CERN Accelerating science

Published Articles
Title Application of Quantum Machine Learning to High Energy Physics Analysis at LHC using IBM Quantum Computer Simulators and IBM Quantum Computer Hardware
Author(s) Chan, Jay (Wisconsin U., Madison) ; Guan, Wen (Wisconsin U., Madison) ; Sun, Shaojun (Wisconsin U., Madison) ; Wang, Alex (Wisconsin U., Madison) ; Wu, Sau Lan (Wisconsin U., Madison) ; Zhou, Chen (Wisconsin U., Madison) ; Livny, Miron (Wisconsin U., Madison) ; Carminati, Federico (CERN) ; Di Meglio, Alberto  (CERN)
Publication SISSA, 2020
Number of pages 7
In: PoS EPS-HEP2019 (2020) 116
In: European Physical Society Conference on High Energy Physics (EPS-HEP) 2019, Ghent, Belgium, 10 - 17 Jul 2019, pp.116
DOI 10.22323/1.364.0116
Subject category Detectors and Experimental Techniques ; Particle Physics - Experiment ; Computing and Computers
Abstract The ambitious HL-LHC program will require enormous computing resources in the next two decades. A burning question is whether quantum computer can solve the ever growing demand of computing resources in High Energy Physics in general and physics at LHC in particular.Using IBM Quantum Computer Simulators and Quantum Computer Hardware, we have successfully employed the Quantum Support Vector Machine Method (QSVM) in applying quantum machine learning for a ttH (H to two photons), Higgs coupling to top quarks analysis at LHC.
Copyright/License © The Authors (License: CC-BY-NC-ND-4.0)

Corresponding record in: Inspire


 Запись создана 2021-06-01, последняя модификация 2021-06-10


Fulltext from publisher.:
Загрузка полного текста
PDF