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Abstract: Use of supergravity equations in astronomy and late-universe cosmology is often

criticized on three grounds: (i) phenomenological success usually depends on the supergrav-

ity form for the scalar potential applying at the relevant energies; (ii) the low-energy scalar

potential is extremely sensitive to quantum effects involving very massive particles and so is

rarely well-approximated by classical calculations of its form; and (iii) almost all Standard

Model particles count as massive for these purposes and none of these are supersymmetric.

Why should Standard Model loops preserve the low-energy supergravity form even if super-

symmetry is valid at energies well above the electroweak scale? We use recently developed

tools for coupling supergravity to non-supersymmetric matter to estimate the loop effects

of heavy non-supersymmetric particles on the low-energy effective action, and provide evi-

dence that the supergravity form is stable against integrating out such particles (and so argues

against the above objection). This suggests an intrinsically supersymmetric picture of Nature

where supersymmetry survives to low energies within the gravity sector but not the visible

sector (for which supersymmetry is instead non-linearly realized). We explore the couplings

of both sectors in this picture and find that the presence of auxiliary fields in the gravity

sector makes the visible sector share many features usually attributed to linearly realized su-

persymmetry although (unlike for the MSSM) a second Higgs doublet is not required for all

Yukawa couplings to be non-vanishing and changes the dimension of the operator generating

the Higgs mass. We discuss the naturalness of this picture and some of the implications it

might have when searching for dark-sector physics.
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1. Introduction

The absence of evidence for superpartners at the Large Hadron Collider (LHC) [1, 2, 3] makes

supersymmetry as a solution to the hierarchy problem appear to be a beautiful idea mugged

by a gang of ugly facts. Yet supersymmetry remains well-motivated at very high energies;

appearing to play a central role there in frameworks like string theory [4, 5, 6, 7] that sensibly

quantum-complete gravity at the highest scales.

But as the hierarchy problem recedes as a motivation, seeking supersymmetry in accel-

erators is like searching under the proverbial streetlight on a dark night; absence of success

might be more about the search strategy than indicating that searches are a fruitless exercise.

Putting ease of detection aside, is there a place we should expect supersymmetry is most

likely to arise (and so be the most relevant for understanding) if it exists?

One way to approach this question is to ask: for which kinds of particles should we expect

the mass splittings between superpartners to be the smallest? In supersymmetric theories

supersymmetry is usually broken when some field F acquires an expectation value. The size

of the mass splittings between bosons and fermions within any particular multiplet are then

in order of magnitude given by

m2
B −m2

F ∼ gF , (1.1)
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where g is a measure of the strength of interaction between F and the multiplet of interest.

This suggests that the particles that are split the least are also those that couple the weakest.

Gravity is the weakest known interaction and there are even circumstantial reasons to

believe that it might be the weakest interaction that is possible [8]. If so, then it is natural to

expect that it is the gravitational sector that should be the most supersymmetric, and this is

indeed what often happens in explicit higher-dimensional supergravity models [9, 10]. Perhaps

the gravity sector is the one where the implications of low-energy supersymmetry are most

prominent. If so, the very weakness of gravitational interactions helps make supersymmetry’s

detection more difficult.

Despite its weakness we certainly know that gravity exists and its properties are measured

in great detail within the solar system, in astronomy and in cosmology. The above line of

argument suggests that these areas might also be among the best venues for seeking evidence

for supersymmetry of this type at low energies. It is perhaps unsurprising from this point of

view that current evidence for dark sectors dominantly comes from these kinds of observations.

It also has motivated studies [11, 12] that explore the implications of supersymmetric models

at the lowest possible energies, like those relevant to late-time cosmology (often as variants

of quintessence models [13, 14] for dark energy).

An objection

That paints a pleasing picture, but there is a long-standing objection to using supergravity

in late-time cosmology in this way. Success or failure in cosmological models often turns

on the detailed properties of the scalar potential, and many of the ingredients required for

success in cosmology (e.g. extremely light scalars and small vacuum energies) are known

to be exquisitely sensitive to quantum effects involving the theory’s highest-energy sector

[15, 16]. Ordinary Standard Model particles (like the electron) count as high-energy particles

from the point of view of cosmology, and these are measured not to be supersymmetric at

all. The objection asks how the putative supersymmetry of scalar potentials relevant to the

extremely low energies of cosmology could possibly survive the quantum corrections generated

by integrating out the known non-supersymmetric Standard Model particles.

A difficulty in making this objection definitive has been the inability to precisely for-

mulate a theory in which a very supersymmetric gravity sector consistently couples to non-

supersymmetric matter. Precisely formulating this type of theory is a prerequisite for com-

puting quantum corrections to the low-energy scalar potential, and only these kinds of cal-

culations can rule out or verify the prejudice that quantum corrections involving the known

particle spectrum should ruin the supersymmetry of the low-energy world of cosmology.

The purpose of this paper is to re-examine this issue in view of recent progress under-

standing how to couple supergravity to non-supersymmetric matter [17, 18, 19, 20, 21]. In

§2 we review this new understanding and in §3 we use it to estimate the size of the quantum

corrections that arise once heavy non-supersymmetric particles are integrated out. We are

able to draw the following conclusions.
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• We describe a concrete scenario in which supersymmetry is linearly realized in a gravita-

tional (hidden) sector and non-linearly realized in the Standard Model (visible) sector.

Constrained superfields are used to describe the Standard Model fields. Contrary to

the MSSM, there is no need from anomaly cancellation to introduce a second Higgs

superfield (nor a µ-term, since the higgsino is integrated out). Couplings of the gold-

stino superfield to the Standard Model sector determine the Higgs potential and the

up-quark Yukawa couplings.

• We find no evidence that loops of non-supersymmetric Standard Model particles must

destabilize the general form of the Lagrangian used to couple supergravity to non-

supersymmetric matter, supporting the consistency of using supergravity for late-time

cosmology.

• Supersymmetry does not in itself automatically solve the questions of technical nat-

uralness that arise in low-energy cosmological applications (such as the cosmological

constant problem or the tuning problems of quintessence theories), making it necessary

to check these on a model-by-model basis. It is interesting though that the interplay

between gravity and the size of the scalar potential plays a central role in most of these

problems, so having a supersymmetric gravity sector could plausibly be part of the final

picture that resolves them.1

• The low-energy scalar potential of these theories closely resembles the usual super-

gravity structure. This structure remains stable as non-supersymmetric particles are

integrated out because of the presence of the auxiliary fields associated with the gravity,

goldstino (and possibly other) supermultiplets that (by assumption) appear in the low-

energy theory due to the assumed supersymmetry of the gravity sector. Although these

auxiliary fields do not propagate they do affect how loops of heavy particles contribute

to the low-energy theory, making their inclusion crucial for understanding naturalness

issues.2

• Large positive vacuum energies are relatively common features of models coupling su-

pergravity to non-supersymmetric matter and this might indicate that this framework

is also useful for understanding inflationary models of the much earlier universe (as has

indeed been explored in [28]).

