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Abstract

A continuum version of the dual transformation is presented in Abelian gauge theories
in (2+1) dimensional curved spacetime. Two representative models, one Einstein Maxwell
Higgs theory and the other Einstein Chern-Simons Higgs theory, are studied within path
integral formalism to understand various aspects of the dual transformation We derive the
Bogomol'nyi-type bound and analyze the soliton solutions for the systems as well as the
global structures of spacetime geometry of the solutions.
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For the Abelian theories whose symmetry groups are discrete, continuous or some com-
bination of these, it has been known that the original theory formulated on a lattice or in
the continuum is mapped into a dual theory [1]. When the duality transformation is suc-
cessfully applied, there are a number of benefits in handling some difficulties occurring in
the original theory. First, it maps a theory with a large coupling constant into a theory with
a small coupling constant. So it can be useful to understand the strong coupling regime of
field theories, or equivalently the high temperature limit of statistical systems and Euclidean
field theories. Second, it shows well the role of topological excitations and their interaction
properties for a class of theories.

In this note, we will apply the duality transformation to (2+1) dimensional scalar elec-
trodynamics coupled to Einstein gravity in continuum and then discuss the physics related
to the self-dual solitons. We select two models described by the Lagrange densities
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where ¢ = t¢|em, the gauge covariant derivative is D, = 0, — ieA,. The form of scalar

potential V (|¢|) will be fixed later so as to give suitable Bogomol'nyi equations.

From now on we reformulate the theories of our interest to dual transformed versions.
Let us begin with taking into account the path integral

2 = [ldgullaA)leldalale | #=7%, (3)

where the Lagrange density £ is either L7, or L¢g. The procedure to achieve the dual
transformation for scalar electrodynamics is divided into three Lagrangian-independent steps
and one Lagrangian-dependent Gaussian integration. The first step is to linearize the inter-
action between scalar field and gauge field by introducing an auxiliary field C,

exp { i[ dyg %g‘“’|¢|2(8”9 —eA,) (8,0 - eA,,)}
/ 4G, T1 % exp {z / &z ﬁ[—%cuoy +g"Cu(8,0 - eA,)] } L@
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The second step is to divide the path integral measure for the phase of the scalar field into
two contributions

[d©)] = [dO][dn]. (5)
Here the first term ©, expressed by a multi-valued function such as
. z? — 22
O, &) => (-1)*tan™" - a:::’ (6)
P P

describes the configuration of vortices and antivortices, and the second term 7, a single-
valued function, represents the fluctuation around a given vortex sector. Then n-integration
gives a restriction for C,

/ [dn] exp {z / & \/ggﬂucﬂaun} . —\}E(s(vﬂm). (7)

If we note that the auxiliary field C, is classically nothing but the U(1) current, the above
condition can be regarded as depicting a quantum conservation of current. Particularly in
Chern-Simons gauge theories (£ = L¢g), it is related to the Bianchi identity. The third step
is the introduction of the dual gauge field H, by rewriting a part of path integral as

/ 40,1 —=8(9,C") = [[AH,JldC,I8(/5C* = Ce*?0,H,) -, (8)

here the constant C is chosen to be 1 for the Maxwell Higgs theory, Eq.(1), and to be £ for
e

the Chern-Simons Higgs theory, Eq.(2), for later convenience. Now that the action at this
stage is quadratic both in the auxiliary field C,, and in the gauge field A,, the path integrals
for those fields are Gaussians and can be carried out in closed form. We now obtain the
dual-transformed version of Einstein Maxwell Higgs theory

z = [lydgullaH, 1[|¢|-2d|¢mdeudx1

exp i / 5|~ =R+ 50" 8,1610.16] - V(14) )
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and that of Einstein Chern-Simons Higgs theory

[lstdg.liam, ls|digl}ide)
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where a single-valued field x is introduced to guarantee the gauge invariance of Maxwell
Higgs theory, and H,, = 9,H, — 0,H,. Note that this transformation can be generalized
to almost any Abelian theory in any number of dimensions. In (D + 1) dimensions we have

only to replace dual vector field to an antisymmetric tensor field of rank (D —1) Hy,ppeonp_,
defined by
ehv1vD
V9
and, for the theory with couplings to an arbitrary number of Abelian gauge fields, we may ap-
propriately introduce several dual fields of which the number is the same as that of conserved
currents.

cr = By Hypyy (11)

From the dual-transformed actions in Eq.(9) and Eq.(10), we easily read the contents

of gauge bosons in Higgs phase; an even-parity photon of mass ev in massive vector theory
2,2

(Eq.(9)) and an odd-parity helicity-one photon of mass £ in topologically massive gauge
theory from (Eq.(10)) [2]. Gauge coupling e is inversely I?lultiplied to the interaction term
between the gauge field and the Higgs field, which looks like the strong coupling expansion
being done. However, when Higgs effects are important, one must take into account the
nonpolynomial interaction in the Maxwell-like term and the Jacobian in Higgs measure.
Note that the path integral measure of gravitational field has nontrivial Jacobian compared
with that of original theory, and it depends on the form of gauge interaction.

