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Simulations and analytical calculations that aim to describe flux-tunable transmons are usually
based on effective models of the corresponding lumped-element model. However, when a control
pulse is applied, in most cases it is not known how much the predictions made with the effective
models deviate from the predictions made with the original lumped-element model. In this work we
compare the numerical solutions of the time-dependent Schrödinger equation for both the effective
and the lumped-element models, for various control pulses. We consider three different systems:
a single flux-tunable transmon and two two-qubit systems. We find that a series of commonly
applied approximations (individually and/or in combination) can change the response of a system
substantially, when a control pulse is applied.
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I. INTRODUCTION

The successful construction of a fully functioning uni-
versal quantum computer comes with the promise of al-
lowing us to solve certain computational problems faster
(potentially exponentially faster) than with a classical
computer. However, the construction of a universal quan-
tum computer comes with its own challenges, i.e. the
task to understand the dynamic behaviour of quantum
systems.
Many experimental prototypes, which aim to realise a

universal quantum computer, are based on superconduct-
ing circuits. Theoretical descriptions of these systems of-
ten use a so-called circuit Hamiltonian model. Here we
make a lumped-element approximation [1, 2] to derive
a Hamiltonian, see for example Ref. [3], which approxi-
mately describes the behaviour of a particular supercon-
ducting circuit.
Unfortunately, it is usually the case that the circuit

Hamiltonian model is still too complicated to be treated
analytically. Therefore, in most cases additional simpli-
fications are made so that an approximant of the circuit
Hamiltonian can be derived. These approximants usually
do not come with an estimation of the corresponding ap-
proximation error.
In this work we numerically study several instances of

such approximants, i.e. effective Hamiltonians, by com-
paring them to their circuit Hamiltonian counterparts.
To this end, we solve the time-dependent Schrödinger
equation (TDSE) for both models. This allows us to
compare the corresponding solutions and to filter out
differences. Furthermore, we also compare the spectra
of selected models.
Since the number of different superconducting circuits

is vast, we will focus on three different circuit Hamiltoni-
ans (two of them correspond to experimental systems; see
Refs. [4, 5])) and their corresponding effective Hamiltoni-

ans. Note that for a particular circuit Hamiltonian there
might exist a vast amount of different effective models.

Broadly speaking (here we neglect all systems which
are not based on transmon qubits), one might divide the
different circuit architectures into two categories: archi-
tectures which only use fixed-frequency transmon qubits
(an architecture which is primarily studied by IBM) and
those using flux-tunable transmon qubits to implement
their two-qubit gates. In this work, we focus on cir-
cuits which use flux-tunable transmons to implement
two-qubit gates. Additionally, we restrict our analysis to
systems which only contain one or two qubits, as this suf-
fices to show where the models deviate from each other.

We look at three different systems. The first system is
a single flux-tunable transmon. The second system (ar-
chitecture I) consists of two fixed-frequency transmons,
coupled to a flux-tunable transmon (this transmon works
as a coupler). The third system (architecture II) is made
up of two flux-tunable transmons, coupled to a trans-
mission line resonator (this resonator functions only as a
coupler element).

This work is structured as follows. In Sec. II we intro-
duce and define the different models (the circuit model
Hamiltonians and their effective counterparts). Here we
also define a simple control pulse. This pulse enables us
to activate a variety of transitions between the states of
the systems we consider. Section III introduces the simu-
lation algorithm and its features. Section IV contains the
main results of this work. First, in Sec. IVA, we study
a single isolated flux-tunable transmon and analyse the
validity of the approximations which lead to this effective
model. Next, in Sec. IVB, we identify several transitions
(interactions) which are suppressed by the approxima-
tions we make to derive the effective model. Finally, in
Sec. IVC, we study two-qubit gate transitions, i.e. tran-
sitions which can be used to implement two-qubit gates
(in the corresponding architectures I and II). Here we fo-
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cus on the often made approximation (see Ref. [4, 6–9])
that the effective interaction strength is of static nature.
A summary and conclusions drawn from our analysis are
presented in Sec. V.

II. MODEL

In this section we introduce the circuit Hamiltonian
model (see Sec. II A) and we review some commonly
made arguments which justify the use of effective model
Hamiltonians (see Sec. II B). Furthermore, in Sec. II C
we define a control pulse which can be used to imple-
ment single- and two-qubit gate transitions.

A. Circuit Hamiltonians

The systems we intend to model in this work consist
of two different types of transmons as well as transmis-
sion line resonators. The couplings between the different
subsystems are modelled as dipole-dipole interactions.
The circuit Hamiltonian which describes the so-called

fixed-frequency transmon [10] is defined as

ĤFix = EC(n̂− ng(t))
2 − EJ cos(ϕ̂), (1)

where EC denotes the capacitive energy and EJ is the
Josephson energy. The Hamiltonian is defined in terms
of the charge (n̂) and the flux (ϕ̂) operators. The time-
dependent variable ng(t) denotes a control field, which is
related to the voltage pulse applied to the system.
The other type of transmon is the flux-tunable trans-

mon [11]. This type of transmon is the main object of our
investigation. The corresponding circuit Hamiltonian is
defined as

ĤTun = EC n̂
2 − EJ,1 cos(ϕ̂)− EJ,2 cos(ϕ̂− ϕ(t)). (2)

This system is characterised by two Josephson energies
EJ,1 and EJ,2 and another time-dependent variable ϕ(t),
which represents an external flux. This external flux is
dimensionless

ϕ(t) = Φ(t)/φ0, (3)

where Φ(t) has the dimension of flux and φ0 is the flux
quantum. Furthermore, since the Hamiltonian is 2π pe-
riodic, ϕ(t) is usually given in units of 2π. We adopt this
convention too.
Individual transmons can be coupled directly, or indi-

rectly, or both. In this paper, we only consider indirect
couplings. This means interactions between individual
transmons are conveyed by an additional circuit element,
often called a coupler. This coupler can be a transmon
itself or a transmission line resonator.
Transmission line resonators are described by the

Hamiltonian

ĤRes = ωRâ†â, (4)

where ωR is the resonator frequency. The operators â†

and â are bosonic creation and annihilation operators.
We describe the dipole-dipole coupling between two

arbitrary transmons i and j by means of the interaction
operator

V̂i,j = Gi,j n̂in̂j , (5)

where Gi,j is the interaction strength. Similarly, we
model the coupling between an arbitrary resonator j and
an arbitrary transmon i with the operator

Ŵj,i = Gj,i(â
† + â)j n̂i. (6)

We can use the different subsystems and the corre-
sponding interaction terms to construct different circuit
architectures. In this work, we consider two different
architectures, which use flux-tunable transmons to im-
plement the Iswap and Cz two-qubit gates. Architecture
I, which is discussed in Refs. [4, 8, 9, 12], is described by
the circuit Hamiltonian

ĤI = ĤTun,2 + ĤFix,1 + ĤFix,0 + V̂2,1 + V̂2,0, (7)

and architecture II, which is discussed in Refs. [5, 13], is
described by

ĤII = HRes,2 + ĤTun,1 + ĤTun,0 + Ŵ2,1 + Ŵ2,0. (8)

In the first case, we use a flux-tunable transmon to in-
directly couple two fixed-frequency transmons. In the
second case, we use a resonator as a coupler between two
flux-tunable transmons. The device parameters that we
use in our simulations to obtain the results in Sec. IV,
are listed in Table I (for architecture I) and Table II (for
architecture II), respectively.

B. Effective Hamiltonians

Circuit Hamiltonian Eq. (1) was analytically discussed
by Koch et al. [10]. This work motivated several stud-
ies [4, 6–8, 14] where transmons (fixed-frequency and/or
flux-tunable) are modelled as anharmonic oscillators with
fixed or tunable frequencies. The anharmonic oscillator
is defined in terms of the harmonic basis

B = {|m〉}m∈N, (9)

where |m〉 is an energy eigenstate of the harmonic os-
cillator Hamiltonian. The fixed-frequency transmon is
modelled by means of the effective Hamiltonian

Ĥfix = Ĥ0
fix + V̂fix(t). (10)

Here, the system is operated in the transmon regime with
EJ/EC ≫ 1. The time-independent part Ĥ0

fix can be
expressed in terms of projectors as

Ĥ0
fix =

∑

m=0,1,2,3

(

mω +
α

2
m(m− 1)

)

|m〉〈m| , (11)
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TABLE I. Device parameters for a tunable coupler architec-
ture (architecture I). The parameter ω = E1−E0 denotes the
qubit frequency and α = (E2 − E1) − (E1 − E0) is the so-
called qubit anharmonicity. All units are in GHz except the
flux offset parameter ϕ0 = ϕ(0) which is given in units of the
flux quantum φ0, see Eqs. (3) and (23). These parameters are
motivated by experiments performed by Ganzhorn et al. [4].

i ω/2π α/2π EC EJ,1 EJ,2 ϕ0/2π G2,i

0 5.100 -0.310 6.777 84.482 n/a n/a 0.085

1 6.200 -0.285 6.453 127.992 n/a n/a 0.085

2 8.100 -0.235 5.529 112.450 134.999 0.15 n/a

TABLE II. Device parameters for architecture II. The param-
eters in this table have the same units as the parameters in
Table I. These device parameters are motivated by experi-
ments performed by Lacroix et al. [5].

i ωR/2π ω/2π α/2π EC EJ,1 EJ,2 ϕ0/2π G2,i

0 n/a 4.200 -0.320 6.712 19.728 59.184 0 0.300

1 n/a 5.200 -0.295 6.512 30.265 60.529 0 0.300

2 45.000 n/a n/a n/a n/a n/a n/a n/a

where ω = E1 − E0 ≃
√
2ECEJ denotes the qubit fre-

quency and α = (E2 − E1)− (E1 − E0) ≃ −EC/4 is the
anharmonicity. Note that we truncate the complete state
space, i.e. we only use the lowest four states to model the
system.
The time-dependent term V̂fix(t) allows us to influence

the time evolution of the transmon. This term can be
expressed as

V̂fix(t) = Ω(t)
∑

m=0,1,2,3

√
m+ 1 (|m〉〈m+ 1|+ |m+ 1〉〈m|) ,

(12)
where Ω(t) = −ng(t)

√
8ECEJ .