1See [22] for an approach that combines this low-energy supersymmetric framework with the general scale-

invariance arguments of [23] to address low-energy naturalness problems in quintessence models.
2The importance of auxiliary fields resembles the important role played by non-propagating ‘topological’

fields in other areas of physics like the Quantum Hall Effect [24, 25]. This connection is strengthed by the

observation that auxiliary fields arise as 4-form fields in string theory [26, 23], with 4-forms known to bring

information about higher-dimensional topology into the low-energy 4D theory, both in string theory and more

broadly in extra-dimensional models [27].
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Gravity’s dark side

A universe in which non-supersymmetric Standard Model particles couple to a very supersym-

metric gravitationally interacting dark sector obviously provides both observational challenges

and phenomenological opportunities. Although there is some freedom choosing the dark sec-

tor’s particle content, the structure imposed by supersymmetry also carries many constraints.

Accidental scale invariance often ensures the existence of at least one axio-dilaton supermul-

tiplet, whose spin-half superpartner (the dilatino) has a mass similar to the gravitino. One

or more such multiplets are common in theories describing the low-energy limit of higher

dimensional models due to the generic role played in them by scale invariance [23].

Besides the compulsory existence of a relatively light gravitino this picture generically

contains many dark-matter candidates, including axions or other massive particles coupling

to the Standard Model only very weakly. This provides a natural origin for low-energy axions,

such as in ‘axiverse’ models [29], as well as Planck-coupled dark matter models [30]. Although

gravitationally coupled fermions would be impossible to see in underground detectors, they

become sterile neutrinos (and so could become detectable) once they mix with Standard Model

neutrinos, providing a potentially rich source of phenomenology [31] and potential mechanisms

for baryo- and lepto-genesis. We briefly describe some of the potential phenomenological

consequences in §4 below.

2. Supergravity coupled to non-supersymmetric matter

This section describes how to consistently couple supersymmetric gravity to ordinary matter

that is assumed not to be supersymmetric at all. This is the effective theory that one would

expect at electroweak energies in a world in which the Standard Model sector couples more

strongly to the supersymmetry-breaking fields than does the gravity multiplet. For the present

purposes it is the naturalness properties of this construction – in particular the stability of

the small splitting in the gravity multiplet – that are of greatest interest.

There is no loss of generality in describing such systems using the formalism of nonlinearly

realized supersymmetry as formulated by [17], together with its coupling to supergravity

[18, 19, 20, 21]. It is the generality of this construction that ultimately underlies its stability

under Wilsonian evolution.

The logic of this construction goes as follows. Reference [17] first shows how to take

an arbitrary non-supersymmetric theory and rewrite it ‘as if’ it were globally supersym-

metric.3 This can always be done for global supersymmetry simply by coupling the non-

supersymmetric matter appropriately to the Goldstone fermion [35] whose presence is always

required in the low-energy sector of any system whose UV supersymmetry is spontaneously

broken (as it must be if supermultiplets are split badly enough to allow some of its members

to be integrated out while the others are not). The coupling of this system to supergravity

3The same is also possible for more mundane symmetries: a generic non-invariant action can always be made

invariant under a global symmetry by appropriately coupling to the relevant Goldstone bosons [32, 33, 34].
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– described in [18, 19, 20, 21] – then follows as a special case of the usual rules for coupling

supergravity [36, 37, 38] to globally supersymmetric matter.

The next four sections briefly review what the formalism of [18, 19, 20, 21] implies for

the couplings of supergravity to non-supersymmetric spin-zero, spin-half and spin-one par-

ticles. Although these mostly summarize known results, new material starts in §2.4.3 and

then continues in §2.5 with a description of how Standard Model gauge invariance can be

implemented within this framework.

2.1 Goldstino superfield

The central point is that the low-energy theory well below the UV supersymmetry breaking

scale necessarily contains a majorana Goldstone fermion, G, that eventually mixes with the

gravitino to give it a mass through the super-Higgs mechanism [39]. The Goldstino provides

a way for an arbitrary non-supersymmetric low-energy theory to realize supersymmetry non-

linearly. Among the points of ref. [17] is the observation that there is no loss of generality in

expressing this nonlinear realization in terms of ordinary superfields subject to constraints,

with the Goldstino itself represented by a left-chiral superfield X subject to a nilpotent con-

straint of the form X2 = 0.

In components this superfield can be schematically written in terms of the supergravity

fermionic spinor coordinate Θ [36, 37] by

X = X +
√
2 (ΘγLG) + Θ2 FX , (2.1)

and the nilpotent condition boils down to the constraint

−2X FX +GγLG = 0 . (2.2)

Provided FX is a UV scale this constraint can be used to eliminate the scalar X in terms of

G, giving

X =
GγLG

2FX
. (2.3)

Using this in (2.1) shows that this last condition is not just necessary, but also sufficient, for

the condition X2 = 0.

The minimal low-energy matter sector when supersymmetry is broken consists only of

the Goldstone fermion itself, for which the low-energy EFT consists of supergravity coupled

to the constrained multiplet X. When coupled to supergravity the most general form (at the

two-derivative level) for the action in superspace is [20]

L =

∫
d2Θ2E

[
3

8

(
D2 − 8R

)
e−K/3 +W

]
+ h.c. , (2.4)

where W is a holormorphic function of X and K is a real function of X and its complex

conjugate X. The most general form for these functions given the constraint X2 = 0 is

K = XX and W = fX +W0 , (2.5)
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where the field X is rescaled to choose a canonical coefficient for XX in K and terms linear

in (or independent of) X in K can be moved into W by performing an appropriate Kähler

transformation.

Restoring factors of Mp, in the gauge G = 0 the component Lagrangian becomes

L√
−g

= −
M2

p

2
R̂− i

2
ϵµνλρψµγ5γνDλψρ −

1

2M2
p

(
W0 ψµγ

µνγLψν +h.c.
)
− f2 +

3|W0|2

M2
p

, (2.6)

where γµν := 1
2 [γ

µ, γν ] and R̂ = R(e, ψ) is the Ricci curvature, including gravitino torsion.

Once the phase of W0 is absorbed into the gravitino its apparent mass is revealed to be

m3/2 =
|W0|
M2

p

, (2.7)

showing the Mp suppression that allows the graviton multiplet to be split by less than are

other multiplets that couple more strongly to X.

Eq. (2.6) has integrated out the auxiliary field FX , which given the above choices for K

and W gives FX = f, revealing f to be the supersymmetry breaking scale. This interpretation

is also evident from the form of the scalar potential, which is

V = f2 − 3|W0|2

M2
p

. (2.8)

When f = 0 eqs. (2.7) and (2.8) reproduce the supersymmetric AdS relation between curvature

and gravitino mass and when specialized to f2M2
p = 3|W0|2 (and so V = 0) they give the

standard flat-space relation between the supersymmetry breaking scale f and gravitino mass.

