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Abstract. The track finding algorithm adopted for the LHC Run-2 data taking period is based
on combinatorial track following, where the number of seeds scales non-linearly with the number
of hits. The corresponding CPU time increase, close to cubical, creates huge and ever-increasing
demand for computing power. This is particularly problematic for the silicon tracking detectors,
where the hit occupancy is the largest. Therefore, it is essential that resource use is reduced,
whilst maintaining the ability to reconstruct tracks with minimal loss in efficiency. This paper
briefly summarises the work that has been done to optimise the HLT ID track seeding software
for ATLAS Run-3 and beyond, in order to reduce the number of fake seeds constructed. An ML-
based algorithm has been developed to predict if a pair of hits belong to the same track given
input hit features, focusing on cluster width and inverse track inclination. The implementation
of the trained predictor in the form of Look-Up Tables is presented, along with performance
results in terms of tracking efficiency and speed-up factor using simulated data.

1. Introduction
ATLAS [1] is a general-purpose detector at the Large Hadron Collider (LHC). The Inner Detector
(ID) trigger is part of the ATLAS High Level Trigger (HLT) system and performs fast online track
and vertex finding. It consists of the Fast Tracking stage, providing initial track reconstruction
using seeded track finding and combinatorial track following [2]. Typically, a seed is defined as
a group of three spacepoints located in different detector layers, where a fake seed is defined as
a group of spacepoints that do not originate from the same simulated track. From a geometrical
perspective, track finding is a pattern recognition problem with the aim of associating individual
measurements into sequences. The training is focused on pixel-detector layers, being closest to
the beamline and thereby an advantageous region to reduce the proportion of fakes. The classifier
predictions are used as input in the Fast Tracking algorithm.

2. Measurement-to-track Association
2.1. Data Exploration & Feature Extraction
Seeds constructed at the combinatorial stage of ATLAS track seeding from the Run-2 geometry
were used to extract hit-pairs to form a training dataset. Monte Carlo (MC) tt̄ samples with
centre-of-mass energy

√
s = 13 TeV at mean pile-up interaction multiplicity < µ > = 80 were

used. An illustration of a seed in the ID pixel layers is shown in Figure 1. From each triplet seed,
the inner doublet (hits 1, 2) and outer doublet (hits 2, 3) are extracted. For each doublet the



minimum and maximum absolute inverse slope of the track, |cot(θ)|, were calculated using r-z
coordinates and used as an input feature for training. θ is the angle of inclination of a hit-pair
with respect to the z axis. The longitudinal pixel cluster width, wη, measured in the η direction
was also extracted. η is the pseudorapidity defined as η ≡ −ln[tan(θ/2)]. The MC generated
data in the [|cot(θ)|, wη] phase space behaves as a set of 1-dimensional distributions, each with
discrete wη. This characteristic is exploited to form an ensemble of predictors.

MC truth for seeds and their corresponding doublets were extracted from ATLAS track
seeding and used as targets in training. Doublets with correct hit association were defined as
truth 1, for which its hit-pairs belong to the same track. Conversely doublets with incorrect hit
association defined as truth 0, for which its hit-pairs do not belong to the same track. Hit-pairs
for the pixel barrel and endcap are handled separately in order to build regional classifiers. A
similar methodology was used for both, this paper outlines the approach taken for the barrel.

Figure 1: Seed illustration in r-z plane (mm)
of the ID. The inner doublet consists of hits 1,
2 and the outer doublet consists of hits 2, 3.
The longitudinal pixel-cluster width wη (mm)
is measured in the direction of η, where θ is
the angle of inclination with respect to the z
axis.

2.2. Classifier Development
The data was split into a training and a test dataset using a 70:30 split. The training data was
plotted in the phase space of [|cot(θ)|, wη] where discrete 1-dimensional bands were observed; this
is a direct result from the simulation of the pixel geometry on the modules. Figure 2 shows the
1-dimensional distributions of |cot(θ)| for wη ≤ 0.4 mm; a clear distinction can be seen between
the two classes. In order to discriminate between the correct and incorrect hit association, Bayes’
theorem was used, as it relies on having a prior probability of belief and a conditional likelihood.
The Bayes’ classifier was implemented in a generative way, as the likelihood was computed via
a Kernel Density Estimate (KDE) fitted to each correct hit association distribution of discrete
wη. The choice of bandwidth for the Gaussian kernel was optimised and determined using
Silverman’s method in order to prevent over- or under-fitting [3]. Therefore, each model was
trained as follows; the feature vector x comprising |cot(θ)| and the truth label of the doublet
formed the target vector y. For unknown data points, the class which maximised the posterior
was the class prediction.

After training, each classifier’s predictions were tuned using its corresponding Receiver
Operating Characteristic ROC curve [4] to yield a True Positive Rate (TPR) of 0.95 in
order to maintain a high purity of correct hit-pairs. Figure 4 shows the adjusted classifier
predictions for each distribution for pixel-barrel hits. A 2-dimensional acceptance-rejection
region is constructed; the black region of acceptance shows doublets predicted with correct hit
association, which follow a linear corridor trend with a moving average as the cluster width
increases. Regions of high rejection are predicted as areas with low pixel cluster width and large
track inclination, as well as large pixel cluster width and small track inclination. This is to be
expected to originate from the forward region of the detector. Overall, the recall (and TPR)
achieved for doublets with correct hit association was determined to be a tuned 95%. The purity



achieved was 56% and the F1 score 71%. For each classifier, the triplet selection efficiency and
total rejection rate were also evaluated in order to give an indication of speed-up factor.