Often the effective Hamiltonian for the flux-tunable
transmon is defined in a similar way. Here one makes
use of the similarity between both circuit Hamiltonians
in Eqs. (1) and (2). We can make this similarity more
explicit by recasting Eq. (2). The result reads

ĤTun = EC n̂
2 − EJ,eff(t) cos(ϕ̂ − ϕeff(t)), (13)

with the effective Josephson energy

EJ,eff(t) = EΣ

√

cos

(

ϕ(t)

2

)2

+ d2 sin

(

ϕ(t)

2

)2

, (14)

and the effective external flux

ϕeff(t) = arctan

(

d tan

(

ϕ(t)

2

))

. (15)

Here, we introduced the new parameters EΣ = (EJ,1 +
EJ,2) and d = (EJ,2 − EJ,1)/(EJ,2 + EJ,1). The latter
one is usually referred to as the asymmetry factor, see
Ref. [7, 10].

Since both Hamiltonians in Eqs. (1) and (13) have the
same form, it is usually argued, see Refs.[4, 6–9], that
only the Josephson energy EJ in the expression for the
qubit frequency ω ≃

√
2ECEJ has to be replaced by the

effective Josephson energy EJ,eff. This leads then to the
time-dependent qubit frequency

ω(t) =
√

2ECEΣ
4

√

cos

(

ϕ(t)

2

)2

+ d2 sin

(

ϕ(t)

2

)2

.

(16)
Therefore the effective Hamiltonian reads

Ĥtun =
∑

m=0,1,2

(

mω(t) +
α

2
m(m− 1)

)

|m〉〈m| . (17)

Since the model Hamiltonian for the transmission line
resonator Eq. (4) is already diagonal, no further approx-
imations are necessary. However, if we intend to de-
rive effective Hamiltonians for the circuit Hamiltonians
in Eqs. (7) and (8), we also have to consider the interac-
tion operators. This means we have to replace the charge
operator n̂ by an effective operator n̂eff. In this work we
use the operator

n̂eff = 4

√

EJ

8EC

∑

m=0,1,2

√
m+ 1 (|m〉〈m+ 1|+ |m+ 1〉〈m|) ,

(18)
which was also discussed by Koch et al. [10]. If we couple
flux-tunable transmons, we have to perform the substi-
tution EJ → EJeff(t). The effective interaction strength
for a coupling between a fixed-frequency transmon i and
a flux-tunable transmon j is given by

gj,i(t) = Gj,i
4

√

EJjeff(t)

8ECj

4

√

EJi

8ECi

, (19)

where Gj,i is the original coupling strength (see Eqs. (5)
and (6)). Similarly, the effective interaction strength,
between a resonator j and a flux-tunable transmon i,
reads

ḡj,i(t) = Gj,i
4

√

EJieff(t)

8ECi

. (20)

We find that the effective interaction strength is now
time dependent. Note that this time dependence is often
neglected, see Refs. [4, 7–9]. It is often the case, that
the complete effective Hamiltonian is expressed solely in

terms of bosonic operators b̂ and b̂†. In this represen-
tation the effective model Hamiltonian for architecture I
reads

Ĥeff
I = ω2(t)b̂

†
2b̂2 +

α2

2
b̂†2b̂2(b̂

†
2b̂2 − Î)

+ ω1b̂
†
1b̂1 +

α1

2
b̂†1b̂1(b̂

†
1b̂1 − Î)

+ ω0b̂
†
0b̂0 +

α0

2
b̂†0b̂0(b̂

†
0b̂0 − Î)

+ g2,1(t)(b̂
†
2 + b̂2)(b̂

†
1 + b̂1) + g2,0(t)(b̂

†
2 + b̂2)(b̂

†
0 + b̂0).

(21)
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TABLE III. Parameters for an effective Hamiltonian model of
architecture I, see Table I and Eq. (7) for details and units.

i ω/2π α/2π ϕ0/π g2,i(ϕ0)

0 5.100 -0.310 n/a 0.146

1 6.200 -0.285 n/a 0.164

2 8.100 -0.235 0.15 n/a

TABLE IV. Parameters for an effective Hamiltonian model of
architecture II, see Table II and Eq. (8) for details and units.

i ωR/2π ω/2π α/2π ϕ0/2π g2,i(ϕ0)

0 n/a 4.200 -0.320 0 0.307

1 n/a 5.200 -0.295 0 0.344

2 45.000 n/a n/a n/a n/a

Similarly, the effective model Hamiltonian for architec-
ture II can be expressed as

Ĥeff
II = ωR

2 â
†
2â2

+ ω1(t)b̂
†
1b̂1 +

α1

2
b̂†1b̂1(b̂

†
1b̂1 − Î)

+ ω0(t)b̂
†
0b̂0 +

α0

2
b̂†0b̂0(b̂

†
0b̂0 − Î)

+ ḡ2,1(t)(â
†
2 + â2)(b̂

†
2 + b̂2) + ḡ2,0(t)(â

†
2 + â2)(b̂

†
0 + b̂0).

(22)

The device parameters that we use in our simulations
to obtain the results in Sec. IV, are listed in Table III
(for architecture I) and Table IV (for architecture II),
respectively.

C. Control Pulse

All simulations in this work are performed with a con-
trol pulse (external flux) of the form

ϕ(t) = ϕ0 + δe(t) cos(ωDt), (23)

where the real valued parameters ϕ0, δ and ωD denote the
flux offset, the pulse amplitude and the drive frequency,
respectively. The envelope function e(t) is taken to be of
the form

e(t) =











sin(λt) if 0 ≤ t < Tr/f

1 if Tr/f ≤ t ≤ ∆T

sin(π2 + λ(t−∆T )) if ∆T < t ≤ Td.

(24)

Here Tr/f denotes the rise and fall time, Td is the control
pulse duration and ∆T = (Td−Tr/f). The parameter λ =
π/(2Tr/f) is determined by the rise and fall time. This
generic flux pulse allows us to control various transitions
between states of the systems.
Figure 1 shows the external flux ϕ/2π as a function of

time for the two different types of flux control pulses we
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FIG. 1. (Color online) External flux ϕ/2π as a function
of time for two different flux control pulses. Figure 1(a):
microwave pulse using Eq. (23), amplitude δ/2π = 0.075,
drive frequency ωD/2π = 1.089 GHz, a rise and fall time of
Tr/f = 13 ns and pulse duration Td = 205.4 ns. Figure 1(b):
unimodal pulse using Eq. (23), amplitude δ/2π = 0.297, drive
frequency ωD/2π = 0 ns, a rise and fall time of Tr/f = 20 ns
and pulse duration Td = 84 ns.

use in this work. Figure 1(a) shows a microwave pulse.
Here we use Eq. (23), the amplitude δ/2π = 0.075, the
drive frequency ωD/2π = 1.089 GHz, a rise and fall time
Tr/f = 13 ns and the pulse duration Td = 205.4 ns. This
type of control pulse is used for architecture I. Figure 1(b)
shows a unimodal pulse. Here we use Eq. (23), the am-
plitude δ/2π = 0.297, the drive frequency ωD/2π = 0
ns, a rise and fall time Tr/f = 20 ns and the pulse du-
ration Td = 84 ns. This type of control pulse is used to
implement non-adiabatic gates [15] with architecture II.

III. SIMULATION ALGORITHM

In this section we discuss how we obtain the numerical
results presented in Sec. IV.
The formal solution of the TDSE

i∂t |Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 , (25)

with ~ = 1 for an arbitrary time-dependent Hamiltonian
Ĥ(t), reads

Û(t, t0) = T exp

(

−i

∫ t

t0

Ĥ(t′)dt′
)

, (26)

where T is the time-ordering symbol. Numerical calcula-
tions require that this expression is discretised, with steps
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of length τ . The corresponding time-evolution operator

Û(t+ τ, t) = exp
(

−iτĤ(t+
τ

2
)
)

, (27)

can then be implemented for every time step.
In this work we use the so-called product-formula al-

gorithm [16, 17] to solve the TDSE. This algorithm is
explicit, inherently unitary, and unconditionally stable
by construction. Here the time step parameter τ needs
to be chosen small enough, with respect to the energy
scales and the other relevant time scales of Ĥ(t), such
that the exact mathematical solution of the TDSE is ob-
tained up to some fixed numerical precision. Practically,
this means we decrease τ until it is small enough such
that the relevant decimals do not change anymore. This
procedure has to be repeated every time we make changes
to the system, i.e. if we change the system parameters
or the control pulse parameters.
Furthermore, for some computations, e.g. if we com-

pute the spectrum of a Hamiltonian, we use a standard
diagonalisation algorithm to obtain the eigenvalues and
eigenstates of a Hamiltonian Ĥ(t).
For the simulations of the effective models, see

Eqs. (21) and (22), we use four basis states for all trans-
mons (fixed-frequency and/or flux-tunable) and also for
the resonators. The simulation basis here consists of the
bare, instantaneous basis states, see Sec. IVA for more
details.
The simulations of the circuit Hamiltonian models are

performed in the bare transmon basis, for more details
see Appendix A. Here we use as many states as neces-
sary, i.e. we increase the number of basis states Nm until
the numerical values of the observables converge to some
fixed numerical precision. This allows us to obtain an
approximation free, numerical solution of the TDSE for
the circuit Hamiltonian model.

