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List of Abbreviations 

 

CPU             central processing unit 

FN               false negative 

FNR             false negative rate  

FP               false positive 

FPR              false positive rate   

GPU             graphics processing unit 

MTPCL          main time projection chamber left  

SGD             stochastic gradient descent 

TN               true negative 

TNR             true negative rate   

TP               true positive 

TPC              time projection chamber  

TPR              true positive rate 

VTPC2           vertex time projection chamber two 

1Px20T           one pad at twenty time steps 

11Px1T           eleven pads at one time step 

11Px20T          eleven pads at twenty time steps 
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1 Introduction 

Technologies enabled by machine learning and artificial intelligence dominate modern society. 

From web searches and smart assistants like Cortana (Microsoft) or Siri (Apple), to spam-filters 

in our e-mail programmes. Artificial intelligence is increasingly present in our daily live. 

We live in an era where huge amounts of data are being generated in all sectors of science and 

industry. We call it “Big Data”. With Big data, we face the challenge of its analysis and 

interpretation. Therefore, the need for novel machine learning and artificial intelligence 

methods has drastically increased in recent years. Likewise, the range of areas in which machine 

learning has been successfully applied has increased significantly: including image recognition 

(Krizhevsky et al., 2017; Wu & Chen, 2015), speech recognition (Abdel-Hamid et al., 2014; 

Nassif et al., 2019), natural language processing (Ganapathiraju et al., 2004; Padmanabhan & 

Johnson Premkumar, 2015; Talafha & Rekabdar, 2019), computational biology (Angermueller 

et al., 2016) and particle physics (Baldi et al., 2014). Recent breakthroughs inspire us to apply 

machine learning techniques in more and more areas.  

Modern tracking devices for particle collision experiments, such as the four large-volume Time 

Projection Chambers (TPC) in the NA61/SHINE project at the European Organization for 

Nuclear Research (CERN), collect huge amounts of data produced by particle collisions. The 

data contains not only valuable information but also a lot of noise.  

The question arises: Can we reduce the noise with the help of Deep Learning? 

In this thesis work, the above mentioned question is answered and multiple machine- and deep 

learning algorithms are not only proposed, but the underlying principles explained and 

visualized. This thesis tries to answer why those algorithms work and what they might learn. In 

the attachments a detailed explanation will be provided, how the experimental data was 

obtained and pre-processed.  
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One form of supervised machine learning is classification. Classification is the process of 

separating the data of a certain data set in different classes. The process starts with predicting 

the respective class of given data points. An arbitrarily complex function therefore maps the 

input variables 𝑥𝑖 of the given data to discrete output variables, which represent the different 

classes. Classes are usually referenced to as labels or targets.  

One of the best-known classification tasks are image recognition (face recognition) and voice 

recognition (e.g., Alexa and Siri from Amazon and Google, respectively). 

 

 

 

 

 

 

  

1.1 Solving Classification with Machine Learning Techniques 
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2 Theory 

 

The basic single layer Perceptron only consists of the input layer and one layer of 𝑖 ∈ 𝑁 so-

called neurons. Every neuron 𝑛𝑖 represents a linear function 𝑓𝑖(𝑋⃗).  

The connections between two layers are equipped with weights and biases, used to feed forward 

information. While they are initialized randomly, the goal is to learn the correct weights, so that 

the network is able to make correct predictions for unknown data. 

 

Figure 1: Concept of a single Layer Perceptron with two neurons. All input values are connected to each of the 

two output neurons via a weight and a bias 

  

2.1 Single Layer Perceptron 



 

 

4 

 

The output 𝑜𝑛𝑖  of a single neuron is defined by the sum of all weighted input values plus a 

constant bias 𝑏: 

 

𝑜𝑛𝑖
= ∑𝑓𝑖𝑗(𝑥𝑗) + 𝑏𝑖                               (2.1) 

With 

𝑓𝑖𝑗(𝑥𝑗) = 𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑖                             (2.2) 

Resulting in the layers output vector: 

𝑂⃗⃗ = (

𝑜𝑛1

𝑜𝑛2

…
𝑜𝑛𝑖

)                                 (2.3) 

Note that all 𝑛 nodes receive the same 𝑗 input values; the individual characterization is given 

via the corresponding weights and biases.  

The output appears in form of a two-dimensional vector:    

𝑂⃗⃗ = (
𝑝𝑠

𝑝𝑛
)                                (2.4) 

In this thesis, 220 input values lead to two output values. These values are interpreted as 

probabilities for the corresponding classes signal and noise, which will be referred to as 

positives and negatives or good and bad hits. 

By definition, the first entry corresponds to the probability for signal and the second to that for 

noise where: 

𝑝𝑠 + 𝑝𝑛 = 1                                 (2.5) 
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For example an output of : 

𝑂𝑢𝑡𝑝𝑢𝑡 =  (
𝑂𝑛1
𝑂𝑛2

) = (
∑𝑤1𝑗𝑥𝑗+𝑏1

∑𝑤2𝑗𝑥𝑗+𝑏2
) = (

0.7
0.3

)                   (2.6) 

Would mean that the network predicts the sample to be signal because 𝑝𝑠  > 0.5 where 0.5 is 

the default decision threshold in binary classification (classification with two classes).  

However, it is possible to manipulate the threshold in order to influence the ratio of false 

positives to false negatives. This yields the option to force the network to be more or less sure 

about predictions for a certain class.  

 

2.2.1 Softmax 

In classification algorithms, the output vector is usually normed by a so-called activation 

function. The activation function can be written as a function of the sum of the weighted input 

values: 

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑓(∑𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑖)                          (2.7) 

This allows an easier interpretation since it normalizes the input values in a certain way. 

Furthermore, logistic activation functions like Softmax can enable a probabilistic interpretation.  

Softmax takes the exponent of each calculated value of the last layer (in case of Single Layer 

Perceptron there is only one layer) and then divides by the sum of these exponents. That way 

the resulting probability values sum up to one.  

The mathematical definition writes as follows (Sharma, 2017): 

𝑂𝑛𝑖
= 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑜𝑛𝑖

) =
 𝑒

𝑜𝑛𝑖
 

∑𝑒
𝑜𝑛𝑗

                        (2.8) 

 

To put it in context, Figure 2 exemplarily shows the steps between input and output of one 

neuron. The output is calculated by the sum of all input values 𝑥1 − 𝑥𝑛 , weighted by their 

respective weight 𝑤1 − 𝑤𝑛 plus a bias 𝑏0 , usually normed by an activation function 𝑓. 

