CERN Accelerating science

Article
Report number arXiv:2103.14530
Title Long-range propagation of ultrafast ionizing laser pulses in a resonant nonlinear medium
Author(s) Demeter, G. (Wigner RCP, Budapest) ; Moody, J.T. (Munich, Max Planck Inst.) ; Aladi, M. (Wigner RCP, Budapest) ; Bachmann, A.-M. (Munich, Max Planck Inst.) ; Batsch, F. (Munich, Max Planck Inst.) ; Braunmüller, F. (Munich, Max Planck Inst.) ; Djotyan, G.P. (Wigner RCP, Budapest) ; Fedosseev, V. (CERN) ; Friebel, F. (CERN) ; Gessner, S. ; Granados, E. (CERN) ; Guran, E. (Munich, Max Planck Inst.) ; Hüther, M. (Munich, Max Planck Inst.) ; Kedves, M.Á. (Wigner RCP, Budapest) ; Lee, V. (U. Colorado, Boulder) ; Martyanov, M. (CERN ; Munich, Max Planck Inst.) ; Muggli, P. (Munich, Max Planck Inst.) ; Öz, E. (Munich, Max Planck Inst.) ; Panuganti, H. (CERN) ; Ráczkevi, B. (Wigner RCP, Budapest) ; Verra, L. (CERN ; Munich, Max Planck Inst. ; Munich, Tech. U.) ; Della Porta, G. Zevi (CERN)
Publication 2021-09-07
Imprint 2021-03-26
Number of pages 13
Note 12 pages, 10 Figures
In: Phys. Rev. A 104 (2021) 033506
DOI 10.1103/PhysRevA.104.033506 (publication)
Subject category physics.plasm-ph ; Other Fields of Physics ; physics.optics ; Other Fields of Physics
Accelerator/Facility, Experiment CERN AWAKE
Abstract We study the propagation of 0.05-1 TW power, ultrafast laser pulses in a 10 meter long rubidium vapor cell. The central wavelength of the laser is resonant with the $D_2$ line of rubidium and the peak intensity in the $10^{12}-10^{14}  W/cm^2$ range, enough to create a plasma channel with single electron ionization. We observe the absorption of the laser pulse for low energy, a regime of transverse confinement of the laser beam by the strong resonant nonlinearity for higher energies and the transverse broadening of the output beam when the nonlinearity is saturated due to full medium ionization. We compare experimental observations of transmitted pulse energy and transverse fluence profile with the results of computer simulations modeling pulse propagation. We find a qualitative agreement between theory and experiment that corroborates the validity of our propagation model. While the quantitative differences are substantial, the results show that the model can be used to interpret the observed phenomena in terms of self-focusing and channeling of the laser pulses by the saturable nonlinearity and the transparency of the fully ionized medium along the propagation axis.
Copyright/License preprint: (License: arXiv nonexclusive-distrib 1.0)
publication: © 2021-2024 authors (License: CC BY 4.0)



Corresponding record in: Inspire


 Record created 2021-09-22, last modified 2023-11-24


Fulltext:
Download fulltext
PDF