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Abstract

We comment on a claim that axion strings show a long-term logarithmic increase
in the number of Hubble lengths per Hubble volume [1], thereby violating the stan-
dard “scaling” expectation of an O(1) constant. We demonstrate that the string
density data presented in Ref. [1] are consistent with standard scaling, at a string
density consistent with that obtained by us [2,3] and other groups. A transient slow
growth in Hubble lengths per Hubble volume towards its constant scaling value is
explained by standard network modelling [3].

The paper [1] reports on and interprets the results of a set of numerical simulations
of axion string networks in a complex U(1) field model of the axion, aiming to pin down
the axion number density in the post-inflationary PQ symmetry-breaking scenario, and
thereby provide an accurate prediction of the axion mass for dark matter searches.

A central claim of the paper (first made in Ref. [4]) is that the long-established
picture of scaling in string networks [5, 6] does not apply to global strings, and that
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the average number of Hubble lengths of string per Hubble volume (proportional to ξ
in their notation) grows logarithmically with cosmic time in the long term, rather than
tending to an O(1) constant. If confirmed, this would have important implications for
axion dark matter in the axion string scenario: in particular, the axion mass estimate
would be significantly changed. Resonant cavity axion detectors [7] benefit greatly from
accurate mass estimates in order to reduce the search time.

Data from earlier simulations in the same field theory [8–15] analysed in the frame-
work of the standard scaling scenario were consistent with ξ ' 1. Following the appear-
ance of Ref. [4], other groups have also reported slow growth of ξ in simulations [16–19].
This is argued in Refs. [1, 4] to be the true long-term behaviour of an axion string
network, replacing the standard scaling model.

In the standard scaling model, the string network evolves towards constant string
density parameter, which is easily understood in terms of the reduced or increased rate
of loop production in under- or over-dense networks. The loops evaporate into axions
and massive scalar modes [20]. This model is given a mathematical expression as the
“one-scale” model [21] and the “velocity-dependent one-scale” model (VOS) [22, 23],
which adjusts the loop production rate according to the root mean square velocity of
the strings. The VOS model in its simplest form has been checked against numerical
simulations of gauge string networks [24, 25] and it has recently been shown to give a
good description of the approach to scaling in global string networks [3].

On the other hand, in Ref. [1] it is not clear what the model is, beyond a hypothesis
that the string density parameter grows logarithmically at late times. An argument is
given for expecting logarithms based on the increase in the effective string tension and
the decoupling of the axion field in an idealised model of axion strings [26], which is the
subject of ongoing discussion [27], but no dynamical model is proposed. In particular, it
is not made clear how the logarithmic decoupling of the axion field should affect the string
density in this way. Others have tried adapting the VOS model with a time-dependent
string mass per unit length [28–30], but this still results in a constant string density
parameter at late times. The fit of the simplest VOS model to the global string network
evolution close to the scaling fixed point is already very good [3], so the adaptation is
not motivated by the simulations themselves.

The growth of ξ observed in the numerical simulations of Ref. [1] are presented
as strong evidence for the hypothesis that the growth is logarithmic in the long term.
However, as shown in Refs. [2,3], growth of ξ in simulations can be understood in terms
of the slow approach of the dynamical variable ξ to a constant-ξ scaling solution with
ξ∞ = 1.19±0.20. As we demonstrate below, the data presented in Ref. [1], are consistent
with ξ → O(1), and with the results of Refs. [2,3], when properly analysed in a framework
allowing for transients. Criticisms of the claims of long-term logarithmic growth made
in Ref. [2], which was published before Ref. [1] appeared, are not addressed in Ref. [1],
and our paper is not cited.
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The important quantities under study are the string density parameter ξ, defined in
terms of the total string length ` as

ξ = `t2/V, (1)

where t is cosmic time and V is the simulation volume, and the mean string separation

L =
√
V/`. (2)
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Figure 1: Data from Figure 1 of Ref. [1] (round markers) and [2] (square markers). The
dashed lines give fits to (3) with all parameters free, over ranges log(mr/H) > 4 or
log(mr/H) > 5.5. The dotted line shows the fit to a function (5) with long-term linear
growth, as predicted by standard scaling, and an extrapolation. The estimate of the
asymptotic value of ξ in [2] is shown as the green band. All data are broadly consistent
with an asymptotic value ξ(t→∞) ' 1.

To compare the results of Ref. [1] with ours, we have digitised data from Figure 1
of Ref. [1] and present it together with data from [2] in Fig. 1. Data from Ref. [1] is
presented as round dots and data from [2] as square markers. Fig. 1 also shows the
estimate of the asymptotic value of ξ in [2] as a green band. Note that Ref. [2] was more
conservative about the preparation of the string networks, and waited longer before
starting to record data. Note also that the choice made in Refs. [1,4] to plot against the
logarithm of cosmic time, rather than cosmic time, emphasises the early phase of the
simulations, where the effect of initial conditions will be greater.