IV. RESULTS

In this section we present our findings. First, in
Sec. IVA, we consider a single isolated flux-tunable
transmon. Here we focus on the transition dynamics
and the spectrum of the system. Next, in Sec. IVB,
we identify transitions (interactions) which seem to be
suppressed in the effective model of architecture I, see
Eq. (21). Finally, in Sec. IVC, we study how different
approximations affect the unsuppressed transitions which
are often used to implement two-qubit gates with archi-
tectures I and II.
A detailed discussion of all the results for all circuit

Hamiltonians in Eqs. (2), (7) and (8) and the correspond-
ing effective Hamiltonians in Eqs. (17), (21) and (22)
exceeds the scope of a monograph. For this reason we
provide a detailed discussion of the results for the circuit
Hamiltonian simulations (where we do not make approx-
imations to solve the TDSE) in Appendix A. A summary
of the results for the circuit Hamiltonian simulations can

be found in Table VI. Here we use the device parameters
listed in Table I (architecture I) and Table II (architec-
ture II) to obtain the results. In the following sections we
compare these results with the ones we obtain by simu-
lating the effective Hamiltonians Eqs. (17), (21) and (22)
with the device parameters listed in Tables III and IV.

A. Simulations of a single flux-tunable transmon

The time evolution of the effective system described
by Ĥtun, given in Eq. (17), is very simple. If we initialise
the system in some arbitrary state

|Ψtun(t0)〉 =
∑

m=0,1,2,3

cm(t0) |m〉 , (28)

we obtain

|Ψtun(t)〉 =
∑

m=0,1,2,3

e
−i

∫
t

t0
E(m)(t′)dt′

cm(t0) |m〉 , (29)

as the formal solution of the TDSE.
As one can see, the state population cannot change, no

matter how we modulate the external flux ϕ(t). If we con-
sider the circuit Hamiltonian model, we find that there
are several instances where this is not case. Note that
we use the labels Ĥtun and ĤTun to differentiate between
the effective (former) and the circuit (latter) model.
If we initialise the system in the lowest eigenstate |φ(0)〉

of Hamiltonian ĤTun, see Eq. (2) and apply a pulse of
the form Eq. (23), see Fig. 1(a), with the parameters
listed in Table VI, we find that the circuit Hamiltonian
allows us to stimulate the transition |φ(0)〉 → |φ(1)〉. Note
that in this scenario the drive frequency ωD is set to
the qubit frequency. These results for the circuit Hamil-
tonian model can be found in Appendix A, see Fig. 9.
Clearly, the effective Hamiltonian Ĥtun does not allow us
to model such transitions.
The state vector Eq. (29) might also fail to reproduce

the results of the circuit Hamiltonian model if we apply a
fast changing unimodal flux pulse ϕ(t), see Fig. 1(b). Fig-
ure 2 shows the quantity 1−p(m)(Td), form ∈ {0, 1, 2, 3},
as a function of the rise and fall time Tr/f and the pulse
amplitude δ. Here

p(m)(Td) = | 〈φ(m)|ΨTun(Td)〉 |2, (30)

denotes the probability of finding the system in the eigen-
state |φ(m)〉 of circuit Hamiltonian Eq. (2) after the ap-
plication of a pulse of the form Eq. (23) with ωD = 0,
Td = 50 and |ΨTun(0)〉 = |φ(m)〉. We use the circuit
Hamiltonian Eq. (2) and the parameters listed in Table I
(i = 2) to obtain the results. Figure 2 shows the cases
for m = 0(a), m = 1(b), m = 2(c) and m = 3(d). As one
can see, Fig. 2 shows that

1− p(m)(Td) 6= 0 (31)



6

(a) (b)

(c) (d)

 2  4  6  8  10
Tr/f [ns]

 0

 0.1

 0.2

 0.3

 0.4

 0.5
δ/

2 
π

10-1

100

101

102

1-
p(0

) (T
d)

(a) (b)

(c) (d)

 2  4  6  8  10
Tr/f [ns]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

δ/
2 

π

10-1

100

101

102

1-
p(1

) (T
d)

(a) (b)

(c) (d)

 2  4  6  8  10
Tr/f [ns]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

δ/
2 

π

10-1

100

101

102

1-
p(2

) (T
d)

(a) (b)

(c) (d)

 2  4  6  8  10
Tr/f [ns]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

δ/
2 

π

10-1

100

101

102

1-
p(3

) (T
d)

FIG. 2. (Color online) Probabilities 1− p(m)(Td) as functions
of the rise and fall time Tr/f and the pulse amplitude δ form =
0(a), m = 1(b), m = 2(c) and m = 3(d). The pulse duration
is set to Td = 50. We use circuit Hamiltonian Eq. (2), the
pulse form Eq. (23) (with ωD = 0) and the parameters listed
in Table I (i = 2) to obtain the results. The formal solution of
the TDSE for the effective model and this specific scenario is
given in Eq. (32). Since this solution is zero for all parameters
and all ϕ(t), we find that Fig. 2(a-d) show the deviations
between the circuit and the effective model.

for various δ and Tr/f . If we model the same scenario
with the effective Hamiltonian Eq. (17), we find

1− | 〈φ(m)|Ψtun(Td)〉 |2 = 0, (32)

for all m and all pulses ϕ(t). The deviations are partic-
ularly large if δ → 0.5 and Tr/f → 0 (for all m). Further-
more, for the pulse we use here, it seems to be the case
that higher states (see m = 2 and m = 3) suffer more
from this effect. Certainly, this effect is not negligible
when it comes to modelling fast two-qubit gates [18, 19].
It is likely that there exist better control pulses which
minimise this effect. The functional form we use here
was chosen such that we can drive all transitions with
a single pulse form. However, it already shows that we
can drive unexpected transitions of the system if we only
consider the effective model for this pulse.
The formal solution in Eq. (29) is similar but not equiv-

alent (in the sense that the solutions of the corresponding
TDSEs only differ by a dynamic phase factor) to the non-
degenerate adiabatic approximation [20]. Furthermore, it
is well known that the adiabatic approximation fails to
describe fast driven resonant transitions, for a detailed
discussion of this issue see Ref. [21].

If we use Hamiltonian Ĥtun to model the qubit, we
make another assumption, namely that the spectrum can
be approximated by the expression

(

E(m)(ϕ)− E(0)(ϕ)
)

=

(

mω(ϕ) +
α(ϕ)

2
m(m− 1)

)

.

(33)
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FIG. 3. (Color online) Deviations between the numerically
exact spectrum and two different approximations of this spec-
trum as a function of the external flux ϕ for an asymmetry
factor d = 0.33(a) and d = 0.5(b). First, we compute the nu-
merically exact spectrum with 101 bare basis charge states.
Then we use two different sets of expressions for the qubit
frequency and anharmonicity to determine the approximated
spectrum with Eq. (33). First case, ω(ϕ) is given by Eq. (16)
and α(ϕ) = const.. Second case, ω̃(ϕ) is given by Eq. (B1)
and α̃(ϕ) is given by Eq. (B2). In the end, we use Eq. (34) to
determine the deviations between the numerically exact ener-
gies and the different approximants, cases one and two. We
use the capacitive and Josephson energies as well as the qubit
frequency and anharmonicity which are listed in Table I, row
i = 2. Note that for m = 1 the deviations become indepen-
dent of α(ϕ), see Eqs. (33) and (34). Therefore, we can label
the different deviations by the functions we use for the qubit
frequency and anharmonicity.

where ω(ϕ) is given by Eq. (16) and α(ϕ) is constant.
Note that we temporarily removed the explicit time de-
pendence ϕ(t) → ϕ since the spectrum exhibits sym-
metries with respect to the variable ϕ, see Hamiltonian
Eq. (2).
Figure 3(a,b) shows the deviations

∆
(

E(m)(ϕ)− E(0)(ϕ)
)

=

∣

∣

∣

∣

(

E
(m)
exact.(ϕ)− E

(0)
exact.(ϕ)

)

−
(

mω(ϕ) +
α(ϕ)

2
m(m− 1)

