, so that P, T -odd effects depen-
dent on the electron spin (Wd, Ws) are suppressed. How-
ever, in the possibly meta-stable (1)1/2-state, these ef-
fects are still on the same order as in BaF, for which an
experiment to search for de is planned [38]. The relative
suppression of electron-spin dependent effects can be an
advantage for the disentanglement of the fundamental
sources of P, T -violation, for which the ratio of different
enhancement factors Wi plays an important role [17, 39].
The ratio of Wd/Ws is 12 % lower than predicted by the
model presented in Ref. [39] for Z = 91 and, thus, would
correspond to Z = 97 in the model. This can be ex-
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FIG. 3. Visualization of enhancement of P, T -violation in the quark-sector within the PMHCI PaF3+ compared to isoelectronic
RaF, illustrated by example of the nuclear Schiff moment. This moment would induce an energy shift propotional to SWSI
(see text). (A) Enhancement as per the electronic structure parameter WS is shown. Non-vanishing WS stems from a shift
of the maximum electron density away from the nuclear center by polarization, which in good approximation is characterized
by the slope of the four-component (4c) electron density (indicated by a line in the plots in the middle) at the position of
the Pa or Ra nucleus. Contributions from the SOMO, the highest doubly occupied orbital (SOMO–1) and uncompensated
contributions from core electrons are shown. Approximate 4c electron densities computed at the ZORA-cGHF level are plotted
with contour value of 0.0352 a−3

0 , with lower component density contributions (right isodensities) being magnified by α−2 to
enhance visibility as compared to the upper component (left isodensities). In each isodensity plot, the heavy nucleus (Pa, Ra)
is located on the left, the fluorine nucleus on the right as indicated by the ball-and-stick structures. (B) Visualization of the
strong enhancement of a collective Schiff moment S in octupole deformed nuclei. Large octupole deformations accumulate in
the highlighted region of the nuclide chart. Nuclear charge densities with deformation of order n and corresponding angular
densities of the Schiff operator are modeled in spherical plots (for details on how this is realized see the methods section). The
resulting collective Schiff moments S are indicated by a vector of length S along the deformation axis in the intrinsic frame.
The precession of the intrinsic moment around the z-axis is also indicated.

plained by the high charge of the molecule that leads
to a higher effective nuclear charge. The ratios between
other parameters are considerably different compared to
RaF and some even have opposite sign. All this renders
experiments with PaF3+ complementary in the search for
P, T -violation to other experiments with polar open-shell
molecules.

Moreover, PaF3+ can also be advantageous for other
tests of fundamental physics. The electronic potentials of

PaF3+ are largely overlapping, leading to possibly very
close lying nearly degenerate vibrational states. In com-
bination with the large relativistic effects this could re-
sult in a high sensitivity to a variation of fundamental
constants [40].

In summary, highly charged polar actinide molecules
can be stable and have favourable properties for preci-
sion tests of fundamental physics. Such PMHCIs can
be cooled sympathetically and can show a pronounced
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enhancement of new physics effects in the quark-sector.
In particular, we demonstrated that the molecule PaF3+

is favorable for precision tests of fundamental physics.
PaF3+ has a very simple electronic structure with one va-
lence f-electron in a non-bonding or weakly anti-bonding
orbital located at Pa. This leads to parallel potential
curves for essentially all energetically low-lying electronic
states, which may allow to establish an efficient direct
laser-cooling scheme after sympathetic pre-cooling with
Sr+ ions or pre-cooling in a buffer-gas cell. Furthermore,
due to the high charge many close lying states can be
found that may be advantageous in the search for a vari-
ation of fundamental constants.

Beyond PaF3+, we suggest to study also the PMH-
CIs UO3+ and NpN3+ as possibly stable candidates for
molecular precision spectroscopy. From the discussion
above we infer, moreover, that ThF3+ can be a very
stable closed-shell highly charged molecule. Further-
more, doubly charged molecular ions, such as ThF2+ and
PaO2+ that are isoelectronic to RaF, might also be con-
sidered for high-precision spectroscopy. Some selected
molecular properties computed for PaO2+ are reported
in Table S6-S8 in the Supplementary Material. Previ-
ously, PaO2+ was studied theoretically [41] and observed
in the gas-phase [42]. From this it can be expected that
PaO2+ has similar properties as PaF3+. Sympathetic
cooling or pre-cooling of these doubly charged ions may
be achievable with Ba+ ions.