2.2 Non-supersymmetric fermions

Other non-supersymmetric particles may be similarly represented in terms of constrained

supermultiplets. The ones of most interest to us are those involving the SM degrees of

freedom, which include scalars, spin-half fermions and spin-one gauge bosons. We start here

by formulating the couplings between a standard fermion and the goldstino multiplet.

2.2.1 A single Majorana fermion

For a non-supersymmetric fermion field ψ we write the constrained superfield in terms of the

supergravity fermionic spinor coordinate Θ by

Y = Y +
√
2 (ΘγLψ) + Θ2 F Y , (2.9)

and we seek a constraint that removes its scalar part Y (but only should be able to do so

once supersymmetry breaks, and so a nilpotent field X is present). The constraint that does

the job is XY = 0, which is taken to hold at the superfield level. This implies the component

constraint [20]

−4Y FX − 4X F Y + 4(GγLψ) = 0 , (2.10)
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plus several consistency conditions that follow from this.

Keeping in mind that FX is a UV scale – and eliminating X using (2.2) – this constraint

implies the scalar Y is given by

Y =
1

FX

[
−X F Y + (GγLψ)

]
=

1

FX

[
(GγLψ)− (GγLG)

F Y

2FX

]
. (2.11)

Using this in (2.9) shows that this last condition is not just necessary, but also sufficient, for the

condition that XY = 0. This solution is the same in supergravity and global supersymmetry

because the underlying constraint is chiral and algebraic. Notice also that although Y 2 is

nonzero, expression (2.11) implies Y 3 = 0, since its lowest component necessarily involves at

least 3 factors of the 2-component spinor γLG and so must vanish.

The most general forms for the Kähler potential and superpotential describing the cou-

plings of X and Y to supergravity consistent with the constraints X2 = XY = 0 are

K = ZXXXX + ZY Y Y Y +
1

4
ĉY 2Y

2
+

(
ZXYX Y +

ê

2
XY

2
+

b̂

2
Y Y

2
+ h.c.

)
, (2.12)

and

W =W0 + f̂X + ĝY +
1

2
ĥY 2 , (2.13)

for arbitrary parameters ê, b̂ and ĉ and f̂, ĝ and ĥ. We use the freedom to rescale X → αX

and Y → βY + γX to set some of these coefficients to canonical form. These are allowed

redefinitions because the constraints X2 = XY = 0 imply that the same constraints remain

true for the new variables as well. The choices

β∗β =
1

ZY

, γ = −ZXY

ZY

α , α∗α =

[
ZX −

∣∣ZXY

∣∣2
ZY

]−1

(2.14)

do the job, and lead to

K = XX + Y Y +
e

2

(
XY

2
+XY 2

)
+

b

2

(
Y Y

2
+ Y Y 2

)
+

c

4
Y 2Y

2
, (2.15)

and W =W0 + fX + gY + 1
2 hY

2 with new couplings

e =
α

ZY

[
ê− ZXY

ZY

b̂

]
, b =

b̂

ZY

, c =
ĉ

Z2
Y

f = α

[̂
f− ZXY

ZY

ĝ

]
, g =

ĝ√
ZY

, h =
ĥ

ZY

. (2.16)

With this choice the nonzero scalar parts to the superpotential derivatives are WX = f

and WY = g and so the physical Goldstone fermion is proportional to the linear combination

fG+ gψ. This is a pure gauge degree of freedom that can be eliminated by going to unitary

gauge, corresponding to fG+gψ = 0. The Lagrangian is simpler to write if the gauge freedom
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is instead chosen to set G = 0, as before, in which case X = Y = 0 and the superfields (2.1)

and (2.9) reduce to

X(G = 0) = Θ2 FX and Y =
√
2 (ΘγLψ) + Θ2 F Y . (2.17)

This gauge has the minor disadvantage that it retains mixings between ψ and ψµ which must

be diagonalized within the component Lagrangian.

In G = 0 gauge the Lagrangian (after integrating out the auxiliary fields) is

L√
−g

= −
M2

p

2
R̂− i

2
ϵµνλρψµγ5γνDλψρ −

1

2
ψ /Dψ − f2 − g2 +

3|W0|2

M2
p

− g√
2Mp

ψγµψµ

−1

2

[
(h− ef− bg) ψγLψ +

W0

M2
p

ψµγ
µνγLψν + h.c.

]
+ (4-fermi terms) (2.18)

which modifies (2.8) to include the energy g2 associated with nonzero F Y :

V = f2 + g2 − 3|W0|2

M2
p

. (2.19)

Eq. (2.18) also makes the mixing between ψ and ψµ explicit (when g ̸= 0). This mixing is

removed by a field redefinition of the form γLδψµ = AγLγµψ + BγLDµψ for suitable choices

of A and B. Once this is done the remaining physical mass term for ψ is

Lmass = −1

2

[
(h− ef− bg) +

g2

f2
(
h− ef− bg−m3/2

)]
ψγLψ + h.c. , (2.20)

where (as above) m3/2 = |W0|/M2
p is the gravitino mass, which for a flat vacuum satisfies

|W0|/M2
p =

√
f2 + g2/(

√
3Mp). The 4-fermion interactions have the form

L4−fermi√
−g

=

(
− 1

8M2
p

+ c− |e|2 − |b|2
)
(ψγLψ)(ψγRψ) (2.21)

+
1

4M2
p

[
ϵµνλρψµγLγνψλ + ψµγLγ

ρψµ
]
(ψγLγρψ) .

2.2.2 A charged Dirac fermion

Electrically charged Dirac fermions are particularly useful when considering Standard Model

fermions. A Dirac fermion contains two left-chiral fields Y± whose left-handed fermions de-

stroy particles with charge ±e. We imagine both fields to satisfy the same constraint and so

demand

X2 = XY+ = XY− = 0 , (2.22)

and ask the Lagrangian to be invariant under the rotations Y± → e±iωY± with all other fields

(in particular X) being invariant.

In this case (after field redefinitions) the most general possible functions K and W de-

scribing the couplings of Y± to one another and to X are

W =W0 + fX +mY+Y− , (2.23)
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and

K = XX + Y +Y+ + Y −Y− + e
(
XY+Y− +XY +Y −

)
+c++ Y

2
+Y

2
+ + c+− Y+Y−Y +Y − + c−− Y

2
− Y

2
− . (2.24)

Notice in particular that electric charge conservation prevents having a term that is linear

in Y±, and so g± = 0 and ψ± cannot mix with the goldstino G. This is because charge

conservation precludes the auxiliary fields F Y± from acquiring expectation values.

The component Lagrangian in this case takes is

L√
−g

∣∣∣∣
g=0

= −
M2

p

2
R̂− i

2
ϵµνλρψµγ5γνDλψρ − ψ /Dψ − f2 +

3|W0|2

M2
p

(2.25)

−
[
(m− ef) ψγLψ +

W0

2M2
p

ψµγ
µνγLψν + h.c.

