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Abstract

Statistical averaging of the Boltzmann-Langevin equation is performed. It is
shown that at the averaged level the fluctuations induce an additional collision term
with a medium-modified transition rate, which can give rise to a critical scattering
phenomena in the vicinity of unstable regions. In order to illustrate the effect of
this additional collision term, the single-particle relaxation time in nuclear matter
is estimated. It is shown that the fluctuation-induced contribution to the relaxation
time is indeed comparable with that of the BUU collision term in the vicinity of
spinoidal region.
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1 Introduction

Transport models with self-consistent mean fields, like the Boltzmann-Uehling-Uhlenbeck
(BUU) model, are widely applied to the description of heavy-ion collisions [1]. These
mean-field transport models are very successful in describing the average properties of
the one-body observables associated with nuclear collisions, siuch as nucleon spectra, col-
lective flows and particle production {2. 3]. However, these approaches do not provide
an adequate description, when an instability occurs during the dynamical evolution of
the system, e.g., such as those in thermal fission or multifragmentation processes. The
reason is that the mean-field transport models bring about a deterministic description for
the average evolution and do not allow for any branching of dynamical trajectories in the
instability region.

The stochastic transport models offer a more appropriate framework for the description
of the unstable dynamic evolution. In these stochastic approaches. the transport theory is
extended beyond the mean-field level by incorporating the correlations within a statistical
approximation [4, 5, 6]. The correlations give rise to a stochastic collision term in the
equation of motion, which acts as a source of continuous branching of the dynamical
trajectories. In the semi-classical limit, this extended transport model is referred to as
the Boltzmann-Langevin (BL) model for the phase-space density. Here, as a continuation
of a previous work (7], we investigate the relation between the BL and BUU models. We
demonstrate that at the averaged level the 31, model contains a new (as compared with
the BUU model) collision term arising from correlations induced by long-range density
fluctuations [3].

The paper is organized as follows. In section 2, a brief review of the BL model is
presented. In section 3, we carry out a statistical averaging of the BL equation and
derive the fluctuation-induced collision term. In section 4. we present an estimation of
the relaxation time associated with the single-particle motion in nuclear matter. Finally

in section 5, we give some conclusions.

2 Boltzmann-Langevin Model

The derivation of the BL model was performed in rels. [4]. Here we present a brief
survey of the model. Binary collisions play a twofold part during the dynamical evolution
of a system: (i) to produce dissipation by randomizing the momentum distribution of the
constituent particles and, in addition, (ii) to induce fluctuations by propagating correla-
tions in the phase space. These two effects of the binary collisions, 1.e. the dissipation

and fluctuations, can be incorporated into the equation of motion yielding a stochastic



transport equation for the single-particle density. For simplicity, we restrict our treatment
to the semi-classical evolution of a spin-isospin averaged phase-space density and consider
only elastic binary collisions. According to the BL model, the fluctuating phase-space

density f(t, r,p) is determined by the equation

(% to- V- vrl'/r[ﬁ] ’ VP> f(f, T,p) = ]\,(f, Tvp) + é‘]‘,(t,'l',p). (1)

Here U[n] is a fluctuating self-consistent mean field, which is assumed to be local and,

hence, determined by the fluctuating local density,

. g 37
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and
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(3)

is the collision term of the Boltzmann-Uehling-Uhlenbeck type. Here, ¢ 1s the spin-isospin

degeneracy factor of the nucleon (g = 4), fi = fu, r,p;) and

1 do

W(12|34) = TR 6(py + Py —Ps—Py) 6(e1 + 62 — €3 — £4) (4)

is the transition rate expressed in terms of the center-of-mass scattering cross section,
do [dQp, .

An additional term, § K (¢, 7, p), in eq. (1) presents a fluctuating part of the collision
term. In analogy with the treatment of the Brownian motion, it is regarded that eq.
(1) describes a stochastic process, in which the entire phase-space density f(t,r,p) is a

stochastic variable and § K acts as a random force. The stochastic collision term vanishes

on the average
(§K(t,7,p)) =0, (5)

and is characterized by a correlation function
(BK(t,r,p) 6K(t', 2. p")) = ot =) o(r —7") C(T,R,p, D), (6)

wnere T' = %(t + ) and R = 15(7' + 7'). In the Markovian treatment, the quantities

8.(t — t') and 8.(r — r') are assumed to be sharp é-functions. Here, we take them as

