
A
TL

-S
O

FT
-P

R
O

C
-2

02
1-

01
8

27
/0

6/
20

21

An intelligent Data Delivery Service for and
beyond the ATLAS experiment

Wen Guan1,*, Tadashi Maeno2, Brian Paul Bockelman3, Torre Wenaus2, Fahui Lin4, Siarhei

Padolski2, Rui Zhang1 and Aleksandr Alekseev5

1University of Wisconsin-Madison, Madison, USA
2Brookhaven National Laboratory, Upton, USA
3Morgridge Institute for Research, Madison, USA
4University of Texas at Arlington, USA
5Moscow State U.; Andres Bello Natl. U.; Moscow, INR

Abstract. The intelligent Data Delivery Service (iDDS) has been developed

to cope with the huge increase of computing and storage resource usage in the

coming LHC data taking. iDDS has been designed to intelligently orchestrate

workflow and data management systems, decoupling data pre-processing,

delivery, and main processing in various workflows. It is an experiment-

agnostic service around a workflow- oriented structure to work with existing

and emerging use cases in ATLAS and other experiments. Here we will

present the motivation for iDDS, its design schema and architecture, use

cases and current status, and plans for the future.

1 Introduction

The ATLAS experiment [1] at the LHC [2] has accumulated about 460 Petabytes of data

processed in an internationally distributed Grid infrastructure with around 175 computing

centers in more than 40 countries, which is steadily running with the capability of providing

about 6M CPU-hours per day. However, when the High Luminosity LHC (HL-LHC) starts its

operation circa 2027, the produced data will grow significantly as the luminosity will

increase by a factor of 10 beyond the LHC’s design value, and ATLAS will be running short of

both computing and storage resources. To overcome this challenge, several new workflows have

been proposed and developed. For example, the ATLAS Event Streaming Service (ESS) [3][4]

delivers fine-grained input data to remote computing resources over the network. Another

example is the ATLAS Data Carousel [5][6], where data processing proceeds as data is staged

in from tape storage to minimize the data footprint on disk. Such workflows require close

collaboration between the WorkFlow Management system (WFM system) [7][8] and the

Distributed Data Management system (DDM system) [9], which can be achieved via the

coordination of a high-level service.

* email: wen.guan@cern.ch

@Copyright [2020] CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is
allowed as specified in the CC-BY-4.0 license

mailto:wen.guan@cern.ch

2

The iDDS system has been developed to orchestrate WFM and DDM systems in order to

optimize resource usage in various workflows. It dynamically transforms and delivers data

to let computing resources process data promptly, decoupling data pre-processing, delivery,

and main processing in each workflow and allowing them to run asynchronously. The main

functions of iDDS are:

● On-demand data transformation: To transform source data on the storage side to the

format optimal for delivery to the consumer and subsequent processing, to minimize

the network traffic and reduce usage of local disks or caches.

● Data delivery with optimal granularity: To partition (as appropriate) data to an

optimal granularity for delivery, while preserving effective data caching.

● Intelligent orchestration: To orchestrate WFM and DDM systems to execute tasks

with optimized resource usage by managing dataflow and workflow based on

knowledge of the data-driven execution graph, data locality and status, available

caches, available processing workers, and other dynamic workflow characteristics.

2 iDDS architecture

iDDS consists of a general RESTful [10] head service to receive requests from clients, and

several daemons to process the requests. The schematic view of the iDDS architecture is

described in Figure 1. The RESTful head service authenticates users, registers and queries

requests, and provides an interface to look up data collections or their contents associated with

the requests. There are five types of daemons: Clerk, Marshaller, Transformer, Carrier, and

Conductor. The Clerk manages requests and converts them to Workflow objects. The

Marshaller manages directed acyclic graphs (DAGs) and splits Workflow objects to Work

objects. One Work object corresponds to one data transformation, and one Workflow object

represents a group of Work objects and their relationships. The Transformer takes care of

association between input and output data, interacts with the DDM system if necessary, and

creates Processing objects to transform data. The Carrier submits Processing objects to the

WFM system and periodically checks their status. The Conductor checks availability of output

data and sends notifications to data consumers to trigger subsequent processing.

Fig. 1. A schematic view of the iDDS architecture

3

Client Side

Clients define Workflows, which are serialized to json-based requests, and submit the requests

to the RESTful head service. The requests are deserialized on the server side to be passed to

iDDS daemons as shown in Figure 2.

The DG (Directed Graph) workflow management in iDDS not only supports DAG (Directed

Acyclic Graph), but also supports graphs with cycles, while the cyclic graph is motivated by

the use case of Active Learning (as shown in Figure 7). A DG is represented as a Workflow

object which is composed of multiple Work template objects and their relationship with

condition branches, as shown in Figure 3. A Work template is a placeholder to generate new

Work objects by assigning values for pre-defined parameters. When a Work is terminated,

all associated Condition branches will be evaluated and new Work objects can be generated

from their following Work templates, with newly assigned values for pre-defined parameters.

Fig. 3. Directed Graph workflow management in iDDS to support both acyclic and cyclic graphs.