]
+ (4-fermi terms)

where ψ without a subscript is the Dirac spinor whose left- and right-handed projections are

γLψ = γLψ− and γRψ = γRψ+, and so

1

2

(
ψ+γLψ− + ψ−γLψ+ + h.c.

)
= ψ+γLψ− + ψ+γRψ− = ψ ψ . (2.26)

The detailed form of the 4-fermi interactions is not needed in what follows, but it includes the

terms quartic in the gravitino contained in R̂, as well as terms biquadratic in ψ and ψ and

terms involving a bilinear ψΓψ (for some choice of Dirac matrices Γ) multiplying a bilinear

in the gravitino.

2.3 Non-supersymmetric gauge boson

The effective Lagrangian for a gauge boson is obtained in a similar way. The superfield that

represents a massless spin-one particle is a left-chiral left-handed spinor, W, that contains

the field strength Fµν = ∂µAν − ∂νAµ. This is related to a real scalar supermultiplet, P ,

containing the gauge potential Aµ by

W = −1

4

(
D2 − 8R

)
DP . (2.27)

In terms of this the gauge kinetic term is given by the chiral integral

L√
−g

= − 1

4g2

∫
d2Θ

(
2E W2 + h.c.

)
, (2.28)

where g is the gauge coupling.

The constraint that removes the the gauge boson’s fermion superpartner is given by

XW = 0 (2.29)
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where X is (as usual) the nilpotent goldstino multiplet. Solving this constraint4 implies the

would-be gaugino field, λ, satisfies a component constraint that allows it to be eliminated in

terms of the Goldstino G, the gauge field Fµν , the new gauge auxiliary field D and (unlike

for the previous cases) the auxiliary fields from the supergravity multiplet. The solution is

complicated to write – see [20] – but in the gauge G = 0 the spinor superfield W becomes

W = ΘD− iγµνΘ D̂µAν +
1

Mp
Θ2 γµ

[ i
2
ψµD− γλρψµ D̂λAρ

]
, (2.30)

where the supercovariant derivative D̂µAν satisfies

D̂µAν − D̂νAµ = Fµν +
1

4Mp

(
ψµγνλ− ψνγµλ

)
. (2.31)

The X-dependent generalization of the gauge kinetic term (2.28) then has the form

L√
−g

= −1

4

∫
d2Θ

[
2E J(X)W2

]
, (2.32)

where J(X) = J0 + J1X is the most general holomorphic function of X. However the

constraint (2.29) implies that the J1X term does not contribute in (2.32), and so the most

general coupling of X to W has the form L = LX +LW where LX is given by (2.4) and LW is

given by (2.28). The Lagrangian in component form after elimination of auxiliary fields then

is (c.f. eq. (2.6))

L√
−g

= −
M2

p

2
R̂− i

2
ϵµνλρψµγ5γνDλψρ −

1

4e2g
FµνF

µν (2.33)

− 1

2M2
p

(
W0 ψµγ

µνγLψν + h.c.
)
− f2 +

3|W0|2

M2
p

,

which uses J0 = 1/e2g.

2.4 Non-supersymmetric scalar

The final practical example is the case of non-supersymmetric scalar fields that have no

fermionic superpartners. Following [17] we consider first a complex scalar and restrict to its

real and imaginary components at the end.

2.4.1 Complex scalar

A complex scalar appears as the lowest component of a chiral superfield

H = H+
√
2ΘγLΨ+Θ2 FH , (2.34)

4What is used here is the result obtained when X2 = 0 is solved first, and then XW = 0. A more general

solution for which X is a function of W2 is also possible, and describes the N = 1 formulation of the goldstino

from a second supersymmetry should this have existed.
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and the constraint that implements the nonlinear realization is the condition that the product

XH be left-chiral, and so

D
(
XH

)
= 0 , (2.35)

where D is the left-handed superspace spinor covariant derivative. This constraint turns out

to allow both Ψ and FH to be eliminated in terms of other fields, leaving only H as a physical

propagating degree of freedom.

For the purposes of writing down invariant Lagrangians it is noteworthy that (2.35) also

implies D(XH
n
) = 0 for any power n and therefore

D
[
X F(H,H)

]
= 0 (2.36)

for any function F(H,H) of H and its conjugate. This states that the constraints ensure that

arbitrary functions of H and H become left-chiral once multiplied by X.

The constraints X2 = 0 and D(XH) = 0 can be used to eliminate Ψ and FH from H,

leading to complicated expressions that simplify considerably in the gauge G = 0, for which

X = Θ2 FX and H = H (if G = 0) . (2.37)

The absence of FH in (2.37) means that there is no need to integrate out FH when constructing

the component Lagrangian, and so the result (given below) is not simply the standard 4D

sugra Lagrangian for a chiral field H with the fermionic partner for H set to zero.

As usual, the two-derivative Lagrangian is specified by the functions K(X,H,X,H) and

W (X,H,H), and in the present case the most general form consistent with the constraints is

K = U(H,H)XX +XP̂(H,H) +X P̂(H,H) + Z(H,H) (2.38)

and

W = w0(H) +X ŵX(H,H) . (2.39)

Also as usual, there is considerable freedom to simplify this form using field redefinitions.

For instance, the function U(H,H) premultiplying XX can be rescaled into a redefinition

X → X̂ =
√
U X. This is possible even if U depends on H because the constraint (2.36)

implies X̂ remains chiral, and the nilpotent condition X2 = 0 implies the same remains true

for the new variable: X̂2 = 0. This means that any nonzero U can be absorbed into the

combinations P = P̂/
√
U and wX = ŵX/

√
U . Performing a Kähler transformation similarly

shows that P appears through the combination wX + (Pw0/M
2
p ).

The component Lagrangian (in the gauge G = 0) then becomes

L√
−g

= −
M2

p

2
R̂− i

2
ϵµνλρψµγ5γνDλψρ − ZHH ∂µH ∂µH− V (H,H) (2.40)

+

[
1

4M2
p

ϵµνλρψµγRγνψλ ZH ∂ρH− 1

2
M(H,H)ψµγ

µνγLψν + h.c.

]
,

– 11 –



where ZHH = ∂H∂HZ controls the scalar kinetic function. The functions M(H,H) and

V (H,H) are defined by

M :=
w0

M2
p

eZ/(2M
2
p ) , (2.41)

and

V (H,H) := eZ/M
2
p

[∣∣∣∣wX +
Pw0

M2
p

∣∣∣∣2 − 3|w0|2

M2
p

]
= eZ/M

2
p

 1

U

∣∣∣∣∣ŵX +
P̂w0

M2
p

∣∣∣∣∣
2

− 3|w0|2

M2
p

 . (2.42)
In detail, the factors of eZ/M

2
p come from the Weyl rescalings needed to put the Einstein term

into canonical form, and the remaining potential arises as a combination of squares due to

the elimination of the supergravity auxiliary fields as well as FX .

