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The Bose-Einstein correlations of pions and kaons emitted from expanding inhomogenious
systems that eventually formed in ultra-relativistic A+A collisions are considered. It is
shown that if the particle transversal masses are large enough in comparison with the freeze-
out temperature, the long-, side- and owt- interferometry radii are defined by the
corresponding  lenghts of homogeneity in the radiating systems. The analysis of the
momentum behavior of the interferometry radii has been done for the sources with a large
temperature gradients and also for intensive relativistic transversal and longitudinal flows.
The general structure of the correlation function for a such kind of the sources is found on
the base of model-independent analysis. The simple analytical behavior of the long-, side-
and out- interferometry radii as depending on the transversal momenta is found for the
typical classes of the transversal flows and also for temperature inhomogeneous systems.
The model-independent relations between the momentum slopes of the different
interferometry radii for 3-dimentionally expanding systems is found.
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1. INTRODUCTION

()

The smallness of the effective emitting region is the basic condition for the interferometry
effect to be revealed experimentally. The systems that form in ultrarelativistic A+A collisions
are quasi-macroscopic ones producing 103 = 10° hadrons and are eventually thermalized. They
are dense and involved in collective expansion due to contiguity with vacuum. So, the systems
can have very small lengths of homogeneity for density, temperature and collective velocities.
The spectra and correlations in small thermal relativistic quantum-field systems are not trivial
and can be understood on the base of the space-time scales [1, 2]. This includes the total geo-
metrical lengths that the thermalized system occupies, _Ri, the local lengths of homogeneity
(hydrodynamic lengths), 5;,‘, and the wave-length of the quanta, A, o l/ pO. First it has been
shown in Ref. [3] that in contrast to small homogeneous systems, R= X, when the interfer-
ometry radii R coincide with the geometrical radii of the system, R =R, for longitudinally
expanding system where R, L >> A 1, the longitudinal interferometry radius is defined by the
hydrodynamic length, R oc A - InRef. [2] the analogous statement has been proved for 3-
dimensionally expanding systems, and the transversal side- and out- radii as well as the longi-
tudinal one have been expressed through the correspondent lengths of homogeneity.

The attempts to study analytically the Bose-Einstein correlations for 3-dimensionally ex-
panding hadron sources have been recently demonstrated also in the papers [4],[S]. The main
shortcoming of the results that was obtained is the absence of the analysis of the region of ap-
plicability for the final analytical approximations. As will show in this paper they are suitable
for “non-relativistic processes” only, i.e., for low pr -pions and/or for slow transversal expan-
sion, Ay >> Ry. Therefore these approximations agree with the general results of [2] in this
limit only.

The main aim of this paper is to consider the general case of the relativistic transversal

expansion and to find typical analytical approximations of the interferometry radii for the dif-

ferent classes of the transversal flows.



2. THE PHYSICAL ASSUMPTIONS AND FORMALISM

The theory of bosonic spectra and correlation functions for inhomogeneous thermalized
systems has been proposed in Ref. [1]. It has been shown that if the wavelength of quanta,
Ap o< 1/ p0 , in a weakly interacting bosonic gas, is much smaller than the system’s length of
homogeneity, A, the Wigner function coincides approximately with the locally equilibrium

ot

Bose-Einstein distribution function , ,
f{x, p} = 2n) [exp(Bp-u(x) - )~ 17", Q)

where u*(x) is the 4-velocity of a hadron gas, B(x) is the inverse of the temperature, p(x) is
the chemical potential. In this paper we limit ourselves by the framework of this approxima-
tion. Then the single- and double- particle inclusive spectra are expressed through the product

of the thermal averages of the creation and annihilation operators:

dN
PG =@ ap). PP g o= a ap Yt ap, )+ ap Y, ap) @)
where the averages of the operators are expressed through the Wigner function (with the mo-

mentum argument p = (py + p2)/2) by the integration of it over freeze-out hypersurface  :

@ (p) a(py))s = do,p* e f (x, p) 3)