2
, 1 L (b=t
S.(t —t') = 5 OXP [——Z ( - ) } , (7)

“broad é—functions”




1 ? 1 fr—r\*
de(r —7') = ( 27”.«) exp l:—§< - ) :l . (8)

This is a more realistic parametrization of the correlation function. Here, the correlation
length, r. ~ 1 -2 fin, is of the order of the two-body interaction range, and the correlation
time is 7. >~ r./v, with v being an average relative velocity of uncleons. The correlation

function C'(t, 7, p,p’) can be expressed as follows

C(t,r,p,,p)) = /,13,)3 Cps WL I34) [0 = 000 = fidfsds + fifu(l = f)(1 = f)]
‘-2/(13])2 (13])4 IV(I,‘Z ’ 1/14) [(1 — ./:1)(] - .ftz)fl'./ta + f)fz(l - .i]')(l . f4)]

+8(py = p1) [ P pu e WOL2 13.0) (1= P01 = Ffof + fal = )0 — fa)
(9)

The correlation function is closely related to the collision term and is entirely determined
by the one-body characteristics. This relation can be regarded as a consequence of the
fluctuation-dissipation theorem associated with the stochastic evolution of the phase-space
density. The BL equation (1) offers a stochastic deseription of the collision process, in
contrast to the deterministic one of the BUU model. For a given initial condition, the
BL equation (1) results in an ensemble of solutions. If the system evolves through an
instability region, these solutions can largely diverge from each of her, giving rise to large

density fluctuations.

3 Averaging of the Boltzmann-Langevin Equation

In order to carry out the ensemble averaging of the BL equation (1), we decompose

the phase-space density and the mean-field as
f=f+6f0 [1=0 46U, (10)

where f = (f) and I = (I7) are the averaged parts. while 6 f and 817 denote the fluctuating
parts of the phase-space density and the mean ficld. respectively. Note that (0f) = (6U) =
0 by definition. By performing the ensemble averaging, we readily obtain the transport
equation for the averaged phasc-space density

J

<7}—f+v-\7,. _v,.zr.v,,> I =(KY+ Ny, (11)
Jt

where (K) = (K({f})) is the averaged collision term. The additional term

KNpr = (V601 - V,6f) (12)



on the right-hand side indicates that the kinetic equation for the averaged distribution
function, emerging from the BL model, in general, is not identical to the BUU equation.

The calculation of the additional collision term K, in terms of the averaged charac-
teristics is, in general, a highly complicated problem. Therefore, we consider a particular
situation under certain approximations, which simplify the calculation of Ky and, at the
same time, clarify the dissipation mechanism associated with this collision term. In this

particular case

(i) We assume that thie magnitude of fluctuations is small as compared with that of
averaged quantities. As a result, the fluctuations can be treated in the linearized

approximation.

(ii) We consider fluctuations of the space-time scale to be much shorter than that of
the averaged quantities. Hence, in the calculation of fluctuations, we neglect the

space-time dependence of the averaged qnantities: f = f(p) etc.

(iii) We assume the collisional damping in the system, determined by the collision term
(K), to be weak. More precisely, we consider collisional relaxation time to be
much longer than the characteristic inverse frequencies of the collective modes. In
particular, this weak damping assumption supports the previous one on the space-

time scale separation.

This particular case under consideration may roughly be associated with the average evo-
lution of the premultifragmentation stage of nuclear collision. when the spatial gradients
are small, the expansion is slow and the collisional relaxation of the system is less effective
than the mean-field dynamics.

As a result of the assumptions (i)-(iii), the fluctuations are determined by the lin-

earized BL equation

<%+v-vr) Sf—fo~V,6U:—IA6f+51\' (13)
where [ is the linearized collision operator:
f5f1 = (21)3 /(13])2 Py Ppy W(L213,4)
< (afats + Refsf6 S+ (i fsfa+ Fifs )6 fo
= o foh 8 S — sl fe+ S fi f2)813) (14)

where f = 1 — f is the Pauli-blocking factor. To solve this equation, it is natural to use

the Fourier transformation

Sf(w,k,p) = /dt Eroexpliwt —ik-7) 6f(t, 7, p), (15)



and, similarly, for other quantities. In the Fourier representation eq. (13) reads

ik -v—w)8f(w k,p)—ik -V, f 8U(w. k)= —I16] + 6K (w, k,p), (16)
where
SU(w k) = V(k) onlw. k). (17)
9 [, . X
bl k) = (2;)3 / S [w k. p). (18)

.
Vik) = (T) . (19)
on k

While assumption (iii) does not necessary invoke the smallness of the transition rate W
but can be associated with the Panli blocking of final states, we shall formally perform
the expansion i terms of W', keeping in mind that the Pauli blocking factors always
accompany this W. It is worthwhile to note that the [ operator is of the first order in the
transition rate W [cf. eq. (14)], and the 8 quantity is. roughly speaking, of the order
of W1/2 [cf. eqs. (6) and (9)].