) ∣

∣

∣

∣

,

(34)

for m = 1 (on the left y-axis) and m = 2 (on the right y-
axis) between the numerically exact spectrum of Hamil-
tonian Eq. (2) and two different sets of expressions for
the qubit frequency and anharmonicity in Eq. (34) as a
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function of the external flux ϕ. First, we use the pa-
rameters listed in Table I, row i = 2, to compute the
numerically exact values for two different asymmetry fac-
tors d = 0.33(a) and d = 0.5(b). Then we compute the
approximated spectrum by means of Eq. (33). Here we
consider two different cases. In the first case, we use
Eq. (16) for ω(ϕ), α(ϕ) = const. and Eq. (33) to com-
pute the energies. In the second case, we use the series
expansions ω̃(ϕ), α̃(ϕ) (see Eqs. (B1) and (B2) respec-
tively) and Eq. (33) to do the same. Both, Eqs. (B1)
and (B2) were taken from Didier et al. [22]. Note that
for m = 1, see Eqs. (33) and (34), the deviations be-
tween the different spectra become independent of α(ϕ).
Therefore, we can label the different deviations by the
functions we use to obtain the results.
As one can see, the first set of expressions Eq. (16)

and α(t) = const. deviate more, from the exact solution,
than Eqs. (B1) and (B2). In both cases, the deviations
grow as the external flux ϕ approaches the value 0.5.
Furthermore, the asymmetry factor d seems to influence
how well the spectrum is approximated. If we compare
Figs. 3(a,b), we find that in Fig. 3(b) the deviations can
be smaller, e.g. by a factor of ten (compare right y-axis
of Figs. 3(a,b)).
The deviations in the spectrum can change the be-

haviour of the system, once a flux pulse is applied. In
particular, if we implement non-adiabatic two-qubit gates
[15, 19], the spectrum determines whether or not tran-
sitions occur. This becomes even more important if we
consider several flux-tunable transmon qubits in one sys-
tem. Here the errors, in terms of the spectrum, might
add up and enhance or suppress different transitions be-
tween states. Therefore, an accurate modelling of the
spectrum is important.
In conclusion, the effective flux-tunable Hamiltonian

does not allow us to model resonant transitions between
the different states of the flux-tunable transmon. Also,
non-adiabatic errors are suppressed, see Fig. 2. Further-
more, approximating the spectrum of the qubit by means
of Eq. (16) and α = const. does not lead to very accurate
results if we consider pulses ϕ(t) with large amplitudes
δ, see Eq. (23).

B. Simulations of suppressed transitions in the

effective two-qubit model

In the previous section, we discussed the case of a sin-
gle flux-tunable transmon. In this section we consider
transitions in a two-qubit system which are suppressed
in the effective model. Here we use the effective model
Hamiltonian Eq. (21) and the parameters listed in Ta-
ble III to obtain the results. The effective Hamiltonian
describes a two-qubit system (two qubits and one cou-
pler). We index the different states by using tuples of
the form z = (k0,m1,m0), where k0 ∈ {0, 1, 2, 3} is the
coupler index, m1 ∈ {0, 1, 2, 3} is the index of the second
qubit and m0 ∈ {0, 1, 2, 3} is the index of the first qubit.
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FIG. 4. (Color online) Chevron pattern (a), for a pulse of the
form Eq. (23) with the drive frequency ωD

0 = 6.183 and the
amplitude δ/2π = 0.005. Chevron pattern (b), for a pulse of
the form Eq. (23) with the drive frequency ωD

0 = 5.092 and the
amplitude δ/2π = 0.009. We use the same rise and fall time
Tr/f = 13 for both cases and a pulse duration Td of around 50
ns. These patterns show how the circuit Hamiltonian Eq. (7)
(with the parameters listed in Table I) reacts to two different
pulses, characterised by the different pulse parameters. The
color bar shows the probability p(0,0,0)(t) as a function of time
t. The chevron patterns are used to calibrate control pulses,
which are then used to obtain the results in Table VI.

Our aim is to model the following transitions z =
(0, 0, 0) → z = (0, 1, 0) and z = (0, 0, 0) → z = (0, 0, 1)
for a two-qubit system. We are able to model these tran-
sitions with the circuit Hamiltonian Eq. (7) and the de-
vice parameters listed in Table I, the pulse parameters
are summarised in Table VI. However, we find that the
effective model does not respond to pulses of the form
Eq. (23), with pulse parameters similar to the ones given
in Table VI. Therefore, we search for the corresponding
transitions in a more systematic way.
We initialise the system in the state z =

(0, 0, 0) and compute the probability p(0,0,0)(ωD, δ, t) =
| 〈φ(0,0,0)|Ψ(ωD, δ, t)〉 |2 for various control pulses, which
are characterised by the drive frequency ωD and the am-
plitude δ. This allows us to determine the function

ǫ = 1− min
(ωD,δ,t)∈G

(p(0,0,0)(ωD, δ, t)), (35)

where G ⊆ R
3 denotes a grid which ranges over a discrete

set of pulse parameters and a discrete set of points in
time.
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TABLE V. Results of the computation of the function ǫ =
1 − min(ωD,δ,t)∈G(p

(0,0,0)(ωD, δ, t)). Here ωD denotes the
drive frequency and δ is the pulse amplitude. The initial
state of the system is |φ(0,0,0)〉 in all cases. The probabil-

ity p(0,0,0)(ωD, δ, t) = | 〈φ(0,0,0)|Ψ(ωD, δ, t)〉 |2 is determined
for various pulses and points in times so that the mini-
mum can be obtained. The first three columns show the
search intervals for ωD, δ and Td, which define the search
grid (ωD, δ, t) ∈ G ⊆ R

3. The step parameters are set to
∆ω/2π = 10−5 Ghz, ∆δ/2π = 10−3 and ∆t = 0.2 ns. The
last column shows the result for ǫ. The results are obtained
with the system parameters listed in Table III and effective
Hamiltonian Eq. (21).

ωD/2π δ/2π Td ǫ

[4.90, 5.30] [0.000, 0.110] [0, 300] 10−3

[6.00, 6.40] [0.000, 0.110] [0, 300] 10−3

[0.00, 0.00] [0.000, 0.000] [0, 300] 10−3

Every row in Table V corresponds to a different search
grid. In the first row we search for an excitation of the
first qubit. This means we have to consider the frequency
range [4.90, 5.30]. Similarly, in the second row we search
in the frequency range [6.00, 6.40]. The last row serves as
a reference. Here we simulate the free time evolution, i.e.
we do not apply any external flux to the system. Since
we do not want to activate transitions by accidentally
creating an avoided crossing between different energies,
we restrict the search range of the amplitude to δ/2π ∈
[0.000, 0.110]. The step parameters are set to ∆ω/2π =
10−5 GHz, ∆t = 0.2 ns and ∆δ/2π = 10−3. In all cases
we find that ǫ ≈ 0.001. This means that the free time
evolution yields the same result as the instances where
we compute ǫ for various pulses. The results suggest that
the system reacts to these sets of pulses in the same way
it does to no pulse at all, i.e. the system remains mainly
in its ground state.

Figure 4 shows two chevron patterns (obtained for the
circuit Hamiltonian Eq. (7)). We used these figures to
determine the pulse parameters for the results we pre-
sented in Table VI, see row three and four. The chevron
patterns (a) and (b) are several MHz wide. There-
fore, assuming that the effective Hamiltonian Eq. (21)
allows us to model these operations, we would expect
that ǫ ≈ 1.000. However, since this is not the case,
we might conclude that we cannot model these transi-
tions with Hamiltonian Eq. (21). Note that these re-
sults are in accordance with the single flux-tunable trans-
mon case. Furthermore, there are other transitions,
e.g. z = (0, 0, 0) → z = (1, 0, 0), which seem to be sup-
pressed. Therefore, our listing is not complete. We leave
this problem for future research.

The deficit of the effective model Hamiltonian that it
does not describe all the transitions might become rele-
vant once we consider more and more qubits in one sys-
tem, i.e. if we consider the spectral crowding problem.
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FIG. 5. (Color online) Effective interaction strengths g (see
Eq. (19)) in blue on the left y-axis and ḡ (see Eq. (20)) in green
on the right y-axis as functions of the external flux ϕ. We use
the energies listed in Table I (i = 2) to obtain g. Similarly,
for ḡ we use the parameters listed in Table II (i = 1).

C. Simulation of unsuppressed transitions in the

effective two-qubit model

We studied, see Appendix A, transitions between
states of the circuit Hamiltonian models which can be
used to implement Iswap and Cz gates on different cir-
cuit architectures, see circuit Hamiltonians in Eqs. (7)
and (8). In case of architecture I we applied a harmonic
control pulse of the form Eq. (23) to the tunable coupler.
On architecture II we activated transitions between dif-
ferent states by means of a unimodal pulse, i.e. in Eq. (23)
we set ωD = 0. Here we create avoided crossings be-
tween different energy levels. More details are given in
Appendix A. In this section we repeat this analysis with
the effective model Hamiltonians in Eqs. (21) and (22)
and compare the results with the ones for the circuit
Hamiltonian models which can be found in Table VI. A
summary of all results for the effective models can be
found in Table VII.

It is common practice, see Refs. [4, 7–9], that multi-
qubit Hamiltonians are simplified by making assumptions
about the effective parameters which influence the dy-
namics of the system. We begin this section with a dis-
cussion of one of these assumptions, namely that the ef-
fective interaction strength g (see Eqs. (21) and (22))
between the different subsystems is time independent.

Figure 5 shows the effective interaction strengths g (in
blue on the left y-axis) for architecture I and ḡ (in green
on the right y-axis) for architecture II as functions of the
external flux ϕ/2π. The values for g(ϕ) were determined
with Eq. (19) and the parameters listed in Table I (i =
2). Similarly, the values for ḡ(ϕ) are obtained with the
parameters listed in Table II (i = 1) and Eq. (20). We
can see that both effective interaction strengths show a
similar qualitative and quantitative behaviour. As one
can see, g(ϕ) varies around 0.075 GHz, over the interval
ϕ/2π ∈ [0, 0.5], while ḡ(ϕ) spans over a range of 0.08
GHz.