Recent progress [43–45] allows precision searches for
new physics with polyatomic molecules and polyatomic
molecular ions which provide several experimental ben-
efits [46, 47]. We indicate here for instance PaNC3+,
PaNCS3+ as candidates for possibly stable polyatomic
PMHCIs. Following Ref. [48] it may be worthwhile to
study [PaNCCH3]4+ as potentially long-lived meta-stable
symmetric-top PMHCI for a precision search for new
physics.

Our study opens up a new route to molecular precision
spectroscopy and is a starting point to search for fur-
ther candidates of molecular HCIs. We anticipate that
this class of systems has possible applications as optical
clocks, for quantum logic spectroscopy and for precision
test of new physics. Molecular HCIs such as PaF3+ ad-
vance our understanding of chemical bonding, can pro-
vide a powerful probe of nuclear electroweak properties
and will boost precision searches for new physics beyond
the standard model. These studies provide further mo-
tivation for the emergent field of short-lived radioactive
molecules. This is timely with the development of fu-
ture radioactive beam facilities such as the Facility for
Rare Isotopes (FRIB) in the U.S., which starts opera-
tion in 2022, and is expected to produce unprecedented
amounts of Pa isotopes and other actinide nuclei.
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METHODS

Computational methods

Relativistic four component calculations were per-
formed with the quantum chemistry program pack-
age Dirac19 [49] employing the Dirac–Coulomb (DC)
Hamiltonian. The four-component Dirac–Coulomb
Hartree–Fock (DC-HF) method was used to describe the
electronic structure of Fluorine and Protactinium in dif-
ferent electron configurations, with the open-shell situ-
ation being treated within the average-of-configuration
framework (ORHF). Relativistic Fock-space coupled-
cluster calculations with singles and doubles cluster am-
plitudes (DC-FSCCSD) were performed starting from
the PaF4+ closed-shell electronic ground state as ref-
erence wavefunction and attaching an additional elec-
tron. Seven electrons of F (2s22p5) and 19 electrons of
Pa (5d106s26p65f1) were explicitly included in the elec-
tron correlation treatment. Virtual spinors were consid-
ered up to an energy of 50Eh. In DC-ORHF and DC-
FSCCSD calculations we employed the Dyall all-electron
triple zeta (Dyall-ae3z) basis set for the Pa and F atom
[50, 51] or a triple zeta atomic natural orbital type ba-
sis set (ANO-RCC-VTZP) [52]. To assess the quality of
the basis set, additional calculations were performed with
the Dyall all-electron quadruple zeta (Dyall-ae4z) basis
set [50, 51]. DC-ORHF spinors were optimized in a self-
consistent manner until a change in the orbital gradient
below 10−7 /a0

3/2 was reached.

Quasirelativistic two-component calculations were per-
formed with a modified version [53] of the quantum chem-
istry program package Turbomole [54] at the level of
complex generalized Hartree-Fock (cGHF) and complex
generalized Kohn-Sham (cGKS) density functional the-
ory (DFT) within the zeroth order regular approxima-
tion (ZORA) employing a model potential to alleviate
the gauge dependence of the ZORA Hamiltonian as pro-
posed by van Wüllen [55]. The ZORA-model potential
was employed with additional damping [56]. Calculations
on the DFT level were performed with the hybrid Becke
three parameter exchange functional and the Lee, Yang
and Parr correlation functional (B3LYP) [57–60], as well
as with the hybrid version of the Perdew, Burke, Ernzer-
hof functional (PBE0) [61, 62]. On this level of theory, a
basis set consisting of 37s, 34p, 14d and 9f uncontracted
Gaussian functions with the exponential coefficients αi
composed as an even-tempered series as αi = a/bi−1;
i = 1, ..., N , where N is the number of functions, with
b = 2 for s and p functions and b = (5/2)1/25×102/5 ≈ 2.6
for d and f functions was used for Pa. The largest ex-
ponent coefficients a of the subsets are 2 × 109 a−2