Abelian gauge theories coupled to a complex scalar field in (24+1) spacetime dimensions
produce solitonic excitations and, for the specific form of scalar potential, they saturate
so-called Bogomol'nyi limit which shows interesting aspects in both theory and application.
Examples are Nielsen-Olesen vortices in Abelian Higgs model [3, 4], and topological and
nontopological Chern-Simons solitons in Chern-Simons Higgs model [5, 6]. They have been
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examined also with the inclusion of gravity [7, 8]. The role of such excitations in Abelian
Higgs model have been studied in dual-transformed lattice model with the Higgs degrees
frozen out [9]. The dual transformation of both Abelian Higgs model and Chern-Simons
Higgs model was derived in continuum [10].

From now on we explore the classical self-dual soliton solutions in continuum version
of dual-transformed Einstein Maxwell Higgs theory in Eq.(9) and Elnstem Chern-Simons

Higgs theory in Eq.(10). We take the Euler invariant defined by E = d*x\/7 °R as
the total energy of the system constituted by static matter fields and t}xe stationary metric

ds® = N*(dt + K;dz")? — v;;dz*da’, (12)

where the components of the metric, N, K, and v, (1,7 = 1,2), are functions of spatial
coordinates only.

After arranging the terms of energy, we obtain the Bogomol’'nyi-type bound of Einstein
Maxwell Higgs theory under Ay = 0 gauge

1., .
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and that for Einstein Chern-Simons Higgs theory

Ecs = /dzwﬁ{§1¢|2(140i %)2
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i 1
e—ﬁa,.K,-, Vos = 5U%+W, @ is the magnetic flux

1 y
o= —§/d2:c &I F,, (15)
and the value of scalar amplitude at spatial infinity divided by the vacuum expectation value

v, boo, is introduced to let the integral in the last line finite. Hence, for the specific scalar
potentials

where D;¢ = (8; — ieA; +ieK;Ao)d, K =
defined by

2
VMa,w = %‘(quIZ - ’1)2)2, (16)

4
Vos = wop {J617(1617 — %2 = nG(lgl* - 207101 + w42} (17)

the energy is proportional to the magnetic flux ® and then multi-vortex solutions are sup-
ported in these systems. In case of U(1) Chern-Simons gauge theory, the flux carrying objects
are charged because of the Gauss’ law (U(1) charge) = —g@. When the energy is not larger
than meson mass times charge, this Chern-Simons Higgs model can support nontopological

solitons. Another characteristic to distinguish Chern-Simons solitons from Nielsen-Olesen

1 )
vortices is that they carry non-zero spin; the former carry the spin J = 3G » dz'K;
T|—0
and the latter are spinless.
From now on we fix the gauge for 7;; as the conformal gauge
Yij = 6z'jb($i) (18)

and that for K; as the Coulomb gauge V;K* = 0 which enables K; to be expressed by a
function ¥ -
K €Y

— Ry-3 ) 19
62'U2 ﬁaj ]'n 'd} ( )
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Solving the equations of motion, we obtain the Bogomol’'nyi equation for the Maxwell system

) 42 |_¢|!2_ 4rGo? )

9%In - |¢| = 2yt th(3) “"——“‘_—”_l - E <!—¢—|' 1) F 267 ;6,10 (20)
and two remaining equations for Chern-Simons system
2 o2 - 4nGv?
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where 67 is the flat-space Laplacian.

Suppose that the following conditions hold: 1. There exist nonsingular and finite-energy
solutions 2. the base manifold defined by the solution is smooth. We look for the rotationally
symmetric solutions. The results are given as follows*. Though the former system described
by Eq.(20) allows the boundary condition |¢| # v at |z'| = oo, the only solution is that
which makes the space either a cone asymptotically (when 47nGv? < 2) or a cylinder
asymptotically (when 47nGv? = 2). For Chern-Simons case there is also no need to fix the
boundary value of scalar field, ¢, in deriving the Bogomol’'nyi limit, but an appropriate
consideration on the shape of the spatial manifold restricts it to 0 or 1. In addition to
topological vortices (¢ = 1) and nontopological solitons (¢, = 0) in open spaces, the
system contains the solution with ¢, = 0 which corresponds two-sphere space where the
vortices are placed both at north and south poles.

A final comment is in order. Our formalism shows clearly that the interaction term
between the multi-valued scalar phase © and the gauge field A, is Chern-Simons-like term
irrespective of the dynamics of gauge field. However, the physics of nonzero topological part,
for example the phase transition of the above theories induced by topological excitations,
needs further study.

*For the detailed analysis see our papers in Refs|7, 8]
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