 

2.2 Activation  
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Figure 2: Sketch of a one-neuron Perceptron. The input vector is weighted and a bias is added. Output is their sum, normed 

by an activation function f 

  



 

 

7 

 

2.2.2 Rectified Linear Unit 

A rectified linear unit (ReLU) function is commonly used in deep learning as an activation 

function. For every input below zero, it returns zero and for every positive value, it returns the 

same positive value (Figure 3). ReLU helps to speed up the learning convergence (Hara et al., 

2015). 
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Figure 3: Rectified linear unit. Returns zero for negative input values and for positive inputs returns the same positive value 

 

For the first step, the classification error has to be put in numbers. Loss functions like root mean 

squared error, or, in this thesis binary cross entropy, calculate the error margin (loss) for each 

node of the final layer. The sum of those losses is called cost. The loss is calculated via a specific 

equation, called loss function. In general, this is a function of the margin between the calculated 

output values and the corresponding true values. The most used loss-function in deep neural 

networks for classification tasks is the binary cross-entropy (Figure 4).  

The loss is calculated for each class by the following equation (Ismail Fawaz et al., 2019): 

𝑏𝑖𝑛𝑎𝑟𝑦 𝑐𝑟𝑜𝑠𝑠 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑋)𝑖 = −∑𝑌𝑖 ⋅ log (𝑂𝑛𝑖
)                  (2.9) 

Where 𝑋 is the training example, 𝑂𝑛𝑖
 is the 𝑖-th scalar value in the model output and 𝑌𝑖 is the 

corresponding target value.  

2.3 Loss Function 
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The total loss for one example calculates by the following average: 

𝐿𝑜𝑠𝑠(𝑋) =  −
1

𝑛𝑜𝑢𝑡
⋅ ∑𝑌𝑖 ⋅ log (𝑂𝑛𝑖

) + 1(−𝑌𝑖) ⋅ log (1 − 𝑂𝑛𝑖
)            (2.10) 

Where 𝑛𝑜𝑢𝑡 is the number of values in the model output (the number of classes), 𝑋 is the training 

example, 𝑂𝑛𝑖
 is the 𝑖-th scalar value in the model output and 𝑌𝑖 is the corresponding target value. 

For understanding the learning process, the formula does not need to be discussed in detail but 

it is important to note that this loss function is fully derivable, so gradients can be calculated. It 

can therefore be used as a metric that represents the level of error for each example in a data 

set. A smaller total loss corresponds to a more precise prediction model. Thus, the weights 

should be learned in such a way that the cost function is minimized. 

 

At first, the input is passed to the network, second, the network computes an output: its 

prediction. Third, the total loss is calculated using a loss function. Fourth: The network pushes 

the loss function through the network in a backward manor. Fifth, to minimize the loss, the 

weights are updated accordingly (Figure 4). The algorithm that calculates how the weights have 

to be adjusted in order to minimize the cost function is called optimizer. 

 

Figure 4: Training process of an artificial neural network. After the prediction process is complete, the weights are updated 

in order  to minimize the cost function  

2.4.1 Gradient Descent 

Gradient descent is a method to optimize the modelling function by minimizing an objective 

function 𝐽(𝑤).  𝐽(𝑤) is parameterized by the model’s parameters 𝑤 and optimized by updating 

the parameters in the opposite direction of the gradient of the objective function ∇𝑤𝐽(𝑤). The 

learning rate 𝑙𝑟 determines the step size that is taken each update to reach a (local) minimum. 

Figuratively speaking, the optimizer follows the direction of the steepest descent of the valley 

potential calculated by the objective function downhill. In the best case, until a valley is reached, 

2.4 Optimizer 
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but depending on the step size, possibly also beyond the valley, which can lead to oscillation 

around the valley (Ruder, 2016). 

Three main variants of gradient descent have to be distinguished. They differ in the data used 

to compute the gradient of the objective function. It is a trade-off between accuracy of the 

parameter update and the computing time, depending on the amount of data used (Ruder, 2016).  

1) Batch gradient descent 

Vanilla gradient descent, also called batch gradient descent, computes the gradient of the 

cost function with respect to the parameters 𝑤 for the entire data set.  

𝑤𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑤 − 𝑙𝑟 ⋅ ∇𝑤 𝐽(𝑤)                        (2.11) 

Since gradients for the entire data set must be calculated for each update, batch gradient 

descent can be computationally slow. The training consists of a pre-defined number of 

epochs. For each epoch, the gradient vector of the loss function for the whole data set with 

respect to the parameter vector is computed. The gradient is usually computed via 

backpropagation (Rumelhart et al., 1986). Then, the parameters are updated in the gradients 

direction with a step size determined by the learning rate. 

“Batch gradient descent is guaranteed to converge to the global minimum for convex error 

surfaces and to a local minimum for non-convex surfaces” (Ruder, 2016). 

 

Figure 5: exemplary error surface and possible batch gradient descent optimizers learning path visualized. Credit: Ahmed 

Fawzy Gad 
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2) Stochastic gradient descent 

Stochastic gradient descent (SGD) in contrast updates the parameters for each training 

example 𝑥(𝑖) and label 𝑦(𝑖). 

𝑤𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑤 − 𝑙𝑟 ⋅ ∇𝑤 𝐽(𝑤; 𝑥(𝑖); 𝑦(𝑖))                 (2.12) 

This way it takes less time to compute the parameters update. 

Batch gradient descent always converges to a minimum, whereas SGD often fluctuates 

around minima. This allows SGD to jump to new and potentially better local minima, but 

at the same time makes convergence to an exact minimum more difficult, since SGD can 

overshoot again and again. 

However, it has been shown that if the learning rate is slowly being decreased during the 

training process, SGD shows the same convergence behaviour as vanilla gradient descent 

(Ruder, 2016).  

3) Mini batch gradient descent 

The third variant combines the best out of both methods and performs an update for every 

mini-batch of 𝑛 samples.  

𝑤𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑤 − 𝑙𝑟 ⋅ ∇𝑤 𝐽(𝑤; 𝑥(𝑖:𝑖+𝑛); 𝑦(𝑖:𝑖+𝑛))               (2.13) 

This has two main advantages (Ruder, 2016): 

a) The variance of the parameter updates can be reduced which results in a better 

converging behaviour. 

b) Computing the gradient is a lot faster than in vanilla gradient descent, as state-of-the-

art deep learning libraries contain optimized matrix operations, which make computing 

the gradient with respect to a mini-batch very efficient. 

Mini-batch gradient descent, or an optimizer based on it, is usually the option of choice in 

deep learning applications. 
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2.4.2 Gradient Descent Optimizations 

2.4.2.1 Momentum 

Momentum tackles the challenge of finding the (local) minima in the error surface faster and 

more reliably. It adds another term to the gradient descent and combines to following method 

(RUMELHART et al., 1988): 

𝑤𝑢𝑝𝑑𝑎𝑡𝑒𝑑(𝑛 + 1) = 𝑤(𝑛 + 1) − 𝑙𝑟 ⋅ ∇𝑤 𝐽(𝑤) + 𝛼 ⋅ Δw(n)             (2.14)  

With Δ𝑤(𝑛) defined as follows: 

Δ𝑤(𝑛) = 𝑤𝑢𝑝𝑑𝑎𝑡𝑒𝑑(𝑛) − 𝑤(𝑛) = −𝑙𝑟 ⋅ ∇𝑤(𝐽(𝑤(𝑛)))                (2.15) 

This way the update of the parameters is always influenced by the previous updates, such that 

the optimizer can gain momentum if it is heading in the same direction of the error surface over 

multiple periods. Imagine it moving slowly downhill but swinging strongly sideways due to a 

fault surface that is slightly downhill but very steep to the left and right. The lateral components 

will cancel each other out, while the forward component keeps adding up (Figure 6). 

