CERN Accelerating science

Article
Report number arXiv:2111.05876 ; CERN-TH-2021-190 ; IPPP/21/48
Title Effective limits on single scalar extensions in the light of recent LHC data
Author(s) Anisha (Indian Inst. Tech., Kanpur) ; Das Bakshi, Supratim (Indian Inst. Tech., Kanpur) ; Banerjee, Shankha (CERN) ; Biekötter, Anke (Durham U., IPPP) ; Chakrabortty, Joydeep (Indian Inst. Tech., Kanpur) ; Kumar Patra, Sunando (Bangabasi Coll.) ; Spannowsky, Michael (Durham U., IPPP)
Publication 2023-03-01
Imprint 2021-11-10
Number of pages 50
In: Phys. Rev. D 107 (2023) 055028
DOI 10.1103/PhysRevD.107.055028 (publication)
Subject category hep-th ; Particle Physics - Theory ; hep-ex ; Particle Physics - Experiment ; hep-ph ; Particle Physics - Phenomenology
Abstract In this paper, we work with 16 different single scalar particle extensions of the Standard Model. We present the sets of dimension-6 effective operators and the associated Wilson coefficients as functions of model parameters after integrating out the heavy scalars up to 1-loop, including the heavy-light mixing, for each such scenario. Using the correspondence between the effective operators and the observables at electroweak scale, and employing Bayesian statistics, we compute the allowed ranges of new physics parameters that are further translated and depicted in 2-dimensional Wilson coefficient space in the light of the latest CMS and ATLAS data up to $137 \text{ fb}^{-1}$ and $139\text{ fb}^{-1}$, respectively. We also adjudge the status of those new physics extensions that offer similar sets of relevant effective operators. In addition, we provide a model-independent fit of $23$ Standard Model effective field theory Wilson coefficients using electroweak precision observables, single and di-Higgs data as well as kinematic distributions of di-boson production.
Copyright/License preprint: (License: arXiv nonexclusive-distrib 1.0)
publication: © 2023-2024 authors (License: CC BY 4.0), sponsored by SCOAP³



Corresponding record in: Inspire


 記錄創建於2021-11-13,最後更新在2024-01-15


全文:
2111.05876 - Download fulltextPDF
Publication - Download fulltextPDF