
The two Ring Imaging Cherenkov (RICH) detectors in LHCb
are responsible for particle identification. Charged particles
originating from the LHC collisions traverse the detector
enclosures which are filled with gas. Cherenkov radiation is
emitted under a characteristic angle 𝜃!"# relative to the track
as a function of the particle’s velocity.

LHCb is currently undergoing a major upgrade. After its completion,
the RICH detectors will use multi-anode photomultiplier tubes
(MaPMTs) for photon detection, collecting data at the LHC collision
rate of 40 MHz.
C4F10 (RICH 1) and CF4 (RICH 2) gas is used as Cherenkov
radiators. Particles are identified in an energy range between 2 – 100
GeV/c.
Particles generate Cherenkov photons in the radiators for velocities
above the Cherenkov threshold 𝛽 > $

%
, depending on the refractive

index of the radiator. For high momenta, all particles converge at the
same Cherenkov radius. The particle velocity is determined via the
Cherenkov angle: cos 𝜃!"# =

$
% & '

. Using the momentum and
trajectory curvature information from the tracking, the mass and
hence particle species can be determined.

The LHCb (Large Hadron Collider beauty) experiment is one
of the four major experiments at the LHC (Large Hadron
Collider) at CERN (European Organization for Nuclear
Research). A schematic is shown on the right. LHCb is
dedicated to high-sensitivity searches of Charge-Parity
violations in beauty hadron decays and further high-precision
heavy-flavour studies [1].
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Particle Identification in LHCb

The primary goal of the RICH detectors is to distinguish
between charged hadrons, in particular pions, kaons, and
protons. However, electrons, muons, and deuterons also
generate a signal in the detector (top).

For the neural network training, LHC Run 3 𝐵() and 𝐵()
signal events were generated using LHCb simulation and
reconstruction software. This allows assessing the
performance for the upcoming run period and training the
network with labelled data.

A typical event with five primary vertices is shown
(bottom). The track centres of reconstructable tracks,
extrapolated to the photon detection plane, are marked
by a cross, their signal in blue and the background in
orange.
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The optimised network structure for RICH 1
images is duplicated to include inputs from both
RICH detectors. Their output is concatenated and
processed by an additional fully connected layer
before the final particle ID output (top left).

The performance of the optimised convolutional
neural network (bottom left) achieves an average
kaon ID efficiency of 87 % with a simultaneous
average pion misidentification rate of 10 %. The
network performance is comparable to the
conventional algorithm (bottom right), with an
excellent performance below 50 GeV/c.

In future upgrades of the RICH detectors, the
combinatorial background may be reduced by
the introduction of timing information [6]. The
effect on the network performance has been
studied, approximating the effect of reduced
combinatorial background by randomly
removing a fraction of the hits which do not
belong to the signal of a given track.

While the scenario of zero combinatorial
background is idealistic, a clear trend towards
optimal kaon ID and pion misID is observable,
showing the potential of the network to
operate in future detector environments.

Details about the presented study can be
found in [7].
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A simple neural network is used as a starting point,
using exclusively RICH 1 input images [5]. The
network consists of convolutional layers with image
dimensions decreasing by max pooling and
increasing number of filters (32, 64, 128), followed by
two fully connected layers of 256 and 16 nodes,
respectively, using 25 % dropout and early stopping
for regularisation. Leaky ReLU is used as activation
function, apart from the output layer where softmax is
used for the six nodes of the output layer, one for
each particle type: electron, muon, kaon, proton,
deuteron. Categorical-crossentropy is used as the
loss function, Adadelta as optimiser, and accuracy as
metric.
Several parameters on the network performance are
assessed, such as the dataset size, batch size and
batch normalisation, loss function weights, additional
network layers and inputs, and further regularisation
options. The effect of each optimised parameter (top)
is compared to combining them in an new version of
the network (bottom).
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the majority of hits do not belong to charged particles tracks with a signal in both detectors.
However, they may still originate from charged particle tracks or their secondary particles,
arriving within a 2 ns time window. The method of eliminating a fraction of non-signal hits
may not be directly comparable to the effect of a specific time gate. Instead, it indicates the
potential CNN performance for scenarios ranging from a realistic LHC Run 3 environment
to ideal conditions without any background.

An example of the background elimination is displayed in Figure 2.40. The input image for
a 16.4 GeV/c pion is displayed, taken from an event with 10 primary vertices. As before,
Cherenkov photons associated to this pion are coloured blue, all other hits in orange. The
percentage indicates how many non-signal hits remain, for RICH 1 (2.40a to 2.40e) and
RICH 2 (2.40f to 2.40j).

(a) 100 % (b) 70 % (c) 50 % (d) 30 % (e) 0 %

(f) 100 % (g) 70 % (h) 50 % (i) 30 % (j) 0 %

Fig. 2.40 Example of noise reduction for the polar-transformed input image of a 16.4 GeV/c
pion from an event with 10 primary vertices, for RICH 1 (a - e) and RICH 2 (f - j). The
percentage below an image represents the relative amount of remaining non-signal hits.

The richNet performance with reduced background as described above is shown in Fig-
ure 2.41. The average pion misidentification efficiency versus the kaon identification effi-
ciency is displayed in Figure 2.41a. The performance values are plotted for all momenta in
Figure 2.41b for 100 %, 50 %, and 0 % background. A clear trend is visible towards 100 %
kaon identification and 0 % pion misidentification with reduction of the background. While
the 0 % case represents an idealistic scenario, it testifies to the network’s ability to reliably
distinguish the signature of kaons and pions.

A standard metric for particle identification performance is comparing
the kaon identification efficiency (red) and the pion misidentification
rate, which represents the most abundant particle species [2].
The current algorithm performs very well, however, its complexity is
not well applicable to parallelisation on multi-core computing
architectures, as foreseen for the LHCb computing infrastructure
[3,4].
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The LHC collision event data is processed to suit as input to the network. It is separated into
momentum ranges, with 1 GeV/c bins up to 20 GeV/c and10 GeV/c bins above. For each
momentum range the network is trained and assessed separately.

Around each extrapolated track centre, a radius range is defined. The hits in this range are
polar-transformed to 64 x 64 images, which represent the input to the neural network.
In the figures below, the radius ranges for the momentum range 19 - 20 GeV/c are shown
(left) and the polar transformation demonstrated for a RICH 1 event with a single primary
vertex (right). The colour separation of signal and background is for the benefit of the reader,
the network receives monochrome images.
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