Figure 6(a,b) shows the evolution of the effective in-
teraction strength as a function of time. In Fig. 6(a)
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FIG. 6. (Color online) Effective interaction strength as a
function of time for two different flux control pulses. Fig-
ure 6(a): effective interaction strength g(ϕ(t)) (see Eq. (19)
and Eq. (23)) for architecture I. We use the energies listed in
Table I (i = 2) to obtain g and the same control pulse param-
eters as in Fig. 1(a). These control pulse parameters are also
listed in Table VII (row six). Figure 6(b): effective interaction
strength ḡ(ϕ(t)) (see Eq. (20) and Eq. (23)) for architecture
II. We use the energies listed Table II (i = 1) to obtain ḡ and
the same control pulse parameters as in Fig. 1(b). These con-
trol pulse parameters are also listed in Table VII (row nine).

we show the effective interaction strength g(ϕ(t)) (see
Eq. (19) and Eq. (23)) for architecture I. Here we use
the same parameters as in Fig. 1(a) to model the control
pulse ϕ(t) and the energies listed in Table I (i = 2) to
obtain g. In this case we observe fast oscillating varia-
tions of g at the order of 1 MHz. Similarly, in Fig. 6(b)
we show the effective interaction strength ḡ(ϕ(t)) (see
Eq. (20) and Eq. (23)) for architecture II. Here we use
the same control pulse parameters as in Fig. 1(b) and the
energies listed in Table II (i = 1). As one can see, in this
case we find that if the pulse has reached its plateau, the
effective interaction strength has been reduced by about
35 MHz.

Since architecture I is usually operated around a fixed
flux offset ϕ0, i.e. we only use small pulse amplitudes δ,
we would expect that small variations of the effective in-
teraction do not matter too much. The same reasoning
would suggest that, in case of architecture II, the time-
dependence of ḡ(ϕ) is much more relevant since here we
vary the external flux over a much larger interval. Fur-
thermore, the unimodal pulse lowers the effective interac-
tion strength temporarily, for about eighty percent of the
total gate duration, and it does not oscillate. However,
in the following section we show that this reasoning is
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FIG. 7. (Color online) Panels (a) and (b): Probabilities

p(0,0,1)(t) and p(0,1,0)(t) as functions of time t. Panels (c)

and (d): Probabilities p(0,1,1)(t) and p(0,2,0)(t) as functions
of time t. In panel (a,c) we model the system without a
time-dependent effective interaction strength (see Eq. (19)).
In panel (c,d) we include the time dependence. In all cases
we use Hamiltonian Eq. (21), the parameters listed in Ta-
ble III and a pulse of the form Eq. (23) to obtain the results.
The pulse parameters are discussed in the main text. The
z = (0, 1, 1) → z = (0, 2, 0) transitions are usually used to
implement Cz operations and the z = (0, 0, 1) → z = (0, 1, 0)
transitions are often used to realise Iswap operations, see
Refs.[4, 12]. Interestingly, we observe a large shift in the pulse
duration Td if we model the system with a time-dependent ef-
fective interaction strength, see Fig. 6(a).

not sound. We find that the time-dependent effective in-
teraction strength affects architecture I much more than
architecture II. We show this by performing all simula-
tions twice, i.e. we simulate the systems with and without
a time-dependent interaction strength.

1. Architecture I

We consider the model Hamiltonian Eq. (21). The sim-
ulation parameters are listed in Table III. We first discuss
the two different Iswap transitions (see Figs. 7(a,b)) and
then the Cz transitions (see Figs. 7(c,d)).
Figure 7(a) shows the probabilities p(0,0,1)(t) and

p(0,1,0)(t) as functions of time t. We use a static effective
interaction strength g to model the system, i.e. we use the
effective interaction strength which is determined by the
flux offset ϕ0/2π = 0.15. We find a resonance frequency
or optimal drive frequency of ωD = 1.088 GHz. This
frequency deviates only 2 MHz from the one we found
for the corresponding circuit Hamiltonian model, see Ta-
ble VI. The drive amplitude which is δ/2π = 0.075, is
the same amplitude we use in Table VI. However, with
these pulse parameters we find a gate duration of 139.6
ns. This means we can implement this gate around 70 ns
faster than in the case of the circuit Hamiltonian Eq. (7),
see Table VI. This is a rather strong difference.
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TABLE VI. Summary of all model and pulse parameters used to perform simulations of the circuit Hamiltonians Eqs. (7) and
(8), see Appendix A. The first column lists the model Hamiltonian and the system parameters (in form of references). The
second column states which gate is modelled. The third column gives the states which are being controlled. The next columns
show the following pulse parameters: the drive frequency ωD/2π in GHz, the amplitude δ/2π in units of the flux quantum φ0,
the rise and fall time Tr/f in ns and the gate duration Td in ns. The last column shows the number of basis states Nm which
are needed to obtain an accurate solution.

Hamiltonian and parameters Gate States z ωD/2π δ/2π Tr/f Td Nm

Eq. (2) and Table I X {(0), (1)} 8.100 0.0001 10 20 3

Eq. (2) and Table I X {(0), (1)} 8.100 0.001 100 200 3

Eq. (7) and Table I X {(0, 0, 0), (0, 1, 0)} 6.183 0.005 22.5 45 3

Eq. (7) and Table I X {(0, 0, 0), (0, 0, 1)} 5.092 0.009 25 50 3

Eq. (7) and Table I Iswap {(0, 1, 0), (0, 0, 1)} 1.089 0.075 13 209.40 6

Eq. (7) and Table I Cz {(0, 1, 1), (0, 2, 0)} 0.809 0.085 13 297.55 8

Eq. (8) and Table II Iswap {(0, 1, 0), (0, 0, 1)} 0 0.289 20 100 14

Eq. (8) and Table II Cz {(0, 1, 1), (0, 0, 2)} 0 0.3335 20 125 16

TABLE VII. Summary of all pulse parameters we use to perform the simulations of the effective models Eq. (17), Eqs. (21)
and (22). The first column lists the model Hamiltonian and the system parameters (in form of references). The second column
shows which case we simulate. In case A we use a static interaction strength and a non-adjusted spectrum to model the system.
In case B we use a time-dependent interaction and a non-adjusted spectrum to obtain the results. Similarly, in case C we
use a time-dependent interaction strength and an adjusted spectrum. The third column displays the figure which contains the
results. The fourth column states which gate we model. The fifth column shows the states which are being controlled. The
next columns show the following pulse parameters: the drive frequency ωD/2π in GHz, the amplitude δ/2π in units of the flux
quantum φ0, the rise and fall time Tr/f in ns and the gate duration Td in ns. In the last column we state whether or not is was
possible to model the gate (see Sec. IVB for more details). If it is not possible to model a transition, we label the corresponding
parameters with not applicable (n/a).

Hamiltonian and parameters Case Fig. Gate States z ωD/2π δ/2π Tr/f Td Can be modeled?

Eq. (17) and Table III n/a n/a X {(0), (1)} n/a n/a n/a n/a No

Eq. (17) and Table III n/a n/a X {(0), (1)} n/a n/a n/a n/a No

Eq. (21) and Table III n/a n/a X {(0, 0, 0), (0, 1, 0)} n/a n/a n/a n/a No

Eq. (21) and Table III n/a n/a X {(0, 0, 0), (0, 0, 1)} n/a n/a n/a n/a No

Eq. (21) and Table III A Fig. 7(a) Iswap {(0, 1, 0), (0, 0, 1)} 1.088 0.075 13 139.6 Yes

Eq. (21) and Table III B Fig. 7(b) Iswap {(0, 1, 0), (0, 0, 1)} 1.089 0.075 13 205.4 Yes

Eq. (21) and Table III A Fig. 7(c) Cz {(0, 1, 1), (0, 2, 0)} 0.807 0.085 13 196.5 Yes

Eq. (21) and Table III B Fig. 7(d) Cz {(0, 1, 1), (0, 2, 0)} 0.807 0.085 13 272.00 Yes

Eq. (22) and Table IV A Fig. 8(a) Iswap {(0, 1, 0), (0, 0, 1)} 0 0.297 20 84 Yes

Eq. (22) and Table IV C Fig. 8(b) Iswap {(0, 1, 0), (0, 0, 1)} 0 0.289 20 96 Yes

Eq. (22) and Table IV A Fig. 8(c) Cz {(0, 1, 1), (0, 0, 2)} 0 0.343 20 105 Yes

Eq. (22) and Table IV C Fig. 8(d) Cz {(0, 1, 1), (0, 0, 2)} 0 0.334 20 121 Yes

Figure 7(b) shows the probabilities p(0,0,1)(t) and
p(0,1,0)(t) as functions of time t. We use a time-dependent
effective interaction strength to model the dynamics of
the system.

Note that the effective interaction strengths g(ϕ) for an
external flux of ϕ/2π = 0.075 and ϕ/2π = 0.15 deviate
from one another by roughly 3 MHz. Furthermore, the
ḡ(ϕ)’s for an external flux of ϕ/2π = 0.225 and ϕ/2π =
0.15 deviate from one another by roughly 10 MHz. Apart
from the effective interaction strength, we only adjusted
the drive frequency slightly. Here we find an optimal
drive frequency of ωD = 1.089 GHz. As one can see, the
gate duration in this case is 205.4 ns. Therefore, we find

that the deviations between the gate durations, for both
models Eqs. (7) and (21), decrease to 4 ns if we model
the system with a time-dependent interaction strength.