Taking into account the assumption of the weak collisional damping [ef.  (iil)], we
should solve this equation in the lowest order in 1. One can easily do that by analyzing
the analytical structure of the solution. First, it is obvious that ¢f is of the order of
8K, since 6K is the only inliomogeneous term in the equation. Then, it could seem
that the iéf term is of the third order in 6 A and. hence, can be neglected in the hinear
approximation in 6 X', However, it is not exactlv so. As scen from eq. (16), the é f solution
has a pole of the type of (k- v —w —/A)7' where A takes into account the collisional
damping and is defined below [cf. eq. (20)]. Henee. the contribution of the Iéj term into

the solution is
(k-v—w—iN)""T(k - v—w—iA)"
The diagonal part of /6 f
(T6f )10y = X 07,

where

A(pl) = (21)3 / ([sl)z ({:S[):; (/SIH H'( 1.2 | 3-*1) (/Zfif\ + /2f3fl), (20)

gives a double-pole contribution
x (kv —w—iN)7?

This double-pole contribution is of the first order in §A and, hence, should be kept. All

the other terms of /8 are of the third order in 8/ and can be neglected.
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Thus, in the weak damping approximation (i.e. in the linear approximation in 8§ K)

we get
k-V,f SK(w, k,p)
6 k = P Jw, k) — !
flo,k,p) = P () — i 21)
where
W R = —1 ()] N y &
' elw, k) (2m)? P v_—w—iA
Y - k-v, 1 5
q%mzl—»mhhw/mpbv_J_A, (23)

By using these together with the (§ A § ') correlation function in the Fourier representa-

tion
(6K (w, k,p) §K (o' k', p)) = (27)" Gw. k) d(w + &) 8(k + k') C(p,p"), (24)

one can calculate all the required quantities. Here, the quantity

2 L\ 2

with w. = 1/7. and k. = 1/r., represents the cut-off determined by finite correlation
lengths in time and space of the correlation function (6) of the stochastic collision term.
First, let us consider the correlation function of the phase-space density. A simple but

somewhat lengthy calculation gives

g
(27)?

(8 (w, k,p)8 (&', K, p')) = (27)" (i k) 8o+ ) S(k + &)

A_f(p)+ A4S (p)
A

X [m?(p —pYo(k-v—w) + é(W,kﬁp,P’)} ) (26)

where

Balpn) = g [ e dps i W(1L213,0) ( J’?% ) , (27)

and ¢(w, k,p,p’) is an analytic (nonsingnlar, except for simple poles) function of all the
variables. The ¢ function, which is proportional to W, has a magnitude of the first order
of smallness. The singular part of this correlation function originates from the diagonal

part of the C(p,p’) correlation function (6)

(27)°

g

[A_f(p)+ AL f(p)]. (28)

/ !
Caing(P,P") = 6(p — P')
The inverse Fourier transformation into the coordinate representation results in

A_f+0,f
20

+ ¢(f - t’,'l’ - 7'/,P,PI), (29)

(;Pwﬂﬁﬂw5ﬂﬂﬂmw = M (r—r' —v(t=1)) §(p-p)
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where ¢(t — t',r — v/, p,p’) is a nonsingular function proportional to W. The quantity
¢ goes to zero in the limit | » — 7' |— oo and/or | t — t' |— oo. Here, the quantity

8 (r — vt) is again a “broad §-function” of the special kind

| I ‘ 72
(V) (p — = p _ P (v (p— 2
87 (r —vi) = (2m)3/2 (w212 4 r2) Uy, ‘ '\P{ 22 [(r vl) viT? + 7_3(1) (r =) }} ’
(30)

c
In particular, the 6 (» — v#) function indicates that the nonlocality of the correlation

function (29) is larger in the longitudinal (with respect to v) direction than that in the
transverse one. When 7. and r. go to zero, 8" (r — vt) transforms into conventional

d-function. In equilibrium we have
A JA T
22 B
[cf. eqs. (20) and (27)]. Substituting this into cq. (29), we arrive at the natural form

of the correlation function in equilibrium. The factor ¢/(27) in the left-hand side of

If (31)

eq. (29) has appeared due to the normalization condition (2) for the phase-space density.
This result serves us as a test for consistency of our calenlations.