The expression (3) describes the operator’s average also when the hypersurface o is an
arbitrary hypersurface that is situated within of the light cone of the future as to the decoupling
4-volume [1]. The latter means the collection of space-time points that correspond to the
points of the last scattering of particles. In the general case the Wigner function fy(x, p), of
course, has much more complicated form than the Bose-Einstein distribution on the freeze-out
hypersurfaces. So, the calculations simplify greatly if the decoupling volume is narrow enough
and one can consider it as the freeze-out hypersurface. If it is not the case, the different pre-
scriptions are used, such as the introduction of a particle emission function instead of the
Wigner function and integration of it over the all decoﬁpling 4-volume instead of over the hy-
persurface according to Eq. (3). Partially, at least for single-particle spectra, this phenomenol-
ogical prescription can be derived by means of the averaging of the Eq.(3) over different

freeze-out hypersurfaces that can change from event to event. But it is the problem to prove



this prescription in the framework of the thermal QFT for an essentially 4-dimension decou-
pling volume in every collision event.

We will base on the general equation (3) to estimate in the main approximation the Bose-
Einstein correlation function of the thermalized boson sources with 3-dim relativistic flows.
We suppose that the decoupling 4-volume is narrow enough. This means for cylindrically
symmetric sources expanding longitudinally in the boost-invariant manner, that at the initial
stage when the system is very dense inside the hydrodynamic tube, the hadron emission occurs
mostly near the surface of the tube. At the final stage the decay of the rest of the hydrodynamic
tube can occur even simultaneously. So, the freeze-out hypersurface t(7) is expected to be
time-like one near the initial system’s radius, » ~  (or at proper time, T = 12 —x% ~ 1;) and
space-like one at the final stage, r ~ 0 (1 = 1 ). We do not average over different hypersur-
faces o that may change from event to event and will use the average one. Our approach corre-
sponds to the main approximation based on the saddle point method. Within the approximation
we can ignore also the problem with negative particle density for some momenta p that may
happen for time-like parts of the freeze-out hypersurface. (As to the latter problem, sec details
in Ref. [6]). At the same time to simplify our consideration we will use the gaussian distribu-

tion
p(r) < exp(—rz/ 21—2T2) @)

for the transversal size of the system instead of the fixing the constant radius as the average
radius I_Q_T in the all initial expressions. It does not change essentially the results. If we suppose
the average freeze-out hypersurface to be T(r) =1y = const we can also to average round
the mean value T ; with the weight oc exp[—((t —7 f)2 /2A1t%] (see, e.g., [41,[5]). It does not
change essentially the results in the main approximation if At /7y <<1. However, in such the
approach we lose the correlation between a radius and a time of decay. The correlations appear
when the radiation process continuous during the matter evolution. There is the dependence
between the radius and decoupling time, t(r), because at each time t most of the particles
leave the system near its surface, at least at the initial stage. It is important to consider this real-
istic scenario that includes, of course, constant proper time freeze-out, T(r) = const, as the

specific case. We will not specify the concrete form of freeze-out hypersurface 7(r) and will



consider the problem in the main approximation: T y(r) = T(r) (without averaging over differ-

ent surface-trajectory T(7)).

In the cylindrically symmetric model with longitudinal boost-invariance we use the follow-

ing notations:

. . 1, t+x
w(r)= \/ 12 —x7 is the freeze-out proper time, yy = arctanh vy, = 5 In . xL
AL

is the longi-

tudinal rapidity; yr = y7(r) = arctanh v is the transversal rapidity; r is 2-dim transversal

av dir
radius-vector, 7= =" x* = (1 coshy; ,r,tsinhyy); the 4-velocity of the decaying

fluid is uM(x) = (cosh yy coshyr, —:;sinh yr,sinhyy cosh yT). The standard representation

of the particle 4-momenta  through longitudinal  rapidity is  used:

p* = (mpcosh®, py , mrsinh©).