 

Figure 6: An exemplary error surface where the momentum term helps lowering the oscillation. The two opposite gradients 

nullify each other but the downhill term is accumulative increased 

2.4.2.2 Adaptive Learning Rate Optimization Algorithm 

For this thesis project, an adaptive learning rate optimization algorithm called Adam (Kingma 

& Ba, 2014) was used. Adaptive Moment Estimation (Adam), like most state-of-the-art 

optimizers, is an optimized version of gradient descent.  
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The Adam optimizer calculates an adaptive learning rate for each parameter. As for momentum, 

Adam stores an exponentially decaying average of past gradients 𝑚𝑛 and in addition the 

average of past squared gradients 𝑣𝑛. 

𝑚𝑛 = 𝛽1𝑚𝑛−1 + (1 − 𝛽1)𝑔𝑛                         (2.16) 

𝑣𝑛 = 𝛽2𝑣𝑛−1 + (1 − 𝛽2)𝑔𝑛
2                         (2.17) 

𝑚𝑛 and 𝑣𝑛 are estimates of the first moment (the mean) and the second moment (uncentered 

variance) of the respective gradients. 

Diederik P.  Kingma and Jimmy Ba experimentally showed, that deep artificial neural networks 

tend to converge faster when using Adam than with other state-of-the-art methods (Kingma & 

Ba, 2014). 

In 2019 S. Bock and M. Weis have proven that Adam at least converges to a local minimum 

(Bock & Weis, 2019). Since its introduction, Adam has been used in many cases and proven to 

be one of the best choices when training a deep convolutional neural network (Ruder, 2016).  

 

Machine learning transitions into deep learning if the algorithm consists of more than one layer 

of neurons. The layers, which lie in between the input and the output layer, are called hidden 

layers. Multi-layer Perceptrons belong to the class of feedforward networks and form the basis 

for most deep learning models. A feedforward neural network is an artificial neural network in 

which the information only moves in one direction - from the input nodes through the hidden 

nodes (if any) to the output nodes. Convolutional neural networks, which will be discussed in 

more detail later, are also a subclass of feedforward networks.  

These models are mostly used for supervised learning, where the network is supposed to match 

a result that is already known. They are very important for practicing machine learning and 

build the foundation for many commercial applications nowadays. Their presence, especially 

convolutional neural networks greatly affected areas such as Image recognition and natural 

language processing.  

Multi-layer Perceptrons consist of multiple layers, where each layers input is the previous layers 

output.  

The input values 𝑥1 − 𝑥𝑗  of the first layer can be written as a vector 𝑋⃗1: 

2.5 Multi-layer Perceptron 
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 𝑋1
⃗⃗⃗⃗⃗ = (

𝑥1
𝑥2...
𝑥𝑗

)                                (2.18) 

The output 𝑜1𝑖 of the first layer is given by a function 𝑓𝑖(𝑋1
⃗⃗⃗⃗⃗): 

𝑓𝑖(𝑋1
⃗⃗⃗⃗⃗) = ∑𝑤𝑖𝑗 ⋅ 𝑥𝑗 + 𝑏𝑖                         (2.19) 

Resulting in: 

𝑂1 = (
𝑜11
𝑜12…
𝑜1𝑖

) = (
𝑓1(𝑋1⃗⃗⃗⃗⃗⃗ )

𝑓2(𝑋1⃗⃗⃗⃗⃗⃗ )
…

𝑓𝑖(𝑋1⃗⃗⃗⃗⃗⃗ )

) (
∑𝑤1𝑗⋅𝑥𝑗+𝑏1

∑𝑤2𝑗⋅𝑥𝑗+𝑏2
…

∑𝑤𝑖𝑗⋅𝑥𝑗+𝑏𝑖

)                    (2.20) 

 

The output of a second layer neuron 𝑜2𝑘 is then a function of the output from the previous layer 

𝑓𝑘(𝑂1) with: 

𝑓𝑘(𝑜1𝑖) = ∑𝑎𝑘𝑖 ⋅ 𝑜1𝑖 + 𝑏𝑘                         (2.21) 

Where 𝑖 is the respective number of nodes in layer 2 and 𝑘 in layer 3, as they equal the number 

of generated outputs, resulting in: 

𝑂2
⃗⃗ ⃗⃗⃗ = (

𝑓1(𝑂1⃗⃗⃗⃗⃗⃗ )

𝑓2(𝑂1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )
…

𝑓𝑘(𝑂1⃗⃗⃗⃗⃗⃗ )

) = (
∑𝑤1𝑖⋅𝑜1𝑖+𝑏𝑘
∑𝑤2𝑖⋅𝑜1𝑖+𝑏𝑘…
∑𝑤𝑘𝑖⋅𝑜1𝑖+𝑏𝑘

)                     (2.22) 

The third layers output is generated in the same fashion as in the previous layer but with the 

previous layers output as input. This holds true for all following layers (Figure 7). 

 



 

 

14 

 

 

Figure 7: Multi-layer Perceptron with two hidden layers 

 

Convolutional neural networks work via kernels/filters. Instead of linking every input value on 

its own to a node of the following layer, filters allow parameter sharing, which drastically 

reduces the number of parameters.  

Imagine a 4𝑥4 (two-dimensional) input. In a classic MLP, the 16 weighted and biased input 

values add up as one neurons output (neuron of the first layer). The layers output is always of 

the form of an 𝑛𝑥1 vector, where n is the number of neurons in the respective layer. 

For convolutional layers the filter size, stride size and number of filters determine the output 

dimension. For each filter, one output map the so called feature map is generated instead of one 

scalar value. Its size depends on the filter size, pathing and padding. In this example, an 𝑛 ∈ 𝑁 

2𝑥2 filter is used, pathing with a stride of one and no padding. Starting in the left upper corner, 

a stride of one indicates that after each calculation the filter is moved by one column. It follows 

that the output map is smaller than the input map. To hinder this from happening, padding can 

be used. This method adds a temporary line of zeros to the input map such that the output is of 

the same size as the input. However, for simplicity reasons, there is no padding in this example. 