0 (s),
5× 108 a−2

0 (p), 13300.758 a−2
0 (d) and 751.8368350 a−2

0

(f). A decontracted atomic natural orbital basis set of
double-ζ quality augmented with polarization valence ba-

sis functions (ANO-RCC-VDZP) [63] was used for the F
atom. These basis sets have performed well in previous
studies of P, T -violation in molecules [27, 39, 64].

In all relativistic or quasi-relativistic calculations, a
normalized spherical Gaussian nuclear density distribu-

tion ρA (~r) =
ζ
3/2
A

π3/2 e−ζA|~r−~rA|
2

with ζA = 3
2r2nuc,A

and the

root-mean-square radius rnuc,A was used as a finite nu-
cleus as suggested by Visscher and Dyall [65]. Isotopes
231Pa and 19F were used to determine the size of the fi-
nite nucleus. An exception to this are calculations of the
energy gradient within the ZORA-cGKS approach, which
were performed assuming a pointlike nucleus instead.

At the level of cGKS and cGHF, excited state orbitals
were obtained by SCF calculations choosing occupation
numbers regarding to maximum overlap with the deter-
minant of the initial guess (initial guess maximum over-
lap method, IMOM) [66, 67]. As initial guess we used the
cGKS or cGHF determinant, that was found with occu-
pation of energetically lowest spinors. If the change in
the differential density with respect to the previous cycle
was below 10−3/a−3

0 the standard MOM was used, where
occupation numbers are chosen with respect to maximum
overlap with the determinant of the previous cycle [66].

Franck–Condon factors were obtained with the pro-
gram package hotFCHT [68–71] by calculating the har-
monic force constants with the module NumForce within
the modified version of Turbomole mentioned above.

Transition electric dipole moments ~µ were computed
for the independently obtained cGHF and cGKS deter-
minants using Löwdin rules [72] for single-particle oper-
ator transition matrix elements between nonorthogonal
single-determinantal initial wave function Φi and final
wave function Φf

~µ = 〈Φf |~r |Φi〉 =
∑

ij

〈ψf,i |~r |ψi,j〉 adj (S)ij (2)

with the molecular spinors ψi of the initial (i) and fi-
nal (f) state, approximately described by a single Slater
determinant, and the adjugate of the overlap matrix be-
tween the initial and final state determinant with ele-
ments Sij = 〈ψf,i |ψi,j〉.

All other molecular properties were computed with the
toolbox approach presented in Ref. [35]. We neglected
magnetic and hyperfine coupling induced interactions of
de and ks as well as higher order P, T -odd nuclear mo-
ments and described the nuclei in the non-relativistic
limit. For a definition of the various electronic structure
factors Wi except for WS we refer to Ref.35. We used
here a different definition of WS than in Ref.35 which
includes a factor of 6. Furthermore, we employed a finite
nucleus model for the calculation of the WS operator [73],
whereas in Ref.35 a point-like nulcear model was used:

WS = −4πkese

〈
Ψ

∣∣∣∣
∂

∂z
ρA(~r)

∣∣∣∣Ψ
〉

= 8ζAπkese 〈Ψ | (z − zA)ρA(~r) |Ψ〉 ,
(3)
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where the electrostatic constant kes is 1
4πε0

in SI units
and ε0 is the electric constant. The last equality applies
only to the spherical Gaussian nuclear model used in this
work. In opposite to the operator used in Ref.35 this
operator can be evaluated in numerical integration within
the toolbox apporach. As suggested in Ref.74, for direct
comparison to the present values computed with a finite
nuclear model for PaF3+, we scaled the corresponding
values ofWS of RaF that were obtained with the operator
for a pointlike nucleus in Ref.35 by a factor of 1/1.6.