We start from the Eq. (3) with corresponding integral measure
’ dt ,
do, = 1(r)dyrd“r(coshyy, priie sinhyr) 5)

The function f(x, p) in Eq.(3) taking into account the finite average transversal radius of the
system has the form f(x, p) = fir(x, p)p(r). To simplify the analytical analysis we introduce

the weekly modified argument in gaussian form (4) for p(r). In relativistic covariant form it

looks like

—~ a 2
B(r) o< exp[—;(u(r, y1)-u(0,y1)) ]= expl-a(cosh yr(r)-1)] ©)
oy . dvp(0) _ 1
Because of the cylindrical symmetry v7(0) = y7(0) = 0 and putting I =R We have at
14
small 7 << R,
4 | 172
yr(r) = vy = vy (0)r = R and coshyp(r)= 1+§yT(r) ~ l+—2-E

So, in nonrelativistic approach for transversal expansion, Ry < R,, the distributions (4) and (6)

are coincided inside the hydrodynamic tube » < Ry , B(r) = p(r). The physical meaning of

the parameter o is then:

a=R}/R} @)



The numerical analysis with the prescriptions (4) and (6) for different types of the trans-
versal flows demonstrates their closeness in the typical momentum region for the current inter-
ferometry analysis even for essentially relativistic flows. The main advantage of the distribution

(6) is that it allows to give the analytical solution of the problem. So, the second factor in Eq.
(3) we are fixing now is the function f(x, p). At the p0 >>1 it looks like:

1
(2n)?

G, P) = S, PYB(E) o = expi-B(r)pocosh v cosh yr(r)=pr 5 sink yr(r)

®
. [’ 1
- py sinh y; coshyr(7) - ur)lexp| = 3 (coshyr ()= |

The third factor in the basic formula (3) is the exponent. To rewrite it in the convenient
form let us choose one of the transversal axis, X, along the vector pr. It calls the ouiward -
direction. The second transversal axis, X, is chosen to be orthogonal to the first one. It calls
the sideward-direction. The longitudinal axis, Xy, is directed along the collision axis. In this

coordinate system the exponent in Eq.(3) looks like:
exp[iAp : x] = exp[—i(qoutgout +qside8side +q10ngglong)] ©

where qout, Iside> Qiong are the momentum difference in the corresponding directions and

pPr PL
Bout = (xo -1 E)') 8side=Xs 8long =(xL -1 ;6_) (10)

3. MODEL-INDEPENDENT STRUCTURE OF THE CORRELATION FUNCTIONS

The form of the correlation function follows from Eqgs. (2)

Clp, p2) =1 +<a;1 ap, ><a;2 ap, >/ <a;1 ap, ><a;2 apz> (11)

The average of operators is defined by the Eqgs. (3),(5),(8),(9). To calculate Eq.(1 1) we use the
saddle-point method at large parameter Bpy >>1 in the Wigner function (1). Then (see Ap-

pendix) the correlation function is:
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%5
C(p.q)=1+exd _Zl\( BO)po 22 (X)J

(12)

where

S()B(0)po = I (2n)* f (x, )], (13)

X; areX,,Xs Or X7 ; X is the saddle point that is defined from the extreme conditions and the

conditions for the sign of the second derivations:

aS(x) 8S(x) aS(x) _ .
o B axs - ayl —O' (14)

It is immediately follows from Egs. (8),(13),(14) that:

xs=0=>F=X,; tanhy =pr/po = yL=6=(0,+6;). (15)

As to the saddle point 7, it depends on the concrete form of the function B(r) and yr(r).
Now we will find the model-independent expressions for C(p,q) using the conception of the
length of homogeneity as it was firstly proposed in Refs. [1, 2].

The peculiarities of the spectra and correlations as we will show are strongly dependent
on the ratio between different space-time lengths inherent in the system. The local length of
homogeneity X(xo) is defined by the behavior of the Wigner function. It means the length

within which the deviation of the Wigner function is relatively small and is about the function

value

(.30 + D= f(p3o) _,
o) (16)

So the lengths of homogeneity at the point X(p) where the distribution function is maximal,

i.e., Eqgs. (14) are satisfied, are

& f(p,x)

-2
()" =

/2f(p,x) -1 75D oy a7
x(p) !

where i= long, side, out. Using Eqs. (10), (12) and (15), (17) we have for the correlation

function:
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1
)= o5 o B~ Rt st 19

where

Rozut = X%ut(l +

dt _ tanh©
’_’;217:_ E;(r )D 2"Iong(lr’;f C—OSTé) > Rszde —}\zide

_ (19)
RI%mg = 7\'%ong cosh™ 0, Rozut,long = 7‘%ong (%) sinh® cosh™0

The existence of the crossing out-long term in the correlation function (18) was recently dis-
cussed in Ref [5].