The output is calculated as illustrated in Figure 8. Before training, an 𝑚𝑥𝑛-filter is initialized 

with 𝑚 times 𝑛 arbitrary scalar values. The goal during training is to adjust these values in such 

a way that the filter can extract a valuable feature. Imagine an exemplary filter like [
1 −1

−1 1
]. 

Such a filter might find slanted edges if the input were to the individual grey tone values of the 

2.6 Convolutional Neural Networks 
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image pixels. Each entry in the output array then represents to which degree there is such a 

slanted edge at the respective location in the input array. In other words, for every filter, the 

output is a map that represents to which degree the filter specific feature is present at the 

corresponding location (Figure 9), hence the output is named feature map.  

 

Figure 8: Convolutional layer with one filter of size (2,2). Each step the filter is applied and the four weighted values added 

together.  

 

 

Figure 9: Schematic of a convolutional layer in an artificial neural network. Multiple 2x2-filter generate a feature map each 
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In 2015, Kaiming et. Al. introduced “Deep Residual Learning for Image Recognition”. A 

Network based on their approach is called ResNet. Deep residual learning tackles a common 

problem called downgrading and helps deeper artificial neural networks to converge better (He 

et al., 2015). Convolutional layers often build the fundament of ResNets. 

The architecture is based on convolutional blocks, each consisting of a few convolutional 

layers, followed by a dense layer as output layer. But in between two convolutional blocks, 

shortcuts are added such that the output of a block consists of the output of the convolutional 

layers as well as their input added on top (Figure 10). With these shortcuts, the network is able 

to cut out deeper layers if they are not needed to approximate the solution. If a classifier is 

imagined whose best solution is a straight line (linear function), it would be easier to find the 

correct solution for a network with one linear layer than for a network consisting of several 

stacked linear layers. The addition of shortcuts helps deeper networks with this, since the 

networks can learn to use only the shortcut by setting the weights of a certain layer to zero, thus 

turning off the layer.  

 

Figure 10: Principle of a ResNet block. One copy of the input is fed into convolutional layers, another copy is passed 

unchanged. At the end of the block both copies are added together 

Due to the modification that results from the addition of these shortcuts, the function to be 

approximated is now a residual function 𝐹𝑛𝑒𝑤(𝑥) = 𝐹(𝑥) − 𝑥. Hence the name “Residual 

neural network”, since it works via approximating residual functions. 

 

Many different layer types for artificial neural networks have been invented and are freely 

available for implementation. The layer functions used in this thesis are from Tensorflow 

(https://www.tensorflow.org/), an open source library by the Google Brain Team and Python 

implementation for all sorts of deep learning applications. 

2.7 ResNet 

2.8 Layers 
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A brief explanation of the layers important for this work will be given in the following. 

2.8.1 Dense Layer 

Dense layers are standard fully connected linear layers. Each neuron of the previous layer is 

connected to each neuron of the following neuron via a weight and a bias. 

2.8.2 Conv2D Layer 

Conv2D layers are convolutional layers (chapter 2.6) with two-dimensional filters (e.g., 2𝑥2-

filters).  

2.8.3 Dropout Layer 

Dropout layers randomly cut out a certain ratio of connections between two layers during 

training process. E.g., a dropout layer with a rate of 0.5 after a dense layer with 100 neurons 

would leave out 50 random neurons each prediction cycle. This can help larger and/or deeper 

artificial neural networks to partition their memory such that certain groups of neurons learn 

specific things. 

 

Figure 11: Multi-layer Perceptron with a dropout layer after the first hidden layer. Dropout rate = 0.5  two neurons are 

randomly left out before each samples prediction 
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2.8.4 Global Average Pooling Layer 

Global average pooling layers calculate and output the scalar mean for each two-dimensional 

input map. 

Example:  

(
𝑎1 𝑏1
𝑐1 𝑑1

) →
𝑎1 + 𝑏1 + 𝑐1 + 𝑑1

4
 

Global average pooling layers are sometimes used at the end of the convolutional part of 

complex artificial neural networks to simplify the feature maps before they are fed into a dense 

network. 

2.8.5 Flatten Layer 

A Flatten-2D layer converts a two-dimensional array to a one-dimensional array consisting of 

the two original input dimensions. 

Example: 

(
𝑎 𝑏
𝑐 𝑑

)  (𝑎 𝑏 𝑐 𝑑) 

2.8.6 Add Layer 

An add layer adds its different inputs elementwise. Therefore, all inputs must be of same 

dimension.  

Example:  

(
𝑎1 𝑏1
𝑐1 𝑑1

) +  (
𝑎2 𝑏2
𝑐2 𝑑2

) →  (
𝑎1 + 𝑎2 𝑏1 + 𝑏2
𝑐1 + 𝑐2 𝑑1 + 𝑑2

) 

2.8.7 Concatenate Layer 

A concatenate layer appends all inputs on an axis that has to be defined. Therefore, the output 

size usually differs from the input size.  

Example:  

(
𝑎1 𝑏1
𝑐1 𝑑1

) +  (
𝑎2 𝑏2
𝑐2 𝑑2

) → (

𝑎1 𝑏1
𝑐1 𝑑1
𝑎2 𝑏2
𝑐2 𝑑2

 )   
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2.9.1 Confusion Matrix 

In dependency of the prediction result, each sample can be assigned to one of the following 

four groups: 

1) True positive (TP): a positive example, which is correctly predicted to be positive. 

2) True negative (TN): a negative example, which is correctly predicted to be negative. 

3) False positive (FP): a negative example, which is wrongly predicted to be positive. 

4) False negative (FN): a positive example, which is wrongly predicted to be negative. 

It can often be useful to look at the corresponding rates instead of absolute numbers: 

True positive rate (TPR) = 
Number of true positives

Total number of positives
=

𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃+𝐹𝑁
            (2.23) 

True negative rate (TNR) = 
Number of true negatives

Total number of negatives
=

𝑇𝑁

𝑁
=

𝑇𝑁

𝑇𝑁+𝐹𝑃
           (2.24) 

False positive rate (FPR) = 
Number of  false positives

Total number of negatives
=

𝐹𝑃

𝑁
=

𝐹𝑃

𝑇𝑁+𝐹𝑃
             (2.25) 

False negative rate (FNR) = 
Number of false negatives

Total number of positives 
=

𝐹𝑁

𝑃
=

𝐹𝑁

𝑇𝑃+𝐹𝑁
          (2.26) 

The confusion matrix combines these four groups and consists of either TPR, TNR, FPR and 

FNR or the respective absolute numbers (TP, TN, FP and FN) (Figure 12). 

 

Figure 12: exemplary confusion matrix with the absolute number of TP (upper left corner), TN (lower right corner), FP (upper 

right corner) and FN (lower left corner) 

2.9 Evaluation Metrics 
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2.9.2 Sensitivity 

The TPR is often referred to as sensitivity as it measures how sensitive the network is in regard 

of positive examples. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑅                            (2.27) 

2.9.3 Specificity  

Specificity on the other hand measures how good the network is in detecting negative examples. 