Fig. 2. Communication between client and iDDS

Server Side

4

3 Use Cases

3.1 Optimization of ATLAS Data Carousel

The idea of the ATLAS data carousel [5][6] is to increase the usage of less expensive tape

storage relative to expensive disk. The first data carousel implementation worked with coarse

dataset-level data granularity due to constraints in the WFM and DDM systems, which caused

significant overhead before processing the data and required big disk pools to cache the data

during the whole processing period. An optimally implemented data carousel starts processing

data as soon as it appears from tape, not when most of the input data is ready. iDDS brought

the implementation much closer to this optimum than the first implementation with coarser

granularity. In the current implementation, iDDS has added the capability to the WFM system

to work with fine-grained file-level data. Input data is incrementally processed based on more

detailed knowledge on the status of input data, to reduce the overhead and get rid of redundant

data transfers and caching. Processed data is released from the cache promptly with similarly

fine granularity, such that the full workflow minimizes the input data footprint on disk. iDDS

has been integrated with the ATLAS computing system since mid 2020 and has been used for

bulk data reprocessing campaigns. The status of data reprocessing with iDDS is shown in Figure

4 and Figure 5.

Fig. 4. Difference of the number of attempts required for finishing a job between with and

without iDDS. The number of jobs is plotted versus the number of attempts. iDDS significantly

reduces the number of attempts required for successful job completion.

3.2 Hyperparameter Optimization Service

Machine learning is becoming an important tool for data analysis in ATLAS and the wider

community. A hyperparameter is a parameter to control the training process in machine

learning. Hyperparameter Optimization (HPO) [11] is to choose a set of optimal

hyperparameters for a machine learning algorithm, and can be resource intensive. iDDS

provides a fully automated platform for HPO on top of geographically distributed GPU

Fig. 5. The number of bytes processed per day for last 90 days in

Trillion (Tri), in data reprocessing with data carousel + iDDS.

5

resources among the grid, HPC, and clouds, such that large scale resources can be applied to

large HPO tasks. Figure 6 shows how iDDS implements the HPO workflow, where iDDS

centrally scans the search space using advanced optimization algorithms to generate

hyperparameter points, while hyperparameter points are asynchronously evaluated on remote

GPU resources. The training results with those hyperparameter points are reported back to iDDS

for further optimization of the search space, and to generate a new round of hyperparameter

points. Eventually users get the best hyperparameter point and resultant trained models after all

iterations are done. This service is up and running for ATLAS machine learning users. The HPO

service is experiment-agnostic by design, so that it should be easy to use it outside of ATLAS,

but that has not been tried as yet.

Fig. 6. The structure of iDDS Hyperparameter Optimization service.

3.3 Directed Graph based workflows

3.3.1 Rubin Observatory exercise

The Rubin Observatory (LSST) [12] exercise is an ongoing activity to evaluate PanDA as both

a workflow and workload management system. A workflow graph is dynamically generated

by Rubin middleware for each payload submission and includes, among others, a set of

dependencies for each individual job that must be satisfied before the job could be processed.

A single workflow can consist of a hundred thousand jobs forming the vertexes of a DAG. It

is the first use case of the DG-based workflow support in iDDS. Every workflow is mapped to

sequentially concatenated Work objects in iDDS. iDDS also allows Work objects to be

incrementally released based on messaging, in order to avoid long waiting in each Work.

3.3.2 Active Learning

Active Learning is another use case of DG based workflow support, developed initially for

ATLAS. There are two types of Work objects: one for processing and the other for decision

making. The decision-making Work object takes output data from the upstream processing

Work object to provide hints to the downstream processing Work object.

In Active Learning, as shown in Figure 7, Work templates are defined as placeholders of the

processing and the decision-making Work objects, with pre-defined parameters. When a

6

Work completes, its associated Condition branching objects will be evaluated, to check

whether to trigger next processing, which processing to be triggered, and what new values

for next processing’s pre-defined parameters.

This workflow is currently a prototype. It is being evaluated inside iDDS and is being

integrated with PanDA for ATLAS usage.

Fig. 7. The structure of iDDS Active Learning service.

4 Summary and Outlook

iDDS has been developed to support various emerging use cases in ATLAS and other

experiments. It has already been in production for data carousel and hyperparameter

optimization services in ATLAS, and is being evaluated for Rubin Observatory (LSST) [12].

The workflow-oriented structure of iDDS makes it straightforward to add support for new use

cases. Current priorities are to improve the user experience of the client API and CLI tool,

documentation, and monitoring. We anticipate adding more use cases in multiple experiments.

This work was supported by the National Science Foundation under Cooperative Agreement

OAC-1836650.

References

1. ATLAS Collaboration, 2008 JINST 3 S08003.

2. L. Evans and P. Bryant, Journal of Instrumentation, 3 (2008).

3. M. Nocolo et al., EPJ Web Conf. 214, 04034 (2019).

4. P. Calafiura et al., J. Phys.: Conf. Ser. 664, 062065 (2015).

5. M. Barisitis et al., ATL-SOFT-PROC-2020-014, https://cds.cern.ch/record/2709950.

6. M. Barisitis et al., ATL-SOFT-PROC-2021-012, https://cds.cern.ch/record/2773094.

7. J. Elmsheuser and A. D. Girolamo, EPJ Web of Conferences 214, 03010 (2019).

8. F. H. Barreiro et al., J. Phys.: Conf. Ser. 898, 052016 (2017).

9. M. Barisitis et al., Comput. Softw. Big Sci. (2019) 3,11.

 10. F. Buelthoff and M. Maleshkova, arXiv: 1902.10514 (2019).

 11. J. Bergstra et al., Advances in Neural Information Processing Systems 24, 2546 (2011).

12. Z. Ivezic et al., ApJ, 873 111 (2019).

https://cds.cern.ch/record/2709950