The model-independent expressions (18), (19) for the correlation function C(p, q) were
derived in the saddle-point method approximation. In the framework of this approach the

freeze-out trajectory T(r) in (19) is treatment as the most probable one reflecting the dynam-

ics of the boson emission process.
Let us consider some general consequences of the results represented by the Egs. (18),

(19). In the general case we have Rgge # Ry €ven in LCMS where p; =0 (0= 0). It is
follow from Eq. (19)

R2 =R +R1%ng(p§,) sinh*@ (20)

where Re our = Rour(pr =0) = Pout(X )+ A1: and At = ou,(x)ld'c(r)/drl is the dura-

tion of the radiation in the period of its maximal intensity. It characterizes the time interval

when the main number of the particles emitted and does not coincide with the total life-time of

the system: At <1y —1;.

The form of the crossing out-long term is obvious from Eq.(19):

%mfﬁmew (21)

In boost-invariant approach it is equal to zero if py =0 or py = 0. In other situations it is pre-

sent in the correlation function. If one is doing the interferometry analysis in the LCMS



(8« = 0) for each bin in Lab system: (6; — A, ;+ A®), (pr; —Apr, Pr,i +ApPT), it is possible
to neglect of this crossing term if pr ;sinh AG <<1.
7y,

4. THE LENGTHS OF HOMOGENEITY FOR TYPICAL PHYSICAL SCENARIO

The model-independent expressions (18), (19) define the correlation functions by means
of the lengths of homogeneity in the dééz{ying system. Now we analize them in physically inter-
esting situations.

1. The systems with a large temperature inhomogeneity.

Let us begin from the scenario, when the transversal lengths of homogeneity are formed

mostly by the large temperature gradient. Then the saddle point 7 = 0 and when the tempera-

ture decreases as gaussian , 3(r) = B(O)exp[rz/ 2R§], when the transversal radius increases

we have:

_1 _
22, =Ny, = 2{9(0_)2'”1 +_17\ By = ZEZ(f);shze
ide = , -
Ry RTJ mr
d3]v
= e BOmr
Do oce
d3 p

(22)

If the “temperature” length of homogeneity is much less than the average transversal radius,
R << Ry, the out-, side- and long- interferometry radii are decreasing as inverse of \/I_n—T_
when pr increases.

2. The system with large velocity inhomogeneity.

The most realistic one is scenario when freeze-out hypersurface is characterized by the
almost constant temperature. If such a system possesses the essential transversal flows, it is

easy to obtain the lengths of homogeneity using Egs. (14), (17):

a

1
Mot = E%;[J’T (F)(sinh(yr —mr) + Bm® inh yr)+(y# (F)(cosh(¥r —nr) +;—m cosh ?T)T

2F* 2r? s
= = —v3)2
side = Bprsinh v~ Bprvr O '7) )
- 272cosh*®  27%cosh?®,  _, 1
long = T = (1-vr)2
g = Bmycosh yr Bmyr

and the spectra



d3N [ 1]

PO, X —(er+0t)(1—772")5J (24)

where o is defined by the Eq.(7), yr =yr(F), nr is the average rapidity of the pair,
tanhmp = py/my . It is important to note, that the transversal velocity at the saddle point as
well as the longitudinal length of homogeneity, X,ong (%), and exponential factor in the single-

particle spectra does not depend on a'concrete model of transversal flows (i.e., on the form of

the function v (r)):

5

Vr =tanhy =

The out- and side- lengths of homogeneity depend from concrete model of the transversal ex-

pansion. But in the two limited situation we can do some conclusion concerning of its behav-

ior.

e Nonrelativistic transversal flows.