2.4.2 Real scalar

We remark in passing that ordinary real scalar fields are represented by superfieldsB satisfying

the constraint

X
(
B −B

)
= 0 (2.43)

since this allows the imaginary part of the scalar B ∈ B to be eliminated in terms of the

Goldstone fermion and other fields. Notice that (2.43) also implies the constraint (2.35) given

above. Solving (2.43) also shows that it implies a subsidiary condition (B − B)3 = 0, which

can be helpful when exploring how B can appear in the action [17, 18, 19, 20, 21, 28].

2.4.3 Structure of the scalar potential

Eq. (2.42) is surprising because it preserves the remarkably specific supergravity-type scalar-

potential form despite supersymmetry being so badly broken that the scalar’s fermionic part-

ner can be integrated out. In particular it is strictly positive in the limit Mp → ∞. But we

are normally free to write down arbitrary potentials U(H,H) for non-supersymmetric scalars,

so how is this consistent with the scalar potential taking the form (2.42)?

When answering this question it is instructive first to consider what happens in the limit

of global symmetry. In global supersymmetry the Lagrangian is obtained by integrating K

and W from (2.38) and (2.39) over the fermionic coordinates

L =

∫
d2θ d2θ K +

[∫
d2θ W + h.c.

]
, (2.44)

and in this language it is the contributions U(H,H)XX ⊂ K and ŵX(H,H)X ⊂ W that

give a generic potential5

V = − |FX |2 U(H,H) +
[
FXŵX(H,H) + h.c.

]
(2.45)

5Because XP̂(H,H) is left-chiral it gives a total derivative once integrated over d2θ d2θ, and so in global

supersymmetry drops out of the scalar potential completely.
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and this can indeed reproduce an arbitrary potential V (H,H) once the auxiliary field for X

is replaced by a spurionic expectation value FX = µ2.

But having supersymmetry be realized on the low-energy fields implies that FX is not

simply a constant spurion. It is a field over which a functional integral is performed, and

once this is done for the gaussian function (2.45) one obtains

V =

∣∣ŵX(H,H)
∣∣2

U(H,H)
=
∣∣wX

∣∣2 (2.46)

in agreement with the Mp → ∞ limit of (2.42). The last equality rescales X → X̂ =
√
U X –

as described below (2.39) – but also underlines that this redefinition breaks down in regions

where U changes sign. The spurion limit applies best in situations where FX is dominated

by a large H-independent supersymmetry breaking contribution, such as when wX(H,H) =

µ2 + v(H,H) with µ2 ≫ |v(H,H)|, since in this case

V ≃ µ4 + µ2
[
v(H,H) + h.c.

]
+
∣∣v(H,H)

∣∣2 . (2.47)

Because constant contributions to V have no significance in the absence of gravity this shows

in global supersymmetry how arbitrary potentials v(H,H) with general signs can emerge for

scalars when global supersymmetry is badly broken.

Put another way: the sum/difference-of-squares structure of the potential (2.42) arises

because of the presence of auxiliary fields in the low-energy theory; both FX and the auxiliary

fields of the gravity multiplet itself. Although these fields do not propagate they are also not

optional if supersymmetry is to be realized linearly by the constrained field content, given the

assumption that the goldstino, the graviton and gravitino are light enough to be in the low-

energy effective theory. Conversely, if one were to try to couple supergravity to a potential not

of the sum/difference-of-squares form the absence of auxiliary fields should prevent linearly

realizing supersymmetry within the gravity sector and so mass splittings within the gravity

mulltiplet should not remain small.

This entire discussion underlines the importance of including non-propagating fields (like

auxiliary fields or topological fields), particularly for naturalness arguments that depend on

the form of the scalar potential in the low-energy theory.

2.5 Standard Model representations

It can be useful to identify how the Standard Model itself is described using the above fields.

From the superfield point of view the Standard Model field-content assigns a constrained

superfield for each known particle. It therefore consists of constrained spin-one multiplets for

all of the gauge fields; a constrained fermion multiplet for every left-handed Standard Model

fermion – two electroweak doublets L and Q plus the electroweak singlets E, U and D; and

a constrained scalar multiplet H containing the Higgs doublet.

Comparing with the fermion mass terms of (2.25) shows that the ‘down-type’ fermion

Yukawa couplings appear within the superpotential, such as for

w0 = yELEH + yDQDH . (2.48)
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The inability to write a similar yUQUH term for ‘up-type’ fermions (because supersymmetry

forbids H from appearing in W ) is one of the reasons a second Higgs is needed in supersym-

metric versions of the Standard Model. One might hope to use the constraint (2.35) to evade

this problem, but that requires at least one factor of X in addition to H.

The up-type Yukawa instead arise as part of the Kähler potential, through terms like

K ∋ yUQUH

(
X

f

)
+ h.c. (2.49)

which contributes to fermion masses by an amount yUv when f is the parameter appearing in

fX ∈ W that dominates in FX (c.f. the contribution ef in the mass term shown in (2.20)).

Because the F auxiliary fields for Standard Model fermions transform under gauge transfor-

mations, they in particular must vanish in any vacuum that does not break electromagnetic

U(1) invariance. As a consequence Standard Model fermions do not mix with the goldstino

that lives within the superfield X.

Keeping in mind the discussion surrounding (2.47) the choice that reproduces the Higgs

potential of the Standard Model when used in (2.42) (and Planck-suppressed terms are

dropped) is similarly

wX = f0 + c0 + c1HH + c2(HH)2 + · · · = f+
λ

f
(HH − v2)2 + · · · , (2.50)

for constants λ and v, where (again) f = µ2 sets the supersymmetry-breaking scale. Regarding

this as an expansion in powers of 1/f seems reasonable because the absence of Standard Model

superpartners presumably requires f ≫ v2 since these partners have masses controlled by f

and are assumed to be much heavier than the electroweak scale.6

The structures described above should be generic when the gravity sector is much more

supersymmetric than is the Standard Model sector, with the X field being a remnant from

much higher energies containing the supersymmetry-breaking order parameters. The main

assumption is that only the one field X required to contain the Goldstone fermion is light

enough to descend from higher energies. As argued in [17] supersymmetric current algebra

ensures that the X field parametrizes the low-energy limit of any such supersymmetry break-

ing in the UV (even, for example, if D-terms carry part of the breaking in the high-energy

theory).

3. Wilsonian Flow

The generality of the nonlinear realization described in §2 guarantees that it should describe

the low energies well below the supersymmetry breaking scale, assuming only the hierarchy

6Strictly speaking only FX must be large compared to the weak scale, so assuming f ≫ v2 makes the addi-

tional assumption that FX is dominated by the globally supersymmetric part WX in FX ∝ WX +(KXW/Mp).

Ref. [22] explores the more counter-intuitive regime where this assumption fails, such as when HH seeks a vev

of order f0 + c0 that makes wX vanish in (2.50).
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∆MSM ≫ Λ ≫ ∆MSG between the EFT’s UV scale Λ and the mass splittings ∆MSM and

∆MSG between particles and their superpartners in the Standard Model and gravity super-

multiplets. But the low-energy theory nonetheless has counter-intuitive properties, such as

the peculiar supergravity form of scalar potential given in (2.42). Why should this survive

loop corrections once successive waves of non-supersymmetric heavy fields are integrated out?

It is instructive therefore to be explicit, and integrate out heavy degrees of freedom to

see how the resulting threshold corrections preserve these counter-intuitive properties into

the low-energy limit. The goal is to see how the defining functions like K and W change as

energies are lowered below the fermion threshold.

In this section our tools for doing this are standard calculations using the Gilkey-DeWitt

heat-kernel coefficients [40, 41, 42, 43], that give the effects of integrating out heavy particles

at one loop order. These tools show that such loops contribute local shifts to the effective

Lagrangian of the form LI = Lu + δL with

δL√
−g

= a(s)cc m
4 + a

(s)
eh m

2R+
a
(s)
rs m2

M2
p

iϵµνλρψµγ5γνDλψρ +
a
(s)
gmm3

M2
p

ψµγ
µνψν + · · · (3.1)

where a
(s)
cc , a

(s)
eh , a

(s)
rs and a

(s)
gm are dimensionless order 1/(16π2) quantities whose values – listed

explicitly in [41, 42, 43] – depend on the spin s of the particle that was integrated out. They

can also depend logarithmically7 on the heavy-particle mass m. The a
(s)
rs and a

(s)
gm terms arise

in a Planck-suppressed way because each gravitino vertex comes with a power of 1/Mp (see

for example the 2-fermi interactions in (2.18) or (2.25) or the 4-fermi interactions of (2.21)).

The factors of m in (3.1) evaluate the loop using dimensional regularization renormalized

using minimal subtraction so that the mass of the particle in the loop provides the largest

mass scale within the loop integral and so set its dimensions.

3.1 Integrating out a massive Dirac fermion

Consider first integrating out a single massive Dirac fermion. Broadly speaking there are two

situations for which massive non-supersymmetric fermions might arise, depending on whether

or not the fermion’s bosonic superpartner is lighter or heavier than is the fermion itself. A

common case has the bosonic partner heavier than the fermion, such as when the boson is a

scalar with no symmetries that protect its mass, so we consider this case first.

3.1.1 Only supergravity at low energies

If the boson were heavier it would be integrated out first when coming down in scales, leaving

a low-energy EFT involving only the fermion and the supergravity sector. In this section we

see how integrating out the remaining fermion is captured by threshold corrections to the

functions W and K governing the low-energy nonlinear realization.

7The logarithmic mass-dependence that enters through loop corrections plays an important role in [22],

since it can introduce a logarithmic dependence on some of the low-energy fields.
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Since the fermion is a charged Dirac particle the effective Lagrangian that applies above

its mass is given at the two-derivative level by the superpotential W and Kähler potential K

given in (2.23) and (2.24), repeated here for convenience:

WUV =W0 + fX +mY+Y− , (3.2)

and

KUV = XX + Y +Y+ + Y −Y− + e
(
XY+Y− +XY +Y −

)
(3.3)

+c++ Y
2
+Y

2
+ + c+− Y+Y−Y +Y − + c−− Y

2
−Y

2
− .

The corresponding component Lagrangian (2.25), also repeated here for convenience, is:

Lu√
−g

= −
M2

p

2
R̂− i

2
ϵµνλρψµγ5γνDλψρ − ψ /Dψ − f2 +

3|W0|2

M2
p

(3.4)

−
[
(m− ef) ψγLψ +

W0

2M2
p

ψµγ
µνγLψν + h.c.

]
+ (4-fermi terms) .

The terms quadratic in fields are characterized by parameters f, W0 and m = m− e f.

Below the fermion mass the corresponding terms of the effective Lagrangian are instead

described by (2.6) and so are characterized by KIR = XX and the IR parameters f̃ and W̃0

appearing in WIR = W̃0 + f̃X. In components this gives

LI√
−g

= −
M2

p

2
R̂− i

2
ϵµνλρψµγ5γνDλψρ −

1

2M2
p

(
W̃0 ψµγ

µνγLψν +h.c.
)
− f̃2 +

3|W̃0|2

M2
p

. (3.5)

The goal is to compute what matching at the fermion threshold implies for how the parameters

W̃0 and f̃ depend on their UV counterparts W0, f and m.

Integrating out a heavy Dirac fermion shifts the effective Lagrangian with the local correc-

tion given as a special case of (3.1), with coefficients a
(1/2)
cc , a

(1/2)
eh , a

(1/2)
rs and a

(1/2)
gm specialized

to spin s = 1/2. For brevity of notation we suppress the superscript (s) in what follows.

The contributions involving aeh and ars change the canonical normalization of the metric

and gravitino fields and so are absorbed into field redefinitions

gµν → λg gµν and ψµ → λf ψµ . (3.6)

Preserving the form of the Einstein-Hilbert part of the action implies

λg =

(
1− 2 aehm

2

M2
p

)−1

≃ 1 +
2 aehm

2

M2
p

+ · · · , (3.7)

and this metric redefinition then rescales all of the other terms in the Lagrangian because√
−g → λ2g

√
−g, ϵµνλρ → λ−2

g ϵµνλρ and γµ → λ
1/2
g γµ etc. Preserving the form of the gravitino

kinetic term therefore requires

λf = λ−1/4
g

(
1− 2arsm

2

M2
p

)−1/2

≃ 1 +
m2

M2
p

(
ars −

aeh
2

)
+ · · · . (3.8)
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With these conventions the coefficient of the gravitino mass term in Lu + δL becomes

Lu + δL ∋ −
λ2fλg

2M2
p

√
−g (ψµγ

µνψν)
(
W0 − 2agmm

3
)

≃ − 1

2M2
p

√
−g (ψµγ

µνψν)
(
W0 − 2agmm

3
) [

1 +
m2

M2
p

(aeh + 2ars) + · · ·
]

(3.9)

so comparing this to (3.5) allows us to identify the value for the IR parameter W̃0:

W̃0 ≃
(
W0 − 2agmm

3
) [

1 +
m2

M2
p

(aeh + 2ars) + · · ·
]
≃W0 − 2agmm

3 + (Mp suppressed) .

(3.10)

Repeating this exercise for the vacuum energy Lu + δL ∋ −
√
−g V gives

V ≃ λ2g

(
f2 − 3|W0|2

M2
p

− accm
4

)
≃
(
f2 − 3|W0|2

M2
p

− accm
4

)(
1 +

4 aehm
2

M2
p

+ · · ·
)
, (3.11)

and comparing this to f2 − 3|W0|2/M2
p fixes the value for the IR parameter f̃:

f̃2 = V +
3|W̃0|2

M2
p

≃
(
f2 − 3|W0|2

M2
p

− accm
4

)(
1 +

4 aehm
2

M2
p

+ · · ·
)

(3.12)

+
3

M2
p

∣∣W0 − 2agmm
3
∣∣2 [1 + 2m2

M2
p

(aeh + 2ars) + · · ·
]

≃ f2 − accm
4 + (Mp-suppressed) .

Consequently (assuming f2 ≫ accm
4) the IR theory’s superpotential becomes8

WIR = W̃0 + f̃X ≃
(
W0 − 2agmm

3
)
+

(
f− accm

4

2f

)
X + · · · . (3.13)

Comparing to (3.5) assumes that any changes to K are absorbed into rescalings of X so

that KIR = XX. In all of these expressions the physical fermion mass is related to the UV

parameters by m2 = |m− ef|2, as described above.

3.1.2 Residual light scalar

Consider next the case where the low-energy theory below the fermion mass contains a non-

supersymmetric scalar in addition to the supergravity sector. In this case the low energy

8Having the superpotential W be renormalized when the heavy field is integrated out apparently contra-

dicts the supersymmetric non-renormalization theorems. This is possible when supersymmetry is nonlinearly

realized because the lack of kinetic terms for the Lagrange multipliers means their propagators do not take

the form assumed when these theorems are proven.
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theory requires more than just the parameters W̃0 and f̃, being replace by expressions like

(2.40), repeated here as

LI√
−g

= −
M2

p

2
R̂− i

2
ϵµνλρψµγ5γνDλψρ − Z̃HH ∂µH ∂µH− Ṽ (H,H) (3.14)

+

[
1

4M2
p

ϵµνλρψµγRγνψλ Z̃H ∂ρH− 1

2
M̃(H,H)ψµγ

µνγLψν + h.c.

]
,

and something similar happens for the UV lagrangian, whose parameters f and W0 are also

replaced by H-dependent quantities wX(H,H) and w0(H).

The lagrangian shift δL due to integrating out the fermion field is again given by an ex-

pression like (3.1). When matching between UV and IR theories the comparison of parameters

is simplest when done at order M0
p , leading to

WIR = w̃0 + w̃X X ≃
(
w0 − 2agmm

3
)
+

(
wX − accm

4

2f

)
X + · · · , (3.15)

where m is now H-dependent. Comparing this to expressions like (2.50) – and keeping in

mind the logarithms of m that are implicit in quantities like acc – shows how the low-energy

scalar potential acquires its standard m4 ln(m2/µ2) Coleman-Weinberg type [44] corrections,

as might have been expected.

3.2 Other spins

The generality of the result (3.1) shows that similar considerations apply when integrating

out other fields with different spins. In more general cases the shifts to the superpotential

parameters like f and W0 involve a sum over s. When integrating out multiple fields one finds

similar expressions as above for these parameters, but summed over the masses and couplings

of all of the heavy states that are integrated out.

The sum over s can introduce cancellations between contributions from particles with

different spins, such as when the integrated-out particles happen to flesh out a complete

supermultiplet whose average mass is larger than the mass splittings amongst its members.

The sum over elements of the multiplet then tend to give contributions proportional to spin-

weighted supertraces of the mass matrix, with (for instance) the m4 contributions to (3.15)

combining (when summed over spins) into STr M4 =
∑

s(−)2s(2s+ 1)m4
s. Known mass sum

rules for spontaneously broken supersymmetry (see for instance [45, 39] and [46, 47]), then

allow these to cancel, as is required by the non-renormalization theorems [48].

Auxiliary fields (e.g. for X) enter into these calculations through the supersymmetry

breaking mass splittings within a heavy multiplet. In the supersymmetric limit they play

little or no role, but they dominate for badly split multiplets. This is in detail why they

drop out of supersymmetric radiative corrections while non-supersymmetric heavy particles

dominantly contribute to the X-dependent part of the action. It is ultimately the role of the

auxiliary fields to allow the generic component form be expressible in terms of the specific

kinds of couplings (i.e. W and K) that appear in the superspace Lagrangian.
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4. Concluding Remarks

We conclude by summarizing the main arguments, and briefly discussing directions towards

which this point of view likely leads.

4.1 Summary of main results

Our main point is to remove a relatively widespread objection to the use of supergravity

in very low-energy applications, such as to astrophysics and post-nucleosynthesis cosmology.

Although supergravity has been used to construct many such models, particularly for Dark

Energy in cosmology, two related objections have been raised that may have prevented its

wider exploration:

• The ingredients of interest in applications – usually small scalar masses and small vac-

uum energies – are controlled by the low-energy scalar potential and this is known to

be particularly sensitive to quantum corrections involving the theory’s heavy particles;

• None of the known heavy particles relevant to cosmology or astrophysics are super-

symmetric and so their quantum effects are likely to badly break any supersymmetric

structure even if this were present at higher energies.

Recent developments describing broken supersymmetries in terms of constrained super-

fields [17, 18, 19, 20, 21] show how supergravity couples to a matter sector in which super-

symmetry is badly broken, and so allow the explicit calculation of the non-supersymmetric

quantum effects required to test this objection more precisely. We use this formalism to pro-

vide an estimate of their size and argue in favour of the stability against loop corrections of

the structure predicted by [17, 18, 19, 20, 21].

This opens up a conceptual framework that is attractive in its own right and so deserves

more systematic study: the vision that high-energy supersymmetry survives at low energies

dominantly in the (possibly complicated) gravity sector despite supersymmetry being badly

broken for all of the ordinary particles described by the Standard Model. This is a vision

that often actually does descend from supersymmetric UV completions [9, 10] (though the

calculations that show this are usually only done without including quantum corrections).

It does so because splittings in any supermultiplet arise proportional to the couplings of

that multiplet to the supersymmetry-breaking order parameter, and gravity usually has the

weakest couplings of all.

Besides stability against loops, there embedding of the Standard Model into supersym-

metry described here differs in several potentially useful ways relative to the standard MSSM

approach.9

9Note that our scenario differs from the non-linear MSSM – proposed in [49] with the idea of extracting

model independent couplings of the goldstino to the MSSM – for which the nilpotent superfield couples to the

standard MSSM field content (for which the Standard Model superfields realize supersymmetry linearly). See

also [50] for a proposal closer to ours.
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1. The functional dependence of the scalar potential keeps the its supergravity structure

as a difference of perfect squares (such as in eq. (2.42)). We argue that this property

follows from the low-energy presence of the auxiliary fields for the nilpotent superfield

X and for the supergravity sector itself (for which supersymmetry is linearly realized).

2. At the low energies of interest here all Standard Model partners have been integrated out

and so (for example) pose no problem with anomalies in the low-energy EFT (removing

one of the MSSM arguments that one needs a second Higgs superfield). For down quarks

and leptons Yukawa couplings arise in the usual MSSM way within the superpotential

W , but the Yukawa couplings for the up quarks come from their coupling to the X

superfield in the Kähler potential. It is the presence of the nilpotent superfield X that

allows one to evade MSSM arguments and have Yukawa couplings for both up and down

quarks with only a single Higgs.