It can be written as FPR subtracted from one: 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑅 = 1 − 𝐹𝑃𝑅                       (2.28) 

This is true because TNR plus FPR always equal one: 

𝑇𝑁𝑅 + 𝐹𝑃𝑅 = 1                              (2.29) 

 

2.9.4 ROC Curve 

A common way to measure the performance of a neural network is the receiver operating 

characteristic (ROC) curve, where the 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (TPR) to one minus 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑓𝑐𝑖𝑦 (FPR) is 

plotted for various threshold values between zero and one. A perfect performance would be a 

TPR of one, versus a constant FPR of zero resulting in a curve that goes straight up from zero 

to one at the y-axis and then remains there for all thresholds. In reality this is never achieved. 

However, the presence in the upper left corner is directly linked to the level of performance. A 

high TPR/FPR means that most of the positive examples are detected as positives, while none 

or only a few negative examples are wrongly classified as positives. Figure 13 illustrates a 

network with high (green) and one without discriminative power (blue). 
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Figure 13: ROC curves for two different networks. One with high (green) and one with no (blue) discriminative power 

 

The ROC curve of an exemplarily trained Perceptron is shown in Figure 14 (blue curve). The 

curve itself can give a hint whether the network is performing well or not. However, its full 

potential comes to the forefront, if used for comparison of different networks. In this thesis, the 

ROC curve will be used to compare performances of different networks on various data sets.  

 

Figure 14: ROC curve - Perceptron trained and validated on MTPCL data 
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3 Analysis 

 

For this project, two data sets were available, consisting of data from a particle accelerator at 

CERN. More precise: data from one of the small Time Projection Chambers (TPC’s) at the end 

of the experiments setup (MTPCL) and from one of the front TPC’s (VTPC2) (Figure 15). The 

chambers pads measure and log the electric charge they receive. Electric charge is generated 

when particles produced by atomic collisions in the particle accelerator pass through the 

chamber. 

 

Figure 15: 3D Visualization of TPC chamber of NA61/Shine experiment. Credit: (Michalski & Palayda) 

Both data sets consist of samples that contain charge deposition data at twenty time steps from 

eleven pads referred to as clusters. These clusters are labelled as signal or as noise depending 

on whether the cluster belongs to a track found by a reconstruction algorithm. Classified as 

signal if it belongs to a track or as noise if it does not. The eleven chosen pads for each cluster 

are, the one pad where the average charge deposition was maximal during an event (a particle 

passing through the chamber), plus the ten nearest neighbours (five to the left and five to the 

right). Typical signal and noisy clusters are shown in Figure 16 and Figure 17 respectively.  

How the data was obtained and pre-processed is explained in more detail in the attachment 

(Internship at FIAS – A Report from Janik Pawlowski). If one visualizes examples, most 

samples seem to be distinguishable by eye but there are some that do not fit in the scheme. Note 

that some signal samples look like typical noise samples and some noise samples like typical 

signal (Figure 18). 

3.1 Data 
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Figure 16: Exemplary signal cluster. Three-dimensional plot of the measured charge amplitude (Z-axis) from the pad where 

the maximum average charge was measured during an event and its nearest neighbours (Y-axis) at various time steps (X-axis) 

 

Figure 17: Exemplary noisy cluster. Three-dimensional plot of the measured charge amplitude (Z-axis) from the pad where 

the maximum average charge was measured during an event and its nearest neighbours (Y-axis) at various time steps (X-axis) 
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Figure 18: Typical noise and signal clusters – not always distinguishable by eye 

 

 

The first approach was to use a simple two-neuron Perceptron where the input is first flattened 

and then fed directly into two output neurons generating a two-dimensional output vector. Its 

entries represent the degree to which the network assigns the input sample to one of the two 

classes, noise or signal. This can be achieved by transforming the output vector with a Softmax 

activation function so that the sum of the two values always equals one. This ultimately allows 

a probabilistic interpretation, even if the output does not represent a true probability. For 

example, a value of 0.99 does not mean that the network is correct in its prediction 99% of the 

time. However, it is definitely more likely than in an example where it predicts the class with a 

lower value. Therefore, it is still an indicator of how confident the network is in its prediction, 

even though it is not a probability in the common sense. 

Having eleven times twenty values sums up to 220 values, which are all multiplied by a 

constant, learned factor 𝑎1𝑖 on their way to neuron_1 and by 𝑎2𝑖 to neuron_2 (220 + 220 

weights), plus applying a bias to each node, sums up to 442 parameters in total (Figure 19). It 

is common to use the total number of trainable parameters as a first indicator of complexity of 

a neural network. The number of parameters usually correlates with training and prediction 

time. Note that modern deep neural networks nowadays easily reach a few millions of trainable 

parameters (E.g. AlexNet over 60 million parameters on ImageNet (Krizhevsky et al., 2017) , 

VGG over 100 million parameters (Simonyan & Zisserman, 2014))  

3.2 Perceptron 
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Figure 19: One-Layer Perceptron with one fully connected layer (+ input layer) 

 

The beauty of this approach thus lies within the simple structure, which makes it faster as well 

as easier to get insights on learned patterns. Hence, we are able to understand what the network 

bases its decisions on. There is a big difference in developing a network, which can classify 

correctly, but functions like a black box, and one, where it is still possible to understand what 

is happening. Even though a lot of effort is nowadays put into developing techniques to 

understand more complex networks (Montavon et al., 2018; Yosinski et al., 2015), simple 

networks are still easier to understand due to their lower level of complexity. Thus, in this work, 

the focus during the analysis of the Perceptron lies on understanding what the network learns. 

This can provide valuable information for more complex approaches. In chapter 3.4 a solution 

based on these insights is proposed. 

3.2.1 Accuracy 

Accuracy measurements are very useful as a primary indicator of performance and metric 

during the training process. In addition, they can be a great comparative metric if verified by 

Strategy 

• Input flattened and fed 

directly into 2 output 

neurons (Perceptron) 

• Softmax Activation 

Function                             

Output example: 

(0.2|0.8)  

Both outputs combined always 

add up to 1  

 can be interpreted as 

probability for the 

corresponding class 

label 
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other measurements. E.g., verifying a similar prediction accuracy on a different independent 

data set and making sure the input data is balanced. As shown in Figure 20, the Perceptron is 

able to label around 89 % of the data correctly for four different setups. This holds true even 

for the case of training the network on a data set A and validating the networks performance of 

a second data set B. This shows the Perceptrons ability to generalize since data set A and B 

consist of data from different TPC’s. 