The corresponding condition is:

5 Brr

_ _ r
T=B—mm<<1 = VT~yT(r)~Rv << 1 (26)

The parameter o = R3 / EIZ according to (7). Using this conditions we can get from Eqgs.
(23),(24) :

-1 _
2 By _1__) R ~212cosh26 d3N iy

side = R3 + R72’ Jong = B’”T > Po d3p e 27

_X%ut =
It is important to emphasize, that according to Eq. (26) the applicability of the expressions (27)
in the relativistic momentum region, pr ~ my, is limited by the conditions Bmy / R? << l/ﬁ% .
If this conditions is violated, the behavior or the hydrodynamic lengths, as we will show,
changes dramatically as compare with the results (27). In the region BmTR—TZ > Rg the predic-
tions in the papers [4,5] that based actually on the formulas (27) without conditions of its ap-
plicability are incorrect. In particularly, the predictions of Ref.[4] as to the inverse of square
root my-decreasing of the out-, side- and long-radii in relativistic momentum region are incor-

rect. They need the condition BmTﬁ% >> R? which strongly violates the applicability of the

results (27). (In our signification the parameters in the Ref [4] are
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R,=19,Rr =Rg, o= t%/R(Z; ). In Ref[5] (where a = l/vz) the obvious violation of the

condition (26) is happens also when the single-particle spectra is considered.

e  Ultrarelativistic transversal flows

In the framework of the ultrarelativistic approach we suppose V7 ~ 1 that means accord-

ing to Eqgs. (25), (7) that Bmy / R2 >> I/E% and Vg ~ pp/my = tanhny = 1. Then we have

2 272m 2mitcosh*0 d’N N+ 2oy m
72 2 LT — 14 20un
Aout = Bmy# s Aside = Bp% > }"Iong = B 2 > Do d3p oce P r/m (28)

As distinct from Xlong(f) that does not depend on the transversal velocity distribution
(see Eq. (23), (25)) and demonstrates the inverse of mr decreasing for strongly relativistic
flows, the momentum behavior of the transversal out- and side- lengths of homogeneity de-
pends on a concrete model of transversal flows, v7(r) (or yr(r)). However, it is possible to
show that for monotonously growing functions y7(r) without singularity the ratio out- to
side- lengths of homogeneity in the ultrarelativistic limit has the form (with accuracy to the
powers of ln( pr/ m))

out(x)

sxde (x )

(29

The detail behavior of the transversal lengths of homogeneity and the radii depends on a con-

crete model of the transversal expansion. We will demonstrate in the two typical scenarios.

5. THE MOMENTUM DEPENDENCE OF THE INTERFEROMETRY RADII FOR 3-
DIMENSIONAL EXPANSION

L First we consider the scenario with “hard” transversal flows:

-
(=% (30)
Then we have from Eqgs.(23), (25) the solution for the saddle point:
- R (Jﬂz)
F=="In =, €2y

and for the lengths of homogeneity:

2R? . 1 (1+\7 )
52 EV 2 r
}‘-o Bm +a (1 ’ lside ZBP v (1 T)zln 1_‘77, (32)
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The transversal velocity is expressed through the momentum variables by the Eq.(25).

IL. Let us consider model, realizing scenarioff “soft” transversal flows:
>

\/sz +r2 +R, r
yr(r)=in R = vr(r) ZJ—;T—J:——R? (33)

The model of the such type has been used in Ref. (4) with R, =7. Then we have from

Eqs.(23), (25) the solution for the sad(‘il'e'point

= vr
Fr=R,~—>973 (34)
(1-vh)2
and homogeneity lengths
2R2 3 7 R2 S
_}‘%’“’zBmT+a(l_v%) 2, 7"?side=BmT\_;,a(l_v%) 2 (35)

Note that Ay (%) for “hard” flows coincides formally with Agige(X) for “soft” flows. The

slope & of the transversal spectra oc exp(—kmy) in the region my ~1 GeV is k ~5 GeV'!

