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Generative adversarial networks (GAN) Test case: LHCb RICH Results: extrapolation scan

The aim of the test is to access the performance of the models in
the regions of the phase space where there are no data. We
emulate this situation by splitting the data into train and test parts in

Abstract

In recent years fully-parametric fast simulation methods based on 1
generative models have been proposed for a variety of high-energy '
physics detectors. By their nature, the quality of data-driven models

. Input variables: track momentum (P), pseudorapidity (n) and the
number of tracks in the event
2. Output: 5 particle class likelihoods, expressed as differential
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