Figures 7(c,d) show the same scenarios for the Cz op-
eration, i.e. we display the time evolution of p(0,1,1)(t)
and p(0,2,0)(t) for two different models. In Fig. 7(c) we
model the system with a time-independent effective in-
teraction strength and in Fig. 7(d) we include the time
dependence. In both cases we find the optimal drive fre-
quency ωD = 0.807 GHz. If we compare this drive fre-
quency with the one we obtained for the circuit Hamilto-
nian, see Table VI, we see that there is a shift of 2 MHz.
Additionally, both control pulses are calibrated with an
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amplitude of δ/2π = 0.085.
We observe that if we model the system with a time-

independent effective interaction strength, we find a gate
duration of 196.5 ns. Including the time dependence
leads to a gate duration of 272 ns. A comparison be-
tween theses results and the ones given in Appendix A
leads to a deviation of around 25 ns if we include the
time-dependent effective interaction strength.
This leads to the question why the oscillations of the

effective interaction strength g(t) are so relevant. It
is possible that the time-dependent effective interaction
strength induces a time-dependent shift of the resonance
frequency. Consequently, we would consider a system
that is only partially in a resonant state, i.e. the reso-
nance frequency oscillates around the drive frequency.
The remaining differences might be attributed to ad-

ditional approximations which have been made. For in-
stance, we model the interaction between the different
subsystems with an operator which is the result of a per-
turbative analysis, see Koch et al. [10]. D. Willsch [23]
showed that such approximations can lead to deviations
which increase with time; in this case a free time evolu-
tion was considered.
In general, we find that if we consider short timescales

of around 250 ns, both Hamiltonians in Eq. (7) and
Eq. (22), predict similar outcomes for only marginally
different control pulses if we model the system with a
time-dependent interaction strength.

2. Architecture II

In the following, we compare the results of the second
circuit Hamiltonian Eq. (8) with the ones we obtain for
Hamiltonian Eq. (22). Here we use the parameters listed
in Table IV to obtain the results. Furthermore, we use
a pulse of the form Eq. (23) with ωD = 0 and Tr/f = 20
ns in all cases. As before, we first discuss the Iswap gate
(see Figs. 8(a,b)) and then the Cz gate (see Figs. 8(c,d)).
Figure 8(a) shows the probabilities p(0,0,1)(t) and

p(0,1,0)(t) as functions of time t. We use a time-
independent effective interaction strength to model the
dynamics of the system. We find the optimal drive am-
plitude δ/2π = 0.297 and a gate duration of Td = 84
ns. Consequently, we observe a 16 ns discrepancy if we
compare these results with the one we obtained for the
circuit Hamiltonian model, see Table VI. Furthermore,
the pulse amplitude has shifted. This can be explained
by the fact that the flux-tunable frequency of the effective
model ω(ϕ) as well as the corresponding anharmonicity
α start to deviate from the numerically exact spectrum
for large external fluxes ϕ, see Eq. (34) and Fig. 3.
We can correct the spectrum by using more accurate

expressions (see Eqs. (B1) and (B2)) for the qubit fre-
quency and the anharmonicity. Figure 8(b) shows the
probabilities p(0,0,1)(t) and p(0,1,0)(t) as functions of time
t. Here we model the system with a time-dependent ef-
fective interaction strength ḡ(t) (see Eq. (20)). Further-
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FIG. 8. (Color online) Panels (a) and (b): Probabilities

p(0,0,1)(t) and p(0,1,0)(t) as functions of time t. Panels (c)

and (d): Probabilities p(0,1,1)(t) and p(0,0,2)(t) as functions
of time t. In panel (a,c) we model the system without a
time-dependent effective interaction strength (see Eq. (20)).
In panel (c,d) we include the time dependence. In all cases
we use Hamiltonian Eq. (22), the parameters listed in Ta-
ble IV and a pulse of the form Eq. (23) to obtain the results.
The pulse parameters are discussed in the main text. The
z = (0, 1, 1) → z = (0, 2, 0) transitions are usually used to
implement Cz operations and the z = (0, 0, 1) → z = (0, 1, 0)
transitions are often used to realise Iswap operations. We ob-
serve a modest shift in the pulse duration Td if we model the
system with a time-dependent effective interaction strength,
see Fig. 6(b).

more, we also adjust the spectrum. We find the optimal
pulse amplitude δ/2π = 0.289. This is the same ampli-
tude we determined for the circuit Hamiltonian Eq. (8),
see Table VI. We find a gate duration of 96 ns. There-
fore, the discrepancies between the different gate dura-
tion times have decreased to 4 ns. Note that this is the
same deviation we found for the other system, when we
modelled the Iswap operation.

We also simulated the case (data not shown) where
only the spectrum is adjusted and the effective interac-
tion strength is constant. As before, we compute the
tunable qubit frequency and anharmonicity with the se-
ries expansions in Eqs. (B1) and (B2). Here we also find
an optimal pulse amplitude δ/2π = 0.289. Therefore,
we conclude that this is purely a consequence of the de-
viations in the qubit frequency and anharmonicity, see
Fig. 3.

Figure 8(c,d) show the probabilities p(0,1,1)(t) and
p(0,0,2)(t) as functions of time t. Here we model the Cz
gate with two different model Hamiltonians, i.e. with
and without the time-independent effective interaction
strength and an adjusted spectrum. Figure 8(c,d) show
the same characteristics as Figs. 8(a,b). We find that if
we do not use an adjusted spectrum, the optimal control
pulse amplitude δ experiences a shift. Furthermore, if we
assume that the effective interaction strength is constant,
we find a gate duration which is about 20 ns shorter. If
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we adjust the spectrum, we find that the shift of the
optimal drive amplitude disappears. Similarly, if we in-
clude the time-dependent effective interaction strength,
we see that the gate duration increases to 121 ns. This
means the differences between the effective and the cir-
cuit Hamiltonian model decrease to 4 ns. Therefore we
might conclude that the time-dependence of the effective
interaction strength is not negligible if the aim is to ap-
proximate the time evolution of the corresponding circuit
Hamiltonian.
In summary, we observe that if we adjust the spec-

trum of the effective Hamiltonian and include the time
dependence of the effective interaction strength, the ef-
fective and the circuit Hamiltonian models predict sim-
ilar outcomes. However, we also find that if the model
is not adjusted properly, the outcomes can deviate quite
strongly. Note that the deviations are already observable
for the rather small time scales considered here, and such
deviations typically tend to grow with time.

V. SUMMARY AND CONCLUSIONS

For this work we have implemented two simulation
codes to solve the TDSE for two different but related
generic models of a superconducting quantum proces-
sor. The first model is a lumped-element model, i.e here
we consider a circuit Hamiltonian. The second model
is an approximation of the first one, i.e. here we con-
sider an effective model Hamiltonian. Both models aim
to describe a set of interacting transmon qubits (fixed-
frequency and/or flux-tunable) and transmission line res-
onators. The interaction between the different subsys-
tems is always of the dipole-dipole type.
The first simulation code, for the circuit Hamiltonian

model, enables us to simulate the model without making
any approximations. The second simulation code, for
the effective Hamiltonian model, allows us to simulate
the system with various approximations being turned on
or off. A basic version of the simulation code for the
effective model is available on JuGit, see Ref. [24]. This
simulation framework provides us with the tools to study
the validity of different approximations, which are often
made to make analytical calculations feasible.
For our study we consider three different systems. The

first system is a single flux-tunable transmon. The second
system (architecture I) consists of two fixed-frequency
transmons, coupled to a flux-tunable transmon (this
transmon works as a coupler). The third system (ar-
chitecture II) is made up of two flux-tunable transmons,
coupled to a transmission line resonator (this resonator
functions only as a coupler element).
We have found that the spectrum, determined by the

most commonly used approximation Eq. (16), of the
single flux-tunable transmon system can deviate quite
strongly (several hundred MHz, depending on which en-
ergy level is considered) from the numerically exact spec-
trum of the corresponding circuit Hamiltonian. Such de-

viations can become very important if we construct larger
systems, where the energy levels are much more narrowly
spaced. If possible, we suggest to use the series expan-
sions Eqs. (B1) and (B2), which were given by Didier et
al. [22], to remedy this issue. The corresponding devi-
ations are much smaller, at least for the parameters we
have tested.

We also found that approximating the flux-tunable
transmon Hamiltonian Eq. (2) by the effective model
Hamiltonian Eq. (17), prevents us from describing res-
onant transitions between the eigenstates of the isolated
flux-tunable transmon Hamiltonian. In addition, it seems
that this approximation also affects resonant transitions
which are present in multi-qubit systems, e.g. architec-
ture I. A summary of these results is provided in Ta-
ble VII, see rightmost column. Note that this table is not
complete, there are more resonant transitions which can-
not be modelled with the effective Hamiltonian Eq. (21).
Once we build larger superconducting processors, with
more than a few transmon qubits, we have to acknowl-
edge the problem of spectral crowding. However, if we
base our analysis of this problem only on the transition
frequencies which are relevant for the effective model,
we might overlook frequencies which are crucial for this
issue. Furthermore, it should be obvious that all non-
adiabatic errors, see Fig. 2 in Sec. IVA, cannot be mod-
elled with the effective model. This issue might be partic-
ularly relevant for architecture I, which uses a fast oscil-
lating flux pulse. If possible, one should avoid too large
amplitudes and drive frequencies, in order to minimise
leakage into other states.