from 2004 GeV S+S collisions [7]. According to the Eq. (24) the slope k =T "lm , VT
is defined by the Eq. (25). Then the experimental value of the slope & corresponds to o =~ 3 if
T=Ts, ~my. The corresponding out- , long- and side- lengths of homogeneity in LCMS
are demonstrated in Figs.1-3 for the both types of the flows: “hard” and “soft”. The applica-
bility region of the result presented is limited by the validity of the saddle point method and is
approximately pr > m, We show also the results for a = 1.5 that correspond to more devel-

oped flows which one can expect for collisions with heavier nucleus. We choose there

- d
Ry =39fim,T7 =435 fm/c. If a%(?) <<{, these lengths of homogeneity correspond to the

interferometry radii: Ryyt, Rsige and Rygpg.

6. CONCLUSIONS

We show that the experimentally observed particle spectra and correlation are very sensi-
tive to the space-time structure of the emitting matter. The ratios between local lengths of ho-
mogeneity of the system and its geometrical sizes define the behavior of the spectra and corre-
lations. This is reflected in different behavior of the interferometry radii as depending on mo-

mentum regions. In particularly, the strong transversal expansion leads to more quick than in-
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verse of \/;1; decreasing of the longitudinal interferometry radius. At the same time the side-
radius decreases more quickly than the out-radius when the transversal momentum increases.
The simple analytical behavior of the Jong-, side- and out- interferometry radii as depending on
the transversal momenta has been found for typical classes of the transversal flows moreover
for temperature inhomogeneous systems. The analytical approximations for spectra and corre-
lations allow to clear up experimentally the character of the transversal flows in the systems

formed in ultra-relativistic nucleus-nucleus collisions and the details of its evolution.

7. APPENDIX

To calculate the integral in the expression (3) for the correlation function (11) with Egs.

(5),(8),(9) we use the saddle point method at the large parameter A= pOB >>1 in the distribu-

tion function (8). Then the structure of the integral we are interested in is (see, e.g., [8]):

o 1
B(Ap) = f (p(x)exp[ AS (x)] eldPg() gy —ss exp[)\S (J?)] k§0 Cx )._k_ 2 (AD)

where in our case AS(x)=In((2n)3 f(x)), saddle point X is defined from the equations
S'(x5)=0, S"(X) <0 and

Ck

G|l

=Tk \dx (x—%) l
X=X

2
Leaving the maximal coefficient at each power of Ap in the expansion of IFX(A p)l , one

can sum series (Al) up and find

[ Ap?(g(3))? |
Kzr?sz)“Pz (®)exp|2AS(%)] ex;i%‘?—,(%ﬁ— ] (A2)

In our case we have 3-dimensional integration in Eq. (3). However, if the mixed derivations

IFap) =

are equal to zero or small in comparison with other ones, the saddle point method is reduced to
the consequent using of this approach for each variable of the integration. After that we have

for the correlation function the expression (12).
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FIGURE CAPTIONS

Figure 1: The pr- behavior of the transversal out- and side-interferometry radii for “hard” (I)
and “soft” (II) transversal expansion. The out-radius for the I-st class of the flows coincides
with the side-radius for the II-nd one. The ratio of the average transversal hydrodynamic
length to the average transversal radius of a system is R, / Ry =Jo =+/3. The freeze-out

temperature T = my , Ry =39 fm.

Figure 2: The pr- behavior of the transversal out- and side-interferometry radii for “hard” (I)
and “soft” (II) transversal expansion. The out-radius for the I-st class of the flows coincides
with the side-radius for the II-nd one. The ratio of the average transversal hydrodynamic
length to the average transversal radius of a system is R, / Ry = Jo =+/15. The freeze-out

temperature T = my , Ry =39 fm.

Figure 3: The pr- behavior of the longitudinal Jong- radius that are universal for both classes
of the transversal flows. The results are presented for oo = 3 and o = 15. The comparison with
the long-radius without transversal flows (0 = o0) is presented. The proper time of the longi-

tudinally expanding source when the emission is maximal is T = 435 fm/c.
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