Bond lengths were optimized to an energy change of
less than 10−6 Eh as convergence criterion. The wave-
functions were optimized to a change in energy and spin-
orbit coupling contribution of 10−11 Eh or better, with
exception of the calculations with the ANO-RCC-VTZP
basis set, which was optimized to a change in energy and
spin-orbit coupling contribution of 10−9 Eh.

Calculations in a non-relativistic framework using
scalar relativistic ECPs (RECP), which are reported in
Tables I–III, were performed with the quantum chem-
istry program package Molpro [75–77] on the level
of restricted open-shell Hartree-Fock (ROHF), spin-
unrestricted-Kohn-Sham (UKS) using the functionals
B3LYP and PBE0 and on the level of unrestricted
coupled-cluster with iterative singles and doubles am-
plitudes combined with perturbative triples amplitudes
(UCCSD(T)). For Pa a relativistic energy-consistent
small-core pseudopotential (ECP60) was used together
with atomic natural orbital valence basis set [78]. An
augmented correlation-consistent polarized basis with
quadruple-ζ qualtiy (aug-cc-pVQZ) [79] was used on the
F-atom. The bond length was optimized up to a change
in energy of 10−6 Eh. Self consistent field calculations
were performed until a change in the gradient in re-
spect to the orbital rotation lower than 10−13 Eh/a0 was
reached.

The complex two-component orbitals are visualized
by calculating orbital amplitudes on a three-dimensional
grid and plotting them with the help of Mathemat-
ica version 11 [80] by mapping the phase in the complex
plane via a color code on the contour surface of the ab-
solute value of the spinors.

Disscociation channels

We study the stability of PaF3+ with respect to the
dissociation into Pa2+ + F+, Pa3+ + F and Pa4+ +
F– by separate energy calculations of the atomic prod-
ucts and the corresponding molecular species at its equi-
librium structure with state-of-the-art unrestricted cou-
pled cluster calculations with single and double ampli-
tudes and preturbative triples [UCCSD(T)], in which
we account for scalar-relativistic effects by an relativis-
tic effective core potential (RECP). We find that the
charge separation dissociation channel Pa2+ + F+ is

at 5.1 eV. The dissociation channels Pa3+ + F and
Pa4+ + F– lie above this at 5.8 eV and 32 eV, respec-
tively. In these calculations spin-orbit coupling is, how-
ever, not accounted for. To quantify this effect, quasi-
relativistic two-component complex generalized Kohn-
Sham (ZORA-cGKS) calculations within zeroth order
regular approximation are compared to relativistic effec-
tive core potential unrestriced Kohn-Sham calculations
(RECP-UKS), using the PBE0 functional, which per-
formed well in the computation of bond dissociation en-
ergies of uranium halides [81]. The size of the spin-orbit
coupling contribution to the three dissociation channels
is −1.0 eV, −0.9 eV and 0.1 eV, respectively, yielding the
spin-orbit corrected [RECP-UCCSD(T)+SOC] dissocia-
tion energies of 4.1 eV, 4.9 eV and 32.1 eV, which are in
good agreement with dissociation energies at the level
of ZORA-cGKS-PBE0 (3.8 eV, 4.7 eV and 32.5 eV). The
RECP-UCCSD(T)+SOC method is in good agreement
with ionization energies of Pa computed in Ref.21 (de-
viations < 5 %) and experimental ionization energy and
electron affinity [22, 82] of F (deviations < 1 %).

From ab initio calculations we find that the dissocia-
tion channel Pa3+ + F+ is placed ∼ 10 eV below the equi-
librium energy of PaF4+. A crude estimate for a repulsive
potential V (r) as a function of the internuclear separa-
tion r can be obtained from purely repulsive Coulomb
and Pauli potentials [48, 83]. Assuming that the ionic
radius r0 is equal for charge separation and homolytic
dissociation, we model the Pauli repulsion by a Lennard-
Jones potential C(12)/(r + r0)12 − C(6)/(r + r0)6 for a
fixed dissociation energy (indicated by crosses in Fig. 1 on
the right), which is fitted to the ground state potentials
of PaF3+ and PaF4+ computed on the level of ZORA-
cGKS-PBE0 as indicated by circles in Fig. 1 on the right
to obtain V (r) = ∆E + q1q2/(4πε0(r+ r0)) +C(12)/(r+
r0)12. Here ∆E is received at the level of ZORA-cGKS-
PBE0 as described above and q1q2 is determined by
the charge of the fragments. The fit of the ground
state potential of PaF3+ yields r0 = 1.55�A, C(12) =