Figure 2: |cot(θ)| distribution for truth
pixel-barrel doublets from MC 13 TeV tt̄ <
µ >= 80 samples with wη ≤ 0.4 mm. wη

the pixel cluster width measured in the η
direction, θ is the inclination angle of the
doublet with respect to z [5].

Figure 3: ROC curve generated from KDE-
based classifier predictions on pixel-barrel
doublet data for wη ≤ 0.4 mm. Area Under
Curve (AUC) achieved is 0.79. The model is
fitted with Gaussian KDE, trained on MC 13
TeV tt̄ < µ >= 80 samples [5].

Figure 4: Predicted classification of pixel-
barrel hit-pairs from the ATLAS pixel
detector to tracks corresponding to truth
particles. |cot(θ)|, where θ is the inclination
angle of the doublet with respect to z, vs pixel
cluster width measured in the η direction,
wη. Classifiers were trained using pixel-
barrel doublets MC 13 TeV tt̄ < µ >= 80
samples and used to discriminate between
doublets which have correct and incorrect hit
association [5].

3. Performance Evaluation
Classifier predictions for the pixel barrel (Figure 4) and endcap regions were implemented directly
into the ATLAS HLT Fast Tracking to reduce computational overheads. This was achieved
by converting the predefined acceptance region into a Look-Up Table (LUT) using a common
image processing technique known as Morphological Filtering [6].

A comparison of full scan ID efficiencies as a function of MC truth track η and pT, for
the nominal seeding approach and with application of ML filtering within the pixel detector,
are shown in Figures 5a and 5b. The nominal seeding approach achieved an average tracking
efficiency of 95% with respect to MC truth tracks. With application of ML filtering at < µ > =
80, an average tracking efficiency of 93.9% was observed and speed-up by a factor of 2.3. The
main loss in efficiency is observed at regions of large |η|, which may be a direct result of material
effects from the forward detector region.



(a) Efficiency vs. MC truth track η. (b) Efficiency vs. MC truth track pT.

Figure 5: Tracking efficiencies as a function of track parameters for pT > 3 GeV, for the
ATLAS full detector tracking with tt̄ < µ > = 80. The data points show the efficiency when
using ML extensions in the seed building stages of Fast Tracking in the ATLAS pixel detector,
prior to track fitting. The errors shown are purely statistical [5].

3.1. CPU Time Comparison
Table 1 summarises the breakdown in speed-up factor achieved at various stages within the Fast
Tracking trigger algorithm, with the application of the trained LUT for the pixel region. The
greatest saving in CPU time is achieved during the Seed Processing stage, as a direct result
of a significant reduction in the number of seeds. The average number of seeds processed for
a given region of interest for the standard tracking is O(104), whereas with the introduction of
ML filtering for pixel seeds, about 78% fewer seeds were observed. This significant reduction in
CPU time does not only benefit the Seed Processing stage of the combinatoric track following,
but also propagates to Track Fitting.

Table 1: Performance of the ATLAS full detector tracking with MC 13 TeV tt̄ samples at
< µ >= 80, with the application of ML extensions for filtering on pixel detector hit-pairs in
the Fast Tracking trigger stage [5]. The total speed-up factor and breakdown of speed-ups at
different stages of the Fast Tracking trigger algorithm are presented, each speed-up is presented
with respect to the standard trigger seeding where no ML extensions were applied.

Total Speed-up Factor Seed Generation Seed Processing Track Fitting

2.3 1.3 3.3 1.5

3.2. Changing Pileup Conditions
Table 2 summarises the relative efficiency loss and relative speed-up factor, with application of
ML extensions for the ATLAS pixel detector in various mean pile-up interaction multiplicities
< µ >. The speed-up factor increases as < µ > increases with minimal loss in efficiency.



Table 2: Performance of the ATLAS full detector tracking with MC 13 TeV tt̄ samples at
< µ > = 40, 60 and 80, with the application of ML extensions for filtering on pixel detector
hit-pairs in the Fast Tracking trigger stage prior to the track fitting [5]. The absolute loss in
average tracking efficiency and the total speed-up factor for seeded track finding in the ATLAS
pixel detector are presented with respect to the standard trigger seeding where no ML extensions
were applied. The efficiency loss is mainly observed at large |η|. The statistical uncertainties in
efficiencies are O(10−3), hence are not quoted.

< µ > Efficiency Loss (%) Total Speed-up Factor

40 0.7 1.6
60 0.7 2.1
80 1.1 2.3

4. Summary
The application of a ML-based classifier for seed selection in the ATLAS ID has provided
significant CPU savings on trained MC data at various pileup levels. The trained predictor
in the form of a LUT yields 2.3× speed-up with minimal loss in efficiency (1.1%) at < µ >= 80
compared with the standard trigger tracking. The developed ML pipeline provides a way to
generate custom LUTs by training the predictor to yield a required TPR, dependent on the
degree of efficiency required. Reducing the proportion of fakes at an earlier stage in the ATLAS
HLT track seeding, ensures the reduction in CPU usage overall. Efficient use of computing
power will become an increasingly important factor in the selection of physics objects as the
luminosity and pileup increase during future upgrades of the LHC program.
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