  

Figure 20: Perceptron's classification accuracies for both MTPCL and VTPC2 data sets 

3.2.2 Confusion Matrix 

For the next step, it is useful to look at the number of false positives and false negatives as well 

as their ratio. This can be an indicator whether the network favour a particular class. Classifiers 

with asymmetrical distributions of false positives and false negatives may turn out to perform 

significantly worse in real life than on the training data. Remember the example, where the 

network would classify every sample as class zero because it was trained on an asymmetrical 

data set, where 99 % of the data belongs to class zero. Recursively, an asymmetry between FP 

and FN might indicate an asymmetry in the underlying data set. In this case, there is indeed 

some systematic disparity between the number of FP and FN. The network falsely predicts 

around 150 signal clusters as noise, but it falsely predicts more than 250 noisy clusters as signal 

(if trained and validated on MTPCL (Figure 21)). The same behaviour is observable when 

training and validating on VTPC2 data, even though the difference between FP and FN is not 

that large (Figure 22). Even though it may be favourable behaviour in this case, since it is worse 

to lose signal than to keep noise, the question of why must be asked. 

One explanation could be that more noisy clusters exist that look like signal than the other way 

around. As already shown in Figure 18, clusters are often not distinguishable with the naked 

eye. In addition, the tracking algorithm is naturally error-prone itself and may mislabel some 

signal clusters as noise or vice versa. FP and FN clusters would have to be further investigated. 

One could check for example three-dimensional visualizations of the tracks to check whether 

those FP and or FN are clustered around specific locations. This could shed light on whether 
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the reconstruction algorithm might be incorrectly classifying tracks in certain edge regions as 

noise. 

 

Figure 21: Confusion matrix – Perceptron trained and validated on MTPCL 

  

 

Figure 22: Confusion matrix - Perceptron trained and validated on VTPC2 

3.2.3 Training on One-dimensional Data Sets 

In addition to the original two two-dimensional data sets from the two TPC’s “VTPC2” and 

“MTPCL” the Perceptron was tested on one-dimensional sub data sets in order to answer the 

following two questions: 

1) Is the network really benefiting from two or higher dimensional data or is one dimension 

enough?  

2) Does one of the dimensions (time or location) yield higher valued information? 

The one-dimensional (sub) data sets comprise the following: 
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The first data set is filled with max charge deposition data from all the 20 time steps but only 

uses the pad in the middle (pad number five). The second one only comprises data from the 10th 

time step (middle) but all eleven pads (Figure 23).  

 

Figure 23: One row or one column was cut out at a time to prepare one-dimensional data sets consisting of slices of the original 

two-dimensional data 

In case of accuracy the network performs best on two-dimensional data. However, while the 

Perceptron performs significantly worse on data from eleven pads at one time step (11Px1T), 

there is only a surprisingly small gap between the performance on two-dimensional data and on 

data from one pad at 20 time steps (1Px20T).  

 

Table 1: Accuracies after training on different sub data sets of a two-dimensional data set 
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This might indicate that information of what happened at other time steps is more important for 

the learning ability of the network than knowing what happened at the surrounding pads. 

Nevertheless, it is quite surprising that this simple network architecture is already sufficient to 

correctly predict at least 86 % (11Px1T) of the samples. 

While accuracy measurements suggest the Perceptron performs best when trained and validated 

on the two-dimensional data set, computing the networks performance on different decision 

thresholds revealed, that this might not be the case. Over a variety of thresholds, the Perceptron 

performed best on the 1Px20T data instead of the two-dimensional data. This indicates that it 

might not be able to take advantage of more dimensional data because of a too simplistic 

architecture. It will be shown that more complex neural networks, in contrast, benefit from 

having a two-dimensional data set as training set. 
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Figure 24: Performance comparison of the Perceptron after training on different sub data sets of MTPCL data 
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3.2.4 Learned Weights – Decision Boundaries on 1Px20T Data 

The learned weights helped to get an insight into what exactly the Perceptron learns on the 

different data sets. For this purpose, they were plotted in a two-dimensional plot if trained on a 

one-dimensional data set and in a three-dimensional plot if trained on a two-dimensional data 

set. Figure 25 illustrates the weights of the Perceptron’s neuron, whose output represents to 

which degree the network predicts the sample to be signal. 

A quick reminder: passing through the network, the twenty input values are all scaled by scalar 

factors, the weights. The sum of these weighted values plus a bias b is then normalized by a 

Softmax activation function to values between zero and one, representing the degree to which 

the network predicts the sample to belong to one class or another.  

 

Figure 25: 2D Plot of the network weights for the second neuron (if output > 0.5 signal cluster) *trained on 1Px20T data 

Plotting the weights revealed, when trained on 1Px20T data, the neurons output is simplified 

the outer values subtracted from the values in the centre. If this calculation leads to a value 

greater than 0.5, the network classifies the sample as signal. So if there is a peak in the centre 

and no peaks outside the centre, it predicts the input to be a signal cluster. If there are peaks 

outside the centre, it predicts the input to be a noisy cluster. 

The other neurons weights plot, the one whose output indicates whether the network predicts 

the sample to be noise, turned out to represent the same decision criteria, as it is almost an exact 

mirrored copy of Figure 25 (Figure 26).  
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The plot of weights, from the neuron whose output indicates to which degree the network 

predicts the sample to be noise, shows the same decision criteria, being almost an exact mirror 

of Figure 25.  

 

Figure 26:  Plot of the network weights for the second neuron (if output > 0.5 --> noisy cluster) *trained on 1Px20T data 
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3.2.5 Learned Weights – Decision Boundaries on 11Px1T Data 

To understand the weights the Perceptron adapts when trained on 11Px1T data (Figure 27), it 

is helpful to recall how the base training data set was created. By definition, all samples, 

whether they are signal or noise, peak on the middle pad at the middle time step. Therefore, the 

signal on the pad in the middle alone cannot be sufficient to make a decision, since this is true 

for both signal and noise. Instead, the network expects that three or at least two of the three 

pads in the middle must be triggered if signal were involved (Figure 27). In addition, pads 

farther from the centre are unlikely to be triggered at the same time, so they are weighted 

negatively, indicating a noisy cluster. 

 

Figure 27: Learned weights of the first neuron (if output > 0.5 --> signal) * trained on 11Px1T data 
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3.2.6 Learned Weights – Decision Boundaries on Two-Dimensional Data   

Combining both dimensions helped to understand what the network learns if trained on one of 

the original two-dimensional data sets (Figure 28).  

The output is again calculated by subtracting the outer values from the middle values of the 

two-dimensional input map (11 pads x 20 time steps). According to this, a sample with a peak 

in the centre is predicted to be signal, while multiple peaks around the centre should indicate a 

noisy cluster. This goes hand in hand with the previous observations in chapter 0 and 0, where 

signal was detected in the shape of multiple peaks observed by multiple pads located in the 

centre, and multiple peaks outside the centre indicated noise.  