1.2× 107 eV�A
12

and C(6) = 1.5× 104 eV�A
6
. The fit of

the ground state potential of PaF4+ yields r0 = 1.00�A,

C(12) = 6.9× 105 eV�A
12

and C(6) = 2.7× 103 eV�A
6
.

Relative to the ground state energy of PaF3+ we receive
for the Pa2+ + F+ channel ∆E = 3.8 eV, r0 = 1.55�A,

C(12) = 1.2× 107 eV�A
12

, q1q2/(4πε0) = 28.8 eV�A yield-
ing an avoided crossing at > 30�A and for the Pa3+

+ F+ channel ∆E = 35.5 eV, r0 = 1.00�A, C(12) =

6.9× 105 eV�A
12

, q1q2/(4πε0) = 43.2 eV�A yielding an
avoided crossing at > 2.4�A (see Fig. 1 right). This
suggests that PaF4+ could be meta-stable with a dis-
sociation barrier > 1 eV. In this model the poten-
tial for the Pa4+ + F– channel is modeled as V (r) =

32 eV − 57.6 eV�A/(r + 1.55�A) + 1.2× 107 eV�A
12
/(r +

1.55�A)12 − 1.7× 104 eV�A
6
/(r + 1.55�A)6.

In calculations of the dissociation energy (Table I) the
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mean-field RECP-ROHF and ZORA-cGHF methods un-
derestimate the dissociation energy dramatically as miss-
ing electron correlation destabilizes considerably the Flu-
oride ions (see also Table II). Moreover, in the ZORA-
cGHF method spin-orbit coupling and spin-polarization
are incorporated self-consistently. As both effects stabi-
lize the Pa cations, the ZORA-cGHF values are much
lower than those at correlated levels of theory due this
imbalanced consideration of electron-correlation effects.

Electronic excitation energies

In calculations of the electronic spectra (Table IV)
ZORA-cGHF results are in a good agreement with
DC-FSCCSD results, with deviations in excitation
wavenumbers of maximally 600 cm−1 (for higher excita-
tions 1100 cm−1) and deviations of harmonic vibrational
wavenumbers and equilibrium bond lengths ≤ 10 %. We
expect other molecular properties at the level of ZORA-
cGHF to be accurate within 10 %. Furthermore, the
effect of a larger basis set (ANO-RCC vs dyall.3aez vs
dyall.4aez) in FSCCSD calculations is found to be < 5 %.

Visualisation of nuclear densities

Nuclear charge densities with deformation of order n
visualised in Fig. 3 on the bottom are realised as spher-
ical plots of a Rayleigh expansion with axial symmetry
Rn(θ, φ, r) =

[
1 +

∑n
l=2 alr

lYl,0(θ, φ)
]

averaged over the

radial part as
∫
Rn(θ, φ, r) exp[−2/(3

〈
r2
〉
)r2]r2dr, with

a2 = 0.231, a3 = 0.097, a4 = 0.04 and
〈
r2
〉

= 1.
These coefficients are chosen for optimal representation
and have no physical meaning. The Schiff moment oper-
ator can be written as Ŝ = (r3 − 5/2

〈
r2
〉
r)Y10(θ, φ).

The corresponding Schiff moments are modeled in
a spherical plot of the angular function S(θ, φ) =∫
ŜRn(θ, φ, r) exp[−2/(3

〈
r2
〉
)r2]r2dr, with the resulting

moment being calculated as S =
∫
S(θ, φ) sin(θ)dθdφ.
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TABLE I. Dissociation energies of PaF3+ given for the three most prob-

able dissociation channels. The dissociation channels correspond to De(A
n+ +

B[+,0,−]) = E(An+) + E(B[+,0,−])− E(AB[(n+1)+,n+,(n−1)+]).