It also turned out, see Sec. IVC, that assuming that
the effective interaction strength is time independent af-
fects the gate durations quite strongly. A summary of
these results can be found in Table VII, see the second-
last column. Here we consider the difference between two
effective models (with and without a time-dependent in-
teraction strength) and the difference with respect to the
circuit Hamiltonian model. The largest deviations can
be found for architecture I, here one can find cases where
the gate duration deviates up to about 100 ns. These de-
viations seem too large to be neglected. We also provide
a reasonable explanation for these strong deviations. It
might be that the time-dependent interaction strength in-
duces a time-dependent shift of the resonance frequency.
Consequently, the system would only partially (for some
moments in time) be in a resonant state.

So far we limited our analysis to the dynamics of the
very basic state transition mechanism. For future work,
it might be interesting to see whether or not the dif-
ferent models generate different error signatures, when
complete quantum circuits are simulated (see Willsch et
al. [25]). It is likely that these errors are very sensitive
to changes in the model. The challenge here is to make
a fair comparison between two different models that are
parameterised in terms of the pulse parameters.
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Appendix A: Circuit Hamiltonian simulations

In this appendix we discuss the results of the circuit
Hamiltonian simulations. A summary of the relevant re-
sults, for the main part of this work, can be found in
Table VI. We begin with a discussion of the simulation
details in Sec. A 1. Then, in Sec. A 2, we discuss the tran-
sitions which are suppressed in the effective model, see
Sec. IVB. In the end, in Sec. A 3, we discuss the transi-
tions which are unsuppressed in the effective model, see
Sec. IVC.

1. Simulation of circuit Hamiltonians in the

transmon basis

If we intend to simulate the circuit Hamiltonians given
in Eq. (2), Eqs. (7) and (8) without performing any
approximations, we can perform the simulations in the
transmon bare basis

|φ(z)〉 =
J−1
⊗
j=0

|φ(mj)〉 , (A1)

where z = m0, ...,mJ−1 is a placeholder for the different
subsystem indices mj . We form this basis by means of
the bare basis states

|φ(mj)〉 , (A2)

of the corresponding subsystems. These states are the
eigenstates of the Hamiltonians given in Eq. (1), Eq. (2)
and Eq. (4) at time t = 0. For simplicity, we call this
basis the transmon basis. We need to be able to change
the number of basis states Nm, to allow us to extend the
basis up to the point where the relevant decimals of our
observables do not change anymore. The numerical error
which stems from the discretisation of the time domain
can be controlled by decreasing the time grid parameter
τ , see Eq. (27), up to a point where convergence has been
reached. Obviously, both parameters Nm and τ have to
be changed together
In this work, we are satisfied if the probabilities

p(z)(t) = | 〈φ(z)|Ψ(t)〉 |2, (A3)

we are interested in converge to the third decimal. Here
|Ψ(t)〉 denotes the solution of the TDSE. Note that we use
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FIG. 9. (Color online) Probabilities p(0)(t) and p(1)(t) as func-
tions of time t. We use three transmon basis states Nm = 3 to
model the dynamics of the system, a control pulse of the form
Eq. (23) and a drive frequency ωD equal to the qubit frequency
ω (see Table I, row i = 2). The rise and fall time Tr/f is set to
half the duration time Td. The system is initialised in the state
|ψ(0)〉. The pulse amplitude δ/2π is set to (a) δ/2π = 0.001
and (b) δ/2π = 0.0001. We can observe that an increase in the
pulse amplitude δ by a factor of ten, leads to a decrease of the
pulse duration Td by a factor of ten (rougly). Note that these
transitions cannot be modelled with the effective Hamiltonian
Eq. (17).
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FIG. 10. (Color online) Probabilities p(z)(t) for (a) z = (0, 0, 0)
and z = (0, 0, 1) and (b) z = (0, 0, 0) and z = (0, 1, 0) as a
function of time t. In both cases we use three basis states Nm =
3 to model the dynamics of the system, a control pulse of the
form Eq. (23) and a rise and fall time Tr/f set to half the duration

time Td. (a) We use the drive frequency ωD = 5.092 GHz, the
pulse amplitude δ/2π = 0.009. (b) We use the drive frequency
ωD = 6.183 GHz and the pulse amplitude δ/2π = 0.005. The

initial state of the system is always |ψ(0,0,0)〉. Note that we were
not able to activate these transitions in the effective model of
architecture I, see Hamiltonian Eq. (21).

at least three basis states for the transmons in the system.
If not stated otherwise, transmission line resonators are
modelled with four states.

2. Circuit Hamiltonian simulations of transitions

that are suppressed in the effective model

We start our discussion with a single, isolated flux-
tunable transmon. The system itself is defined by the
parameters in Table I and we model the system with
circuit Hamiltonian Eq. (2). Here we consider the flux-
tunable transmon with label i = 2. Figure 9(a) shows
the time evolution of the probabilities p(z)(t), for the two
lowest eigenstates z ∈ {0, 1}. We use a control pulse of
the form Eq. (23), see Fig. 1(a), where we set ωD equal
to the qubit frequency ω. The rise and fall time Tr/f is
set to half of the pulse duration Td. The x-axis displays
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the duration time. The pulse amplitude in this case is
set to δ/2π = 0.0001.
As one can see, the system is initially in the state |φ(0)〉

and we are able to implement a smooth transition be-
tween the states |φ(0)〉 and |φ(1)〉.
Figure 9(b) shows the results for a similar scenario.

Here we increased the amplitude by one order of magni-
tude, i.e. we use δ/2π = 0.001. The time evolution shows
that the duration Td has decreased roughly by a factor
of ten. Note that the transitions between the states |φ0〉
and |φ1〉 cannot be modelled with the effective Hamilto-
nian Eq. (17).
In both cases it is sufficient to use three basis states

to model the dynamics of the system, i.e. increasing the
number of basis states above three has no real impact on
the probabilities we are interested in.
While it is possible to generate similar results (data not

shown) for amplitudes in the range δ/2π ∈ [0.0001, 0.001]
we find that for amplitudes δ/2π ≫ 0.001 it is not pos-
sible to implement a smooth transition between both
states. Here the pulse does not conserve the probabil-
ity in the subspace {|φ(0)〉 , |φ(1)〉}.
Next we study a system which consists of three trans-

mons. We add two fixed-frequency transmons to the
flux-tunable transmon. This means the corresponding
circuit Hamiltonian is of the form Eq. (7). Table I shows
the corresponding system parameters. These parameters
are motivated by a series of experiments performed by
Ganzhorn et al. [4]. Figures 10(a,b) show the system’s
response to a harmonic pulse of the form Eq. (23), see
Fig. 1(a).
In Fig. 10(a) we use the drive frequency ωD = 6.183

and the amplitude δ/2π = 0.005. Here the figure shows
the probabilities p(z)(t), for z = (0, 0, 0) and z = (0, 1, 0),
as a function of time t. In this case the intention is to
drive the z = (0, 0, 0) → z = (0, 1, 0) transition.
Figure 10(b) shows a similar case. Here we use the

drive frequency ωD = 5.092 and the amplitude δ/2π =
0.009. Since we intend to drive the z = (0, 0, 0) → z =
(0, 0, 1) transition, we display the corresponding proba-
bilities p(z)(t) as a function of time t.
In both cases the initial state is set to |φ(0,0,0)〉 and we

find a duration time Td of around 50 ns.
Figures 10(a,b) show that we are able to implement

transitions between the state pairs z = (0, 0, 0) and
z = (0, 1, 0) as well as z = (0, 0, 0) and z = (0, 0, 1).
In addition, it is also possible (data not shown) to drive
transitions of the form z = (0, 0, 1) → z = (0, 1, 1) and
z = (0, 1, 0) → z = (0, 1, 1), simply by changing the ini-
tial state of the system and leaving all other parameters.
Note that we were not able to activate these transitions
in the effective model of architecture I, see Hamiltonian
Eq. (21). Here we do not consider the transmon i = 2
(see Table I) since it is considered to be a coupler and
not an actual qubit. However, it is possible to drive the
transition z = (0, 0, 0) → z = (1, 0, 0).
For both cases we find that it is sufficient to use three

transmon basis states to model the dynamics of the sys-
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FIG. 11. (Color online) Probabilities p(0,0,1)(t) and p(0,1,0)(t)
as functions of time t. We use Nm = 3 (a), Nm = 4 (b),
Nm = 6 (c) and Nm = 15 (d) basis states to model the system.
We use a control pulse of the form Eq. (23), with the pulse
parameters ωD = 1.089 GHz, Tr/f = 13 ns and δ/2π = 0.075.
The pulse duration is Td = 209.40 ns. The system we simulate is
defined by Eq. (7) and Table I. The z = (0, 0, 1) → z = (0, 1, 0)
transition is usually used to implement Iswap operations, see
Refs. [4]. We find that numerical accurate modelling of the
dynamic behaviour of the system seems to require at least Nm =
6 transmon basis states.

tem.