Using the result of eq. (29), we can readily demonstrate that the averaged collision
term, (K) = (K({f})), coincides with the BUU one, K gy = K({{f)}), in the first order

in W, i.e. within the validity of our consideration [cf. assumption (iii)]. Indeed, the

difference
~(l X ! . e . v I A

(I() - I{BUU = (2—71_)3 / (13[)2 (13})3 (15])4 W (1, 2 i 3,4) (<6/3(‘)f4> - <(Sf15f2>) (32)
is determined by the (6f6f') correlation function. (For simplicity, we have omitted the
Pauli factors here.) The contribution of the §(p — p') part of this correlation function
into the (K) — Kpyy difference is identically zero, as one can easily check. Physically,
it means that the gain and loss terms cancel each other when there is no real scattering,
i.e. when the momenta of particles are not changed in the collision. The ¢ function is
proportional to W, hence, it makes the contribntion of the second order in W, which is

beyond the frame of our treatment. Thus. we ohtain
<1\> = I\'H!'I'« (33)

The additional collision term A'gy, can be evaluated by making use of the expressions
for 6 f(w, k,p) and 6U(w, k) given by eqs. (21) and (22)

2

V(k) 1

cw k)| k-v—w—1A
9V [y g &S Ol k¥ Clp )
(27)3 POl v~ — ANk v —w + A

dw d*k
K. = —Im v,,/ —(%—)T(ic(w.k)k
2T

(34)
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This expression reminds the Balesku-Lenard collision term in Coulomb plasmas [9]. This
similarity becomes more evident, when one makes use of the explicit form of the C(p,p’)

correlator. The collision term K gy can then be expressed in the form of two terms

(triple) ‘
I\B] — 1 znmy _+_[ Tl] . (35)

Here, the first term is a binary collision term of the Balescu-Lenard type

dw &>k Vik) 4 ‘
(binary) i A g 3. ..y s —
g Ginary) vp/ T Gl k) b (h):i/d Voolk v —w) (kv — w)
A T+ AL S A f+ALS '
x [k-fo N tl k- VS — (36)

which originates from the diagonal part of the (7 correlation function (28) and involves
the medium-modified V/e interaction determined by the permittivity. The factor G.
introduces a natural cut-off in momentum transfers, which is determined by inverse cor-

btnary)

relation lengths [cf. eq. (25)]. In fact, ] presents a small scattering-angle expan-
sion of a full Boltzma.nn-Uehl]ng—Uhlenbm,l\ collision term with the V/e interaction. The
(A f+ Ay )/ A construction simulates the Panli blocking [cf. eq. (31)]. Assuming

(A- f+ D4 f)/A ~ 2f f, we can reconstruct the full BUU form of 1\ b”my)

K™ = o [ @y Op WET021000) (RS - RRBI) (D

where
2

GC 1k .
(e, k) 5(1)1+P2—P;5“P4)<5(51+52—€3—‘64) (38)

(2m)?
is the transition rate expressed in terms of Fourier-transformed éU//én [cf. eq. (19)] and

permittivity (23), with k = p,~p, and w = (£3—¢1)/2. The nondiagonal part (C —Cliag)

yields a kind of triple collision term

V(k)
e(w, k)

W(bmary (12 I 34) —

dw (m . Vik) |
r(trzple) . g
K = —ImvV, / (k) k|
. L . v C (VO ' - k * v) " b k’ !
> ‘f] - /(1_3])/ p} J ) : / ]/ Q(w / p )’ (39)
(2m) (k-v—w zA)(k~v —w — 1A

where

q

Q. k,p1) = 553 / Epy Eps EPpy W (s — s — 20) (o Ssfa+ fifafsls),  (40)

e =k v, —w+iA,)" (41)

riple)

The K(bm'1 Y term is the leading order contribution to K gy, since K contains higher
g BL

order smallness associated with W.