Method De(Pa2++F+)/eV De(Pa3++F)/eV De(Pa4++F−)/eV

RECP-ROHF 2.7 4.2 30.8

ZORA-cGHF* 0.3 2.7 30.5
RECP-UKS-B3LYP 4.7 5.6 32.7
ZORA-cGKS-B3LYP 4.1 4.7 32.2
RECP-UKS-PBE0 4.8 5.6 32.4
ZORA-cGKS-PBE0 3.8 4.7 32.5
RECP-UCCSD(T) 5.1 5.8 32.0
RECP-UCCSD(T)+SOC 4.1 4.9 32.1

* The ZORA-cGHF method underestimates the dissociation energy dramatically
(see discussion in the methods section).
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TABLE II. Relevant n-th ionization energies Ei and electron affinities Eea for Pa and F in comparison
with literature (lit) values. Relative deviation is given as dev = (calculation− lit)/lit.

Method Ei

(
Pa2+

)
/eV dev / % Ei

(
Pa3+

)
/eV dev/% Ei (F) /eV dev/% Eea (F) /eV dev/%

RECP-ROHF 17.2 −8 27.9 −10 15.7 −10 1.31 −64
ZORA-cGHF 18.0 −4 29.1 −6 15.6 −10 1.27 −63
RECP-UKS-B3LYP 18.4 −2 30.3 −2 17.5 0 3.24 −5
ZORA-cGKS-B3LYP 18.4 −1 31.1 1 17.8 2 3.67 8
RECP-UKS-PBE0 18.4 −1 30.2 −2 17.6 1 3.43 1
ZORA-cGKS-PBE0 18.4 −1 31.1 1 17.4 0 3.40 0
RECP-UCCSD(T) 18.0 −4 29.6 −4 17.4 −0 3.40 0
RECP-UCCSD(T)+SOC 18.0 −3 30.5 −1 17.4 −0 3.40 0
Literature 18.7 a — 30.9 a — 17.4 b — 3.40 b —

a Scalar relativistic effective core potential calculations at the level of complete active space self-consistent field
(RECP-CASSCF) with a correction for spin-orbit coupling by comparison to multi-configuration Dirac-Hartree-
Fock (MCDHF) calculations.[21]
b Experimental data. Ei (F) /eV was measured in Ref.22 and Eea (F) /eV was measured in Ref.82.
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TABLE III. Dissociation energies for PaF4+ given for the two
most probable dissociation channels as De(channel).

Method De(Pa4++F)/eV De(Pa3++F+)/eV

RECP-ROHF 0.6 −11.6
ZORA-cGHF 0.1 −13.4
RECP-UKS-B3LYP 3.5 −9.4
ZORA-cGKS-B3LYP 3.2 −10.1
RECP-UKS-PBE0 3.4 −9.2
ZORA-cGKS-PBE0 3.3 −10.3
RECP-UCCSD(T) 3.7 −8.6
RECP-UCCSD(T)+SOC 3.6 −9.7
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TABLE IV. Spectroscopically relevant properties of the eight ener-

getically lowest electronic states of PaF3
+. Equilibrium bond length re,

harmonic vibrational wavenumber ω̃e and excitation wavenumber T̃e estimated
as vertical excitation energy are shown at the level of Dirac–Coulomb Fock-
Space Coupled Cluster (DC-FSCCSD) with two different basis sets and at the
level of Zeroth Order Regular Approximation complex Generalized Hartree-
Fock (ZORA-cGHF). The projection of the electronic orbital angular momen-
tum quantum number on the molecular axis Λ, the squared transition dipole
moment |~µ|2 and hyperfine coupling constant along the molecular axis A‖ are

given. Hyperfine coupling constants were calculated using µ
(
231Pa

)
= 2.01 µN

and I = 3/2 [84]. The DC-FSCCSD/dyall.ae4z results were computed at the
equilibrium bond length taken from the ZORA-cGKS-B3LYP calculations.