3. Circuit Hamiltonian simulations of the

unsuppressed transitions in the effective two-qubit

models

We investigate the transitions which are unsuppressed
in the effective model. Here we differentiate between
two cases. We first discuss transitions which are used
to implement two-qubit gates by means of harmonic mi-
crowave pulses [4, 8, 9]. In this case we simulate cir-
cuit Hamiltonian Eq. (7), with the parameters listed in
Table I. As a second case, we study transitions which
are activated by unimodal pulses, i.e. gates which are
implemented by means of adiabatic passage techniques
[15, 27]. In this case we simulate circuit Hamiltonian
Eq. (8). The corresponding system parameters can be
found in Table II.

a. Architecture I

Figures 11(a-d) show the time evolution of the prob-
abilities p(0,0,1)(t) and p(0,1,0)(t) as a function of time
t. We use Nm = 3 (a), Nm = 4 (b), Nm = 6 (c)
and Nm = 15 (d) basis states to model the dynamics
of the system. The transition we model here is usually
used to implement an Iswap gate. The drive frequency
is ωD = 1.089 GHz, which corresponds roughly to the
frequency difference ∆ω = 1.100 GHz between the indi-
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FIG. 12. (Color online) Probabilities p(0,1,1)(t) and p(0,2,0)(t)
as functions of time t. We use Nm = 3 (a), Nm = 4 (b),
Nm = 8 (c) and Nm = 15 (d) basis states to model the system.
We use a control pulse of the form Eq. (23), with the pulse
parameters ωD = 0.809 GHz, Tr/f = 13 ns and δ/2π = 0.085.
The pulse duration is Td = 297.55 ns. The system we simulate
is defined by Eq. (7) and Table I. The z = (0, 1, 1) → z =
(0, 2, 0) transition is usually used to implement Cz operations,
see Refs. [4, 12]. We find that numerical accurate modelling of
the dynamic behaviour of the system seems to require at least
Nm = 8 transmon basis states.

vidual transmon qubits i = 1 and i = 0. The frequency
shift stems from the fact that the states {|φ(z)〉} are not
exact eigenstates of the full circuit Hamiltonian. The
drive amplitude is set to δ/2π = 0.075 and the initial
state of the system is |φ(0,0,1)〉.
The time evolutions in Figs. 11(a-d) clearly show that

three or four basis states are not sufficient to describe
this operation, i.e. if we compare the solutions (a) and
(b) with the reference solution (c)/(d) we find substan-
tial qualitative and quantitative differences. We find that
we need at least six transmon basis states to model the
system. Note that we simulated the same system before
when studying the single-qubit operations. We conclude
that the number of states which is needed to model dif-
ferent types can vary, i.e., it is not a system property but
it depends on the type of transition we simulate.

Figures 12(a-d) show the time evolution of the prob-
abilities p(0,1,1)(t) and p(0,2,0)(t) as a function of time
t. We use Nm = 3 (a), Nm = 4 (b), Nm = 8 (c) and
Nm = 15 (d) transmon basis states to model the system.
This transition is often used to implement a Cz opera-
tion, see Ref. [12]. The corresponding drive frequency is
ωD = 0.809 GHz, which corresponds roughly to the en-
ergy difference, in GHz, of the two states involved. The
pulse amplitude is δ/2π = 0.085.

We observe that if we model this particular Cz oper-
ation, we find severe qualitative and quantitative devia-
tions between the solutions (a) and (b) and (c)/(d) . Here
we should use eight basis states to accurately model the
dynamics of the system.

The Iswap and Cz operations we studied here are im-
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FIG. 13. (Color online) Probabilities p(0,0,1)(t) and p(0,1,0)(t) as
functions of time t. We use Nm = 3 (a), Nm = 4 (b), Nm = 14
(c) and Nm = 25 (d) basis states to model the system. We use
a control pulse of the form Eq. (23), with the pulse parameters
ωD = 0 GHz, Tr/f = 20 ns and δ/2π = 0.289. The pulse
duration is Td = 100.00 ns. The pulse is supposed to perform
an Iswap gate. The system we simulate is defined by Eq. (8)
and Table II. The z = (0, 0, 1) → z = (0, 1, 0) transition might
be used to implement Iswap operations. Note that solutions
in panel (a) and (b) do not have much in common with the
reference solutions in panels (c) and (d).

plemented with gate durations Td between 200 and 300
ns. It is possible to implement shorter gate durations,
by increasing the amplitude (data not shown). However,
this almost always means we have to increase the number
of basis states Nm to obtain an accurate solution.
Furthermore, we repeated the same analysis for two

additional devices. The corresponding device parameters
were motivated by experiments carried out by Roth et al.
[7, 9] and Bengtsson et al. [12]. Here we found similar
results (data not shown), namely that we need at least six
or eight basis states to describe Iswap and Cz operations,
with similar gate durations.
The results we obtained for the Iswap and Cz gates in-

dicate that the influence of the higher levels {|φm>2〉} on
the subspace {|φm≤2〉} is not negligible when it comes to
modelling these operations. It seems to be the case that
higher levels are instrumental in providing enough inter-
action strength, between the different subsystems, so that
we can actually implement the operations (see Figs. 11(a-
b) and Figs. 12(a-b) in particular). Additionally, we can
observe the trend that larger amplitudes seem to require
more basis states Nm. Of course, all previous statements
have to be restricted to the specific circuit Hamiltonian
we studied here.

b. Architecture II

The second system we consider is defined by means
of the circuit Hamiltonian Eq. (8) and the parameters
listed in Table II. Here we use a unimodal pulse (we set
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FIG. 14. (Color online) Probabilities p(0,1,1)(t) and p(0,0,2)(t) as
functions of time t. We use Nm = 3 (a), Nm = 4 (b), Nm = 16
(c) and Nm = 25 (d) basis states to model the system. We use
a control pulse of the form Eq. (23), with the pulse parameters
ωD = 0 GHz, Tr/f = 20 ns and δ/2π = 0.3335. The pulse
duration is Td = 125.00 ns. The pulse is supposed to perform
a Cz gate. The system we simulate is defined by Eq. (8) and
Table II. The z = (0, 1, 1) → z = (0, 0, 2) transition can be used
to implement Cz operations, see Ref.[5]. Note that solutions
in panel (a) and (b) do not have much in common with the
reference solutions in panels (c) and (d).

ωD = 0) of the form Eq. (23) to implement two-qubit
operations. Note that we apply the control pulse to the
second flux-tunable transmon (see Table II row i = 1).
Figures 13(a-d) show the time evolution of p(0,0,1)(t)

and p(0,1,0)(t) as functions of time t, for four different
numbers of basis states Nm = 3 (a), Nm = 4 (b), Nm =
14 (c) and Nm = 25 (d). We model a transition of the
Iswap type.
Obviously, Figs. 13(a,b) have not much in common

with the reference solutions (c)/(d). This means that
if we use three or four states to model the system, we are
not able to implement an Iswap gate on this architec-
ture. We need about fourteen states to model this oper-
ation adequately. Additionally, note that during the time
evolution p(0,1,0)(t) + p(0,0,1)(t) 6= 1 for various times t.
The reason for this is that continuous population transfer
takes place in the instantaneous basis.
The last case we study is the Cz gate, implemented on

architecture II. Figures 14(a-d) show the time evolution
of the probabilities p(0,1,1)(t) and p(0,0,2)(t) as functions
of time t, for Nm = 3 (a), Nm = 4 (b), Nm = 16 (c) and
Nm = 25 (d).
In this case we implemented a slightly imperfect Cz op-

eration, i.e., we implemented a pulse which ensures that
p(0,1,1)(Td) < 1. A perfect Cz gate would only change the

relative phase of the state vector but not the population.
Therefore, modelling the system with three basis states
would yield the same result as modelling the system with
25 states (see Fig. 14(a)), i.e., it does not matter whether
or not population exchange actually occurs. However, we
want to determine the number of basis states which are
needed to model the transitions z = (0, 1, 1) → (0, 0, 2)
and z = (0, 0, 2) → (0, 1, 1). The easiest way to do this
is to implement a slightly imperfect transition.

Appendix B: Series expansion of the qubit frequency

and anharmonicity

We discuss a series expansion for the qubit frequency
and anharmonicity which was derived by Didier et
al. [22]. The three lowest energy eigenvalues of Hamil-
tonian Eq. (2) are often approximated by the qubit
frequency Eq. (16) and a constant anharmonicity α.
In Sec. IVA we show that this approximation is not
very accurate in describing the spectrum of Hamiltonian
Eq. (16) for various flux control pulses ϕ(t). However, it
is possible to make use of alternative expressions which
allow us to approximate the spectrum with more pre-
cision. Two such expressions were given by Didier et
al. [22]. The corresponding flux-tunable transmon qubit
frequency is of the form

ω̃(ϕ) =
√

2ECEJeff
(ϕ) − EC

4

24
∑

n=0

anξ(ϕ)
n. (B1)

Similarly, the flux-dependent qubit anharmonicity can be
expressed as

α̃(ϕ) = −EC

4

24
∑

n=0

bnξ(ϕ)
n, (B2)

where an and bn are real coefficients and the function
ξ(ϕ) can be expressed as

ξ(ϕ) =

√

EC

2EJeff
(ϕ)

. (B3)

Note that an and bn can be of order 106. Furthermore, for
some system parameters (we found this to be the case for
a system with an asymmetry factor d = 0) we find that
ξ(ϕ) → 1 if ϕ → π/2. In such cases the approximation
can break down. This approximation is also discussed in
the main text, see Sec. IVA.
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