 

Figure 28: A three-dimensional plot of the learned weights of the neuron that is activated if input is signal 

However, there is more to learn from Figure 28. It is unlikely that in all corners (outer pads at 

early or late time steps) the weights are positive purely by chance. They may not be as high as 

those in the centre but they are still noticeable. The reason for this could be that the incoming 

signal, which peaks at the centre also trigger other pads on its way through the chamber. From 

physics point of view, one could argue that it should not trigger two pads at the same time unless 

they are close neighbours, as well as a single pad no more than once. This could be the reason 

why one can observe a cross in the weights map. It becomes more obvious when the weight 

map is rotated (Figure 29). Values on this cross are weighted positively and the rest is 

subtracted. 
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Figure 29: Figure 28 but different angle 

 

The second approach is a very popular one, the so-called ResNet, which contains shortcut 

connections in between hidden layers. While the network itself is based on convolutional 

blocks, there are parallel connections between these blocks, which feed the input straight 

through the network. 

Over the last couple of years, residual neural networks (short ResNet) and networks based on 

this architecture, have proven to be very powerful (Szegedy, C., Ioffe, S., Vanhoucke, V., & 

Alemi, A., 2017). Especially in the field of image classification in a variety of tasks (e.g., 

hyperspectral image interpretation (Zhong et al., 2017)). While they can be computationally 

intensive, they are often able to show better overall performance and solve problems with better 

accuracy than their non-residual counterpart (Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, 

A., 2017).  

As illustrated in Figure 30, the two-dimensional input is first fed into an input layer (blue). One 

copy is then send through a block of convolutional layers (brown), which consists of one layer 

with 32 3x3-filters and a second layer with 64 2x2-filters (red-dashed), the second copy is 

parallel forwarded via a shortcut. The output of the first ResNet block is calculated by the output 

of the convolutional block plus the original (purple). Both copies are normed by a ReLU 

activation function prior to summation (for clarity reasons not shown in the graph). The 

convolutional part of the network consists of three such blocks. A final layer of convolutional 

3.3 ResNet 
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filters that feeds into a global-average-pooling layer (green) follows these three blocks. Its 

output is fed into a fully connected dense neural network (cyan) consisting of first a 128-nodes 

layer followed by a dropout layer (grey), second of a 64-nodes layer followed by a dropout 

layer and third of a two-nodes output layer (corresponding to the two classes noise and signal). 

 

 

Figure 30: Schematic structure of ResNet *Credit: created with Net2Vis (Bäuerle et al., 2019) 

Summary of the strategy: 

• Input fed into three blocks of convolutional layers with shortcuts in between blocks 

• Feature maps are then averaged to a single value (GlobalAveragePooling) 

• Averaged scalar values fed into a dense neural network 

• 2 outputs corresponding to noise and signal 

  

      First block 

        Shortcut 

 

 

 

  

Input 
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3.3.1 Accuracy 

ResNet seems to be performing best on two-dimensional data and in general better than the 

Perceptron. The comparison of performance on the different data sets mirrors the same trend as 

observed with the two-neuron Perceptron but with clearer distinctions. ResNet is able to classify 

around 92 % correctly if trained on 11Px20T data sets. On one-dimensional data, it achieves 

accuracies of about 89 % for the 1Px20T data and 85% for the 11Px1T data (Table 2).  

 

Table 2: Accuracies of ResNet and Perceptron (brackets) on different (sub) data sets of MTPCL data  

In contrary to the Perceptron, ResNet seems to be able to benefit from two-dimensional input 

since its threshold performance matches the same trend as the accuracy measurements (Figure 

31). 

For example, one can set the decision threshold so that the network achieves a TPR of 97%, 

i.e., that 97% of the signal samples are correctly detected as signal and about 3% are incorrectly 

classified as noise. ResNet then has an FPR of about 16% when trained on two-dimensional 

data, ~21% on 1Px20T data, and ~24% FPR on 11Px1T data. This means that at those 

thresholds, the network will misclassify either 16%, 21%, or 24% of noisy samples as signal 

(Table 3). 

This highlights that in case of the ResNet, it may indeed be advantageous to use the two-

dimensional data. A very high TPR is possible in exchange for keeping some noisy cluster. For 

example, about 74% of the noisy clusters can be filtered out while only about one percent of 

the signal is lost (99% TPR). 
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Figure 31: Performance comparison of ResNet on different sub data sets of MTPCL data 

 

 

Table 3: ResNet's TPR and FPR for different thresholds on the one- and two-dimensional data sets 
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Analysing the learned weights of the Perceptron showed that a complex convolutional neural 

network is most likely not necessary for this classification problem. On the contrary, a complex 

network might be particularly prone to overfitting. As discussed in 3.2.6, the decision made by 

the Perceptron seems to be based on a cross, where all values on the cross are weighted 

positively and values outside the cross are subtracted. Furthermore, as shown in 3.2.3, the two 

one-dimensional data sets alone were sufficient for a Perceptron to produce good results (86-

88% accuracy). On paper the Perceptron even had the highest accuracy if trained on two-

dimensional data, however, it is not really able to take advantage of it. The performance on 

1Px20T data was actually better (Figure 24). These circumstances lead to the idea of a split 

convolutional neural network, where the input is processed in two separate ways. The two-

dimensional input is split in two exactly equal copies of the original input. Instead of 

conventional 𝑛𝑥𝑛-filters, 𝑛𝑥1-filters on one path and 1𝑥𝑛-filters on the other path are used to 

extract features. The feature maps are then concatenated, flattened, and finally fed into a single 

layer Perceptron like the one introduced in section 2.1. 

This way, the network can learn filters for all the pads on their own, which find patterns in time 

behaviour and simultaneously, learn to recognize dependencies between different pads at the 

same time step. In Addition, with this type of structure, it is more difficult to learn patterns 

between different pads at different time steps. This is an intended consequence, as it is possible 

that such complex patterns may not exist and would therefore be more likely to result in 

overfitting. The network might "learn by rote" instead of learning general patterns, which would 

translate into much better performance on the training data set compared to the validation data 

set.  

The Split Convolution architecture allows the network to learn in two separate ways, which are 

connected only after convolutional feature extracting has been completed. Because of the shape 

of the convolutional filters, it is as if the network extracts features from two separate one-

dimensional data sets instead of one combined two-dimensional data set. This way the network 

is expected to find similar features as the Perceptron found on the one-dimensional sub data 

sets. But these learned features will then be combined and used as input for a single layer 

Perceptron, which makes the final decision.  

  

3.4 Split Convolution – Use Prior Knowledge to Invent a Custom Network 
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The Split Convolution network, just like the others, is a feed forward neural network. Starting 

from the left, the two-dimensional input map is split into two exact same copies (blue). 

Followed by two sets of convolutional layers (brown) plus an activation layer (red) each. One 

channel consists of five 3x1-filters, the other consists of five 1x3-filters. The output feature 

maps of both paths are then concatenated (purple), normalized by another activation function, 

flattened (orange), and finally fed into the output layer (green), which consists of 2 neurons 

(Figure 32). 