State Method re/�A ω̃e/cm−1 T̃e/cm−1 Λ |~µ|2 /(e2a02) A‖/MHz

(X)5/2

ZORA-cGHF 1.87 846 — 2.9 −983
ZORA-cGKS-B3LYP 1.89 828 — 2.8 −1020
ZORA-cGKS-PBE0 1.87 828 — 2.8 −1020
DC-FSCCSD/dyall.ae3z 1.85 859 —
DC-FSCCSD/ANO-RCC 1.85 892 —

(1)3/2

ZORA-cGHF 1.87 829 1250 1.8 3× 10−3 −953

ZORA-cGKS-B3LYP 1.88 816 152 1.9 4× 10−3 −1140

ZORA-cGKS-PBE0 1.86 815 185 1.9 4× 10−3 −1130
DC-FSCCSD/dyall.ae3z 1.85 844 658
DC-FSCCSD/dyall.ae4z 752
DC-FSCCSD/ANO-RCC 1.84 876 646

(1)1/2

ZORA-cGHF 1.87 840 3020 0.6 6× 10−8 −1050

ZORA-cGKS-B3LYP 1.89 831 3470 0.8 2× 10−9 −1600

ZORA-cGKS-PBE0 1.87 830 3540 0.8 1× 10−11 −1560
DC-FSCCSD/dyall.ae3z 1.86 852 3060
DC-FSCCSD/dyall.ae4z 3050
DC-FSCCSD/ANO-RCC 1.85 885 2990

(1)7/2
ZORA-cGHF 1.87 849 5520 3.0 2× 10−4 −328
DC-FSCCSD/dyall.ae3z 1.85 862 5540
DC-FSCCSD/dyall.ae4z 5550
DC-FSCCSD/ANO-RCC 1.85 895 5550

(1)5/2
ZORA-cGHF 1.87 831 6440 2.1 2× 10−3 −329
DC-FSCCSD/dyall.ae3z 1.84 846 5790
DC-FSCCSD/dyall.ae4z 5680
DC-FSCCSD/ANO-RCC 1.84 878 5680

(2)3/2
ZORA-cGHF 1.87 838 8000 1.2 5× 10−4 −329
DC-FSCCSD/dyall.ae3z 1.85 853 7810
DC-FSCCSD/dyall.ae4z 7830
DC-FSCCSD/ANO-RCC 1.85 885 7780

(2)1/2
ZORA-cGHF 1.87 841 8890 0.4 1× 10−11 −473
DC-FSCCSD/dyall.ae3z 1.86 857 8940
DC-FSCCSD/dyall.ae4z 9040
DC-FSCCSD/ANO-RCC 1.85 890 8960

(3)3/2
ZORA-cGHF 1.84 888 30 000 2.0 0.5 −2600
DC-FSCCSD-dyall-ae3z 1.82 882 29 200
DC-FSCCSD/dyall.ae4z 29 900
DC-FSCCSD-ANO-RCC 1.82 901 28 900
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TABLE V. The transition properties relevant for investigating laser-cooling are shown for the

transitions between the eight lowest states of PaF3+. Excitation energies Te, Einstein coefficients
A for spontaneous emission from electronic states (as detailed in the methods section) and Franck–Condon

factors for the 0-0 transition (f (0)) and cumulated for the 1-0 transition (f (1)) are computed on the level
of ZORA-cGHF. The life-time of electronic states τe is estimated from the electronic Einstein coefficients
as (

∑i
aA

a
i )−1 for each state i, where Aai is the Einstein coefficient for the electronic spontaneous emission

from i to a. Franck–Condon factors in parantheses indicate that the corresponding vibrational level lies
above the vibrational ground state of the next higher electronic state.