One can see that the simulations of [1] and [2] give a consistent picture of the evolu-
tion of ξ(t), and are distinguished only by the generally lower string density in Ref. [1],
resulting from the choice of initial conditions. It is reassuring that the two data sets
obtained from different codes, initial conditions, data collection methods, and number
of simulations at each initial string density are in broad agreement. The different con-
clusions are therefore a result of the analysis rather than the simulations.
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Eq. (3) of Ref. [1] gives the authors’ hypothesis for the behaviour of ξ, which we
reproduce here

ξ = c1 log(mr/H) + c0 +
c−1

log(mr/H)
+

c−2

log2(mr/H)
, (3)

where mr is the mass of the scalar field, H = 1/2t is the radiation era Hubble rate, and
cn are fit parameters.

In Ref. [1] it is claimed that the coefficients of the first two terms (c1 and c0) are
universal parameters, and the value c1 = 0.24(2) is presented, which in the long-term
logarithmic growth hypothesis would describe the network at large times. It is not clear
what the authors mean by the universality of c1; and besides, the authors themselves
cast doubt on the claim of the universality of c1 when they state that fits with a log2

term also give good results.
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Figure 2: Values for the parameters c0 and c1 of Eq. 3 for the data plotted in Fig. 1,
with the same colour and shape code. Top: data fitted with only those two parameters.
Bottom: data fitted with all four parameters. Note that in the 4-parameter fit, the
data set from Ref. [2] marked with the green square has (c0, c1) = (−30, 1.8) and is not
plotted.

We take universality to mean behaviour which is independent of the initial state.
In order to check this universality, we have fitted the digitised data from [1], together
with the data from [2], using just two parameters (c0 and c1) from Eq. 3, and also
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using all four parameters. For the 2-parameter fit, all fits were taken over the range
log(mr/H) > 5.5. For the 4-parameter fit, the fit ranges for the data from Ref. [1]
were the same as quoted in that work, (mostly log(mr/H) > 4, with one curve using
log(mr/H) > 5.5) and log(mr/H) > 5.5 for the data from [2]. The fit ranges were chosen
for comparison purposes. In practice, starting the fit too early risks biasing the estimates
of the asymptotic behaviour with transients associated with the evolution away from the
initial state.

The resulting parameters c0 and c1 are shown in Fig. 2. One immediately notices
that there exists a correlation between c0 and c1, and that they vary widely with initial
string density, suggesting that neither of them is universal. It can also can be seen in
the figure that fitting for just two parameters the values for c1 are between 0.05 and
0.2. However, when fitting for the four parameters, the spread is much bigger (bottom
of Fig. 2), even disregarding the two outliers (the green square and blue dot). This casts
another doubt over the universality of logarithmic growth.

For one set, marked with the black curve, we obtained c1 ' 0.22 when fitting with
four parameters. This is consistent with the value c1 = 0.24(2) given in Ref. [1] as the
universal value in their model. This is not the mean and uncertainty obtained from all
fits. Rather, the claim of universality seems to rest on the fact that one can fit all curves
with values of c1 and c0 fixed from the “preferred” simulation set, with the other two
parameters left free. The reason for privileging one set of initial conditions is unclear. It
should also be noted that the value of c1 of the preferred simulation is not as stable as
the quoted uncertainty seems to suggest: for example, its value is c1 ' 0.16 when fitting
with two parameters over the range log(mr/H) > 5.5.

Let us now examine the consistency with standard scaling, which we recall is under-
pinned by the VOS model. The VOS model describes the network with two parameters,
representing the efficiency with which loops are removed from long strings, and the ef-
ficiency with which mean curvature produces average acceleration. It predicts that the
mean string separation L = t/

√
ξ should grow linearly with cosmic time at late times,

while the root mean square velocity tends to a constant.

In Ref. [2] estimates for the asymptotic linear growth rate were extracted from the
data by fits to

L = x∗t+ L0. (4)

In standard scaling x∗ is predicted to be a universal parameter, while L0 is a phenomeno-
logical fit parameter to reduce the effect on estimates of x∗ of the initial conditions and
evolution of the RMS velocity.

We plot L against t in Fig. 3, also with fits to (4) in the last half of the simulation,
where the effect of initial conditions should be reduced. Again, data from Ref. [1] is
plotted as dots, with data from [2] is plotted with square markers.
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Figure 3: Data from Figure 1 of Ref. [1] (dots), and from [2] (square markers), showing
the mean string separation L. Dashed lines give fits to a straight line (5) over the last
half of the simulation from which the asymptotic coefficient linear growth is extracted.