 

 

Figure 32: Structure of the Split Convolution network. Created with Net2Vis (Bäuerle et al., 2019) 

Summary of the strategy: 

• Feed Input into two separate blocks of one-dimensional convolutional layers 

• Concatenate and flatten feature maps 

• Feed the flattened values into two output nodes corresponding to the two classes signal 

and noise 

This architecture leads to 4.600 trainable parameters, so approximately 5 % of ResNet.  
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3.4.1 Accuracy 

Again, as a first indicator of performance, accuracy was measured. Split Convolution achieves 

an accuracy of about 91 % or 92% when trained and validated on the two-dimensional MTPCL 

and VTPC2 data set respectively (Table 4). To check whether the network may be overfitting, 

the accuracy was measured on MTPCL data after training on VTPC2 data and vice versa. The 

results are quite promising: about 90.5% of VTPC2 data samples were correctly classified after 

training on MTPCL data and about 89.4% of MTPCL data samples were correctly classified 

after training on VTPC2 data (Table 4). This demonstrates its ability to generalize, since it is 

able to correctly classify about 90% of the data from another TPC. This corresponds to a loss 

of 1-2% compared to the prediction accuracy on data from the TPC it was trained on. 

 

Table 4: Validation accuracy of Split Convolution when trained and validated on different two-dimensional data sets 

Split Convolution’s prediction errors are also not exactly symmetric. On MTPCL, out of 4.000 

samples 159 positive examples were falsely classified as noise (FNR = 4 %) but 199 negative 

examples were falsely classified as signal (FPR = 5 %). On VTPC2, 141 false negatives (FNR 

= 3,5 %) and 184 false positives (FPR = 4,5 %) were counted. With an average gap between 

FPR and FNR of one percent only, the difference is smaller than for ResNet and Perceptron, 

but shows the same trend. 

 

Figure 33: Confusion matrices of Split Convolution, when trained and validated on MTPCL data (left) or VTPC2 data (right) 
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3.4.2 Performance – Threshold Tweaking 

The default decision threshold in binary classification is 0.5.  If a neurons output is greater than 

0.5, then it is labelled correspondingly. By adjusting the threshold, it is possible to move the 

prediction to a specific class. The optimal threshold adjustment depends heavily on the use case 

of the classifier. E.g., it might be okay to lose some signal as long as most of the noise is filtered. 

Then, you would have to look for an optimal threshold which combines a very low FPR with 

an acceptable TPR. Alternatively, the exact opposite is true and it is important not to waste any 

good data. Then, you would have to look for a threshold, which combines a high TPR with an 

acceptable FPR. 

For example, for the MTPCL data, Split Convolution correctly classifies 99% of positive 

examples for a certain threshold, while 30% of negative examples are incorrectly classified as 

signal at that threshold (Figure 34). The higher the desired TPR, the higher the FPR one has to 

put up with. An extreme example would be 100% TPR, this would most certainly lead to 100% 

FPR, since the network would simply classify everything as signal to achieve this goal. 
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 Figure 34: Threshold performance after training on MTPCL data (black) and  VTPC2 data (red) 

  

TPR = 0.99 and FPR = 0.30 
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3.4.3 MTPCL vs. VTPC2 

The first impression was that the three tested neural networks perform slightly better on VTPC2 

data than on MTPCL data because higher accuracies were achieved. However, the comparison 

of threshold performance showed that this is not necessarily the case. The overall performance 

seems to be very similar for both data sets the Split Convolution network even seems to perform 

slightly better when trained and validated on MTPCL data (Figure 34).  

 

 

All three types of network architectures and their strengths and weaknesses will be discussed 

in the following. Therefore, one more network property has to be taken into account. It’s the 

question how long does the network take to predict a certain set of samples.  

3.5.1 Prediction Speed 

Generally, the prediction speed depends very much on the setting. While simple artificial neural 

networks show a fast performance on central processing units (CPU), computations of more 

complex networks are usually significantly faster on graphics processing units (GPU). 

The prediction speed was measured for all three models on a middle- to low-end notebook CPU 

as well as on a high-end GPU from the google colaboratory GPU cluster. 

CPU: Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz, 2712 MHz, 2 kernels, 4 logical 

processors  

GPU:  NVIDIA® Tesla T4-GPU  

In terms of speed, the Perceptron clearly stands out from Split Convolution and ResNet with an 

average prediction speed on CPU of 77.000 samples/s versus 14.000 samples/s for Split 

Convolution and 2.000 samples/s for ResNet respectively (Figure 35).  

Perceptron is also the fastest on the GPU, although its prediction speed drops to 53,000 

samples/s. Split Convolution and ResNet, however, increase greatly in speed to an average of 

39,000 samples/s and 31,000 samples/s, an increase of 300% and 1500%, respectively. 

  

3.5 Comparison – Perceptron vs. ResNet and Split Convolution 
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It is important to point out again that the prediction speed depends heavily on the hardware, and 

thus on the available resources, the code is running on. For example, if Word or a web browser 

was running parallel to the Spyder Python environment were the code was running, this was 

noticeable in speed changes of up to 20-30%. 

The above values can therefore serve as an orientation, but for a reliable statement it will be 

necessary to test the models on the actual hardware.  
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Figure 35: Prediction speed comparison of Perceptron (orange), Split Convolution (blue) and ResNet (green) 
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3.5.2 Threshold Performance 

In a direct performance comparison for different decision thresholds, the Perceptron, although 

achieving prediction accuracies of up to 89%, is clearly inferior to ResNet and Split 

Convolution (Figure 36). ResNet and Split Convolution show a very similar performance with 

a small lead for ResNet  

If the threshold is shifted in such a way that a higher TPR is achieved, the FPR quickly rises 

very sharply for the Perceptron. ResNet and split convolution, on the other hand, show a more 

stable threshold behaviour. A TPR of 99% can be achieved without the model simply 

classifying everything as positive. Of course, the FPR also increases with the TPR, but slower 

in comparison 
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Figure 36: TPR and FPR, for Perceptron, Split Convolution and ResNet at various thresholds 
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4 Summary 

All three of the networks showed different strengths and weaknesses. Depending on which 

feature is most important, different models are proposed: 

1)  If speed matters the most: 

 

The Perceptron seems the most promising, it is the simplest artificial neural network, 

which makes it very fast in its training and prediction time (53.000 and 77.000 samples/s 

on GPU and CPU respectively). It reduces probably up to 87 – 88% of the noise. The 

downside is that one probably loses up to 10 % of the signal. This behaviour can be 

influenced via adjusting the decision threshold. For example, it is possible to achieve 

noise reduction of about 68% while losing only three percent of the good clusters, or 

about 80% while losing five percent of the signal (Figure 36, Table 5). 

However, it will