(1)3/2 (1)1/2 (1)7/2 (1)5/2 (2)3/2 (2)1/2 (3)3/2

τe/s 7× 10−2 6× 10−3 2× 10−2 7× 10−4 4× 10−4 6× 10−6 2× 10−8

(X)5/2

Te/cm−1 1300 3000 5500 6400 8000 8800 30000
Te/nm 7700 3300 1800 1600 1300 1100 300

A/s−1 1× 101 3× 10−3 5× 101 1× 103 5× 102 2× 10−5 3× 107

f(0) 0.9855 0.9856 0.9994 0.9844 0.9989 0.9999 0.7391

f(1) (0.9999) 0.9999 0.9999 0.9999 0.9999 0.9999 0.9570

(1)3/2

Te/cm−1 1800 4300 5200 6700 7500 29000
Te/nm 5500 2300 1900 1500 1300 300

A/s−1 2× 102 2× 10−5 3× 102 2× 103 1× 105 1× 107

f(0) 0.9857 0.9795 0.9999 0.9922 0.9843 0.8342

f(1) 0.9997 0.9994 0.9999 0.9999 0.9997 0.9798

(1)1/2

Te/cm−1 2500 3400 5000 5800 27000
Te/nm 4000 2900 2000 1700 370

A/s−1 5× 10−7 3× 10−4 1 1× 104 1× 106

f(0) 0.9994 0.9846 0.9989 0.9969 0.7399

f(1) 0.9999 0.9999 0.9999 0.9999 0.9563

(1)7/2

Te/cm−1 920 2500 3300 24000
Te/nm 10900 4000 3030 400

A/s−1 3 3× 10−3 2× 10−6 9× 10−2

f(0) 0.9782 0.9969 0.9997 0.7194

f(1) (0.9999) 0.9999 0.9999 0.9509

(1)5/2

Te/cm−1 1600 2400 24000
Te/nm 6300 4200 400

A/s−1 1× 102 2× 10−6 1× 106

f(0) 0.9914 0.9831 0.8374

f(1) (0.9999) 0.9997 0.9806

(2)3/2

Te/cm−1 820 22000
Te/nm 12200 500

A/s−1 1× 101 3× 105

f(0) (0.9986) 0.7768

f(1) (0.9999) 0.9670

(2)1/2

Te/cm−1 21000
Te/nm 500

A/s−1 1× 103

f(0) 0.7353

f(1) 0.9550
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TABLE VI. P,T -odd electronic structure parameters for PaF3+ are shown. The properties were
calculated on the level of ZORA-cGHF and ZORA-cGKS-B3LYP and PBE0. For computation of the magnetic
interaction with the proton EDM Wm µ

(
231Pa

)
' 2.01µN [84] and I = 3/2 were used.

State Method WS/
e

4πε0a
4
0
Wm/

1018 hHz
e cm

WT/(hHz) Wd/
1024 hHz
e cm

Ws/(h kHz) WM/
1033 hHz

c e cm2

X5/2
ZORA-cGHF −72 000 6.3 −6700 0.66 4.2 0.038
ZORA-cGKS-B3LYP −58 000 4.9 −5300 0.41 2.5 0.023
ZORA-cGKS-PBE0 −58 000 4.9 −5400 0.41 2.9 0.027

(1)3/2
ZORA-cGHF −66 000 5.5 −6200 1.4 9.3 −0.022
ZORA-cGKS-B3LYP −53 000 4.5 −4900 0.92 5.8 −0.0023
ZORA-cGKS-PBE0 −54 000 4.4 −5000 1.1 6.8 −0.0018

(1)1/2
ZORA-cGHF −59 000 4.8 −5600 2.9 20 −0.10
ZORA-cGKS-B3LYP −49 000 4.1 −4800 1.8 12 −0.13
ZORA-cGKS-PBE0 −49 000 3.9 −4600 2.0 13 −0.14

(1)7/2 ZORA-cGHF −73 000 6.4 −6800 −0.48 −3.0 −0.030
(1)5/2 ZORA-cGHF −68 000 5.7 −6400 −0.28 −1.9 −0.0014
(2)3/2 ZORA-cGHF −61 000 5.1 −5500 −0.22 −1.6 0.061
(2)1/2 ZORA-cGHF −58 000 4.9 −5500 −0.36 −2.6 0.14
(3)3/2 ZORA-cGHF −70 000 5.8 −6600 3.2 19 0.14
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