Fig. 4 shows the best fit value of the parameters x∗ and L0, and it is clear that all
simulations are consistent with x∗ ' 1, as predicted by standard scaling. There is no
obvious correlation between the non-universal parameter L0 and the proposed universal
one x∗, indicating that the effect of different initial string densities is mostly captured
by L0. One can improve the accuracy of the estimate of x∗ and the description of the
transients by including velocity data as well [3]. We have also looked for a slow increase
in the value of x∗ in our data, finding none [2].

As a further comparison with the four parameter model of Eq. (3), we also fitted the
data to a 4 parameter model with linear growth,

L = x∗t+ L0 + L1/t+ L2/t
2 (5)

over the range log(mr/H) > 5.5, corresponding to t & 120. The bottom panel of Fig. 4
shows the values of x∗ and L0 for this case. We also show the fits as dotted lines in
Fig. 1, along with an extrapolation to ln(mrH) = 10. They are barely distinguishable
from the logarithmic growth model as a fit to the data, and show how the apparent
logarithmic growth turns over to a constant in the standard scaling picture.

It is also notable that the values of x∗ do not vary significantly from the 2-parameter
fit. Clearly L0 changes, but this is to be expected, as it shares the information about
the initial transients with L−1 and L−2. The sensitivity of the parameter x∗ to changes
in the fit range were investigated in [2], and form part of the error budget in the result
x∗ = 1.19±0.20. Taking fits starting from earlier times biases the result to slightly lower
values: we have not attempted a full analysis here.

The tendency of ξ to increase through most of the simulations is also cited in Ref. [1]
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Figure 4: Fit paramerers to the data from Figure 1 of Ref. [1] (dots), and from [2]
(square markers). Top: fit parameters x∗ and L0 from the 2-parameter fit (4). Bottom:
fit parameters x∗ and L0 from the extended 4-parameter fit (5).

to support of the claim of long-term growth. This tendency is clear in our simulations
too [2, 3], and can be understood as a transient as the network approaches scaling from
low-density configurations (see for example Fig. 9 in Ref. [3]). It was also shown in [3]
that the tendency to approach the fixed point from low densities could be understood
in the framework of the VOS model as the result of an initial burst of loop production
thinning out the network.

Therefore, both sets of simulations support the standard scaling model, with consis-
tent values of the asymptotic string density parameter ξ∗ = 1/x2∗ ' 1, which is stable
between different initial string densities and to the number of parameters in the fits used
to extract it. The value can be understood as approximately one Hubble-sized loop be-
ing produced per Hubble time per Hubble volume, and subsequently decaying in about
a Hubble time [20]. The VOS model gives us the framework to extrapolate the result.

On the other hand, the alternative long-term logarithmic growth model presented
in Refs. [1, 4] lacks a dynamical framework which justifies the logarithmic fits, or their
extrapolation. The method for extracting the coefficient of the logarithm is ad-hoc.
Appealing to the excellence of the fits is not enough, as any smooth function over a
finite interval can be arbitrarily well approximated by an expansion in a set of basis
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functions. The instability of the coefficient of the logarithm between different initial
string densities and number of parameters in the fits is a sign that the model is not the
correct description of the long-term behaviour.

It was also pointed out in Ref. [3] that there is a potentially decisive test between
the two scenarios: whether simulations give asymptotic values of ξ significantly larger
than O(1) or not. Simulations of the U(1) complex field models to date have final values
of ξ ' 1, including the ones presented in Ref. [1] as we have established here. The
slowly-growing ξ evolution shown in the simulations always has ξ . 1 at late times, as
is consistent with a transient bringing the the system to the standard constant-ξ scaling
solution with ξ ' 1.

In summary, the standard scaling scenario with ξ ' 1 is consistent with all simula-
tions to date, and the proposal in Refs. [1,4] to replace the standard scaling scenario by
the long-term logarithmic growth model is unjustified. Observational predictions based
on long-term logarithmic growth [1, 4, 31] are therefore unsubstantiated.

Note added: Recently, another group [32] has used adaptive mesh refinement to
simulate axion strings to log(mr/H) ' 9. The initial string density of their only sim-
ulation is close to that of the “preferred” simulation set of Ref. [1]. We have checked
that the data for ξ in Ref. [32] are consistent with an approach to standard scaling with
ξ∗ = 1.31 ± 0.05, in accord with our results. Therefore, although the data is presented
within the framework of the logarithmic growth model, it supports standard scaling.
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