The collision term Kpg; involves a contribution of collective excitations which cor-
respond to zeros of the permittivity: e(w.u.(k), k) = 0. Hence, the collective modes
appear as poles of the integrand in eq. (36). For weakly damping collective modes, their

contribution into the Ny collision term can be singled 11 {0 give

Bl I
]'(coll) V, _(____ (;C o k) R R 4 ] )
(BL S CISE (w k) k [V(R) T o (VO (k-V,)f, (42)
where ,

y 3 C(p'.p") .

r, = '

* (('27r)3> /d Py (k'v’—w)(k-v”—w)’ (43)

k Vo
2r Tl (44)

and w = k- v. This is the semi-classical limit of the collision term derived in ref. [7]
in the quantum representation by taking into account the full correlation function as
well as the memory effect associated with finite duration of the binary collisions. This
collision term arises from the correlations associated with the long-wavelength collective
density fluctuations. It describes the dissipation mechanism resulting from the coupling
between the single-particle motion and the collective vibrations. In the vicinity of the
spinoidal instability, the magnitude of this dissipation mechanism increases due to the
large density fluctuations. Therefore, it can slow down the expansion of nuclear matter,
as well as induce the critical scattering phenomenon similar to the critical opalescence in
liquids near the phase transition [10]. In addition. the collective term Kpgp of eq. (36)
contains non-collective contributions corresponding to the small-angle binary scattering
with momentum transfer & < k.. Hence, it gives rise to corrections to the BUU collision

term in the range of small momentum transfers.

4 Single-Particle Relaxation Time

In order to illustrate the effect of the collision tern /\Hl nri)

on the collision dynamics,
we estimate a relaxation time associated with the single-particle motion. The single-
particle relaxation time, 7, 1s defined as [11]

1 ! !

- = + I
T TR Tfluct.

(45)

where
1/TBUU _ 1 ‘(1,2|3,4—)
1/Tﬂuct. (2

T 13 : d3 4 tnary
P2 A" p3 p1 ( "‘/,,(;bL I)(l’z l 3’4)

) [fafafa+ fofsfd). (46)
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Here tguu [= 1/A, cf. eq. (20)] is the relaxation time associated with the conventional
BUU collision term, while 7/, is a contribution of the additional collision term of eq.
(37), arising from fluctuations. The first term in square brackets represents the rate
at vhich nucleons of momentum p, are scattered to new state. while the second term
represents the blocking, due to the presence of a nucleon of momentum py, of the processes
that scatter nucleons into momentum p,. For simplicity, we consider the nuclear matter

at low temperatures T: T < -, where £p is the Fermi energy. In thermal equilibrium

[.f‘z.ftafzs + /\‘zfri./v-x] = fofsfil . (47)

Frequently, an alternative definition of the relaxation time is used [12, 13], in which only
contribution of the loss term [i.e. the first term in square brackets of eq. (46)] is taken
into account. As seen from (47), the relaxation time within such an alternative definition
differs from that of eq. (46) by the factor l/‘/"l.

According to refs. [12, 13], at low temperatures and small deviations of the energy of

the incident nucleon from the Fermi surface (| — sp] < zp7) the general form of 7ppy 1s

(= 1) +

) = Ao vEn, (48)

UG

where vg is the Fermi velocity, n is the nucleon density, and Jgpy 1s some constant
coefficient determined by cross sections. Collins and Griftin [14] performed extensive
calculations of the nucleon mean free path. A, within the above-mentioned alternative

definition for Tayy. In terms of our definition of 7z (46), it reads
A=v TBUU{I + t‘.\'[)[“(;‘ — S(IU))/T]} (49)

where v is the velocity of the incident nucleon. For nuclear matter at the normal nuclear

density and low temperatures, their results are well fitted by the formula

L Aexpl-(z - e%”)/T]

T (50)
(7T)? 4 (= — sp))-’

where a ~ = 1150 fm MeV2, For the paramecters of the normal nuclear matter they used
ng = 0.17 fm=3 and 5(F0) = 38 MeV. By comparing cqgs. (43) and (50), we can deduce the

value of the Bguy coethicient

)2

(13

(0
F
YN

Bpun = ~ 7. _f'll)z. (51)

For the relaxation time Tfuq. We can use the correspouding result obtained for liquid

He? [11, 15]

1 (7T)* + (¢ — ¢F)* ( l )
—_— T = 3 uct. B vpn + ) (52
Tﬂ“d-(T’ 6) Pt 6;7 d T fluct. non—an )