3. The Higgs potential also arises from the coupling of the Higgs H to the nilpotent

superfield X within the superpotential. Because XHH is dimension 3, it can only have

dimensionless coefficients and there is no µ problem. It is the constraint satisfied by the

Higgs superfield that ensures the quantity XHH is chiral and so allows H to appear in

the superpotential.

4.2 Phenomenological speculations

A detailed phenomenological study of this scenario is beyond the scope of this article, but we

close with some speculations about how this picture of nature – i.e. a very supersymmetric

gravity sector coupled to a non-supersymmetric matter sector – might impact some of the

puzzling questions of our time.

Planck-coupled Dark Sector

The most obvious consequence of this framework is the inevitable complication of the gravity

sector, which at the very least must contain a gravitino. Explicit examples often involve

other gravitationally coupled supermultiplets, such as by including a low-energy dilaton-

axion multiplet arising from the accidental scale invariances that are ubiquitous to higher-

dimensional supergravity [51, 52, 53, 54, 55] (and string theory [23]).

This suggests the existence of a rich spectrum of gravitationally coupled particles, al-

though one whose properties are constrained by supersymmetry. Such a sector comes with

potentially observational implications (and constraints) coming from cosmology and astro-

physics. The best known of these are the cosmological bounds on the presence of a light grav-

itino or other superpartner (or moduli, in explicit UV completions) [56, 57, 58, 59, 60, 61, 62].

Although these constrain allowed gravitino properties they are also not excluded over a wide

mass range.

Having a potentially large number of dark-sector particles also underlines the importance

of studying the three renormalizable ‘portals’ — Higgs-scalar, gauge-kinetic and neutrino —
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through which Standard Model singlets (like Dark Matter) can interact with Standard Model

fields without suppression by heavy mass scales (for Dark Matter models that exploit the

scalar portal in this way see e.g. [63]).

Light sterile fermions

A special case of the general observation that the gravity sector might be complicated is the

supersymmetric requirement that it must contain gravitationally coupled fermions. From the

point of view of the Standard Model sector these are electroweak singlets and so transform

as would right-handed neutrinos. Although they are not forced to mix with Standard Model

neutrinos, they are likely to do so unless this mixing is forbidden by a conservation law

or selection rule (such as lepton number conservation). Because this neutrino mixing is

renormalizable (and so is one of the portals) it is generically unsuppressed by super-heavy

mass scales.

This makes a superpartner fermions look much like the light sterile neutrinos that are

often postulated when neutrino model-building, though with an important extra ingredient:

supersymmetry explains why they are light in the first place (e.g. they might be superpartners

for the massless graviton or for an extremely light dilaton). This is important because (unlike

for perturbative Standard Model particles) chiral gauge interactions do not in themselves

protect singlet fermions from getting very large masses. Indeed, some examples along these

lines – in which neutrinos mix with sterile fermions from the gravitational sector [31] – already

exist in the literature.

Axions

What was said above about fermions also applies to axions, since supersymmetric chiral

multiplets involve complex scalars and this implies any light scalar field usually brings another

along in its wake. These scalars are very often axions in the sense that they are the Goldstone

bosons for shift symmetries and so tend to couple derivatively to ordinary matter (if at all).

Derivative couplings and pseudoscalar parity make these scalars harder to detect, but also

mean that they could well be ubiquitously present (as has been argued in [29] for instance).

They also potentially give rise to many potentially detectable effects and are subject to a

variety constraints [64, 65, 66].

A curious feature about axions that arise in supergravity is that they usually arise within

UV completions as 2-form Kalb-Ramond gauge potentials, bµν , that are related the the axion

field a by a duality transformation like ∂µa ∝ ϵµνλρ∂
ν bλρ. This means in particular that the

corresponding axion need not combine with another field ρ to form the combination ρ eia that

linearly realizes its shift symmetry at energies E ≫ fa, where fa is the axion’s decay constant

as defined by its kinetic term f2a (∂a)
2.

Primordial fluctuations and inflation

Perhaps the most striking feature visible in expressions like (2.8) or (2.19) for the scalar

potential is the generic appearance of a large positive contribution to the scalar potential

– 21 –



associated with the breaking scale of supersymmetry. This is precisely the kind of ingredient

sought when building inflationary models, and one that is often hard to find when exploring

UV completions (like string theory) because limitations in current calculational technology

usually limit these to solutions are very close to a supersymmetric limit.

Its ubiquity in the limit of strong supersymmetry breaking in the matter sector suggests

that the scarcity of inflationary solutions in such searches is likely an artefact of the search

techniques rather than being a robust consequence of UV physics. Indeed there is evidence [67]

that non-supersymmetric constructions (like physics localized on an antibrane within Type

IIB string vacua) are well-described in the low-energy theory in terms of 4D supergravity

coupled to a nilpotent goldstino field X.

Furthermore, if supersymmetric potentials can be relevant at the very low energies of

late-time cosmology it is likely to be even more relevant at the higher energies at play during

inflation. What the large positive supersymmetry breaking energies then suggest is that the

energy scale of inflationary physics – high though it is – is likely lower than the scale associated

with supersymmetry breaking itself. This also fits with the picture that more weakly coupled

sectors appear to be more supersymmetric at lower energies because the shallowness of the

inflaton potential usually requires its couplings to be quite small.

4.2.1 Low-energy scalar potential

Perhaps the most intriguing possibility that low-energy supersymmetry brings is the possi-

bility for improved naturalness properties of the scalar potential at low energies.

As mentioned above, the inevitable presence in the potential of the auxiliary fields asso-

ciated with the supersymmetric gravity and goldstino sectors can change the nature of the

scalar potential’s UV sensitivity. For example, the contribution of a loop involving a danger-

ous particle of massM can contribute to the low-energy potential an amount δV ∼M2F+h.c.

(where F is an auxiliary field) rather than the naive δV ∼ M4. perhaps more generic light

scalar fields?

Although supersymmetry in itself is unlikely to make light scalars or small vacuum en-

ergies natural, it is likely to help other mechanisms for suppressing these quantities. (See

in particular [22] for an example that attempts to combine supersymmetry and scale invari-

ance to suppress UV contributions and so to obtain naturally light scalars and small vacuum

energies.)

Improved naturalness properties at very low energies would change much about the way

we think about how fundamental physics can influence low-energy astronomy and cosmology,

by removing the taboo on light cosmologically active dilaton-like scalars, possibly with many

associated surprises. One such is the recent discovery that the presence of an axion with

the couplings required to be the superpartner for a Brans-Dicke-like dilaton can make solar

system tests unable to detect the dilaton even if its Brans-Dicke coupling is large enough that

it would have been ruled out in the absence of the axion [68].

We welcome the possibilities of such a Brave New supersymmetric gravitational World!
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