11



where

ﬂ'kc F() 2
3 uct, — 37 ) 53
Bituet 32n 1+ Fy (53)
. gmpg .
Iy = 52 |58 (54)

and pr 1s the Fermi momentum. Here, /4 is the conventional Landau parameter of the
nuclear Fermi liquid [11, 12, 16}, and (1/7/1u0( )in—un is a non-analvtic function of (e —ef)
which is important in the very vicinity of the phase transition. The precise expression
for this term can be found in refs. [11, 12]. Bellow. this term is not taken into account,
since we are not allowed to go too close to the phase-transition point within our treatment
due to our assumption of small fluctuations [cf. (i)]. We have deliberately represented
the Tfiyee. time in the form similar to that of 751, which allows for a comparison of two
relaxation times by simply comparing the values of 34, and g, In order to estimate
Bfiuct., we utilize the parametrization of the nuclear effective potential [1, 17]

U] = A 4 3 <—”~> , (55)

g hq

where ng = 0.145 fm™>, A = - 356 MeV, B = 303 MeV, and ¢ = 7/6. This effective
potential is extensively used in calculations of heavy-ion reactions and corresponds to a

soft nuclear equation of state. According to eq. (19), we obtain

1 a—1
Vik)= A— + 7 <i) (56)
T Iy Nty
and correspondingly
‘ /31 A B N -1
Fo=5 () |y rom ()] (57)
2 \ng 5(P9) S(P?) N

where 5(1‘9) = 34.4 MeV [1, 17]. As seen, the effective interaction V (k) does not depend
on k within this parametrization.

Performing the actual calculation. we find that the effect of fluctuation on the relax-
ation time becomes very small at the normal nnclear density 1y, 3pue. >~ 0, indicating
that the collision term Ky 1s negligible at the normal nuclear density. We can determine
the critical density n., specifying the onset of the spinoidal instability zone, from the con-
dition that the Landau parameter becomes Fj, = — 1. Using the parametrization of the
effective potential, from eq. (57) we find n. = 0.625 ng. When approaching this critical
point, n — n., the inverse of the relaxation time becomes very large, 1/Tfiee. — 00, as 1t
is seen from eq. (53). This corresponds to the critical-scattering phenomena at the liquid-
gas phase transition. However, due to our assumption of small fluctuations [cf. (1)] we are

not allowed to come close to the critical point within our treatment. We can only claim

12



that in the vicinity of the critical point the magnitude of B3t 1s comparable with that of
Beuu. For instance, taking the correlation length as r. = 2 fm, we find B, ~ 6.1 fm 2
at n = 0.7 ng. Thus, the effect of the collision term Ny, indeed, becomes important

when approaching the spinoidal region.

5 Conclusions

We have considered the evolution of the averaged phase-space density in the BL
model. We have demonstrated that, besides the usual collision term of the BUU form,
the equation of motion involves an additional collision term arising from correlations
associated with long-wavelength density fluctuations. In the limit of small fluctuations
around a quasistatic state, we have derived the cxplicit expression for this collision term.

In order to illustrate the effect of the collision term induced by fluctuations, we have
estimated the relaxation time associated with the single-particle motion. It has been
demonstrated that the relaxation time due to this dissipation mechanism is comparable
with that determined by the BUU collision term already at densities n ~ 0.7ng. Therefore,
it appears that the fluctuation-induced collision term may strongly affect the average
evolution of the system in the vicinity of the spinoidal region. In particular, the degree of
equilibration in the expanding nuclear system just prior to the multifragmentation stage
may be higher than that predicted by the BUU calenlations.

The critical scattering in the vicinity of a phase transition is a fairly general phenom-
ena [10]. Similar results for the collision term have been obtained in refs. [18, 19, 20]
within the semiclassical limit of the time-dependent G-matrix theory [2]. Indeed, the
V/e interaction is the solution for the G-matrix in the semiclassical approximation. This
fact is not surprising, since both the BL model and the time-dependent G-matrix the-
ory present different truncation schemes of the BBGKY hierarchy within the theory of
correlation dynamics and are aimed to take into account many-body correlations beyond
the conventional single-particle approaches. The fact that these different approximate
approaches bring about similar results gives confidence in the consistency of these models

and in their ability to treat nuclear systems in the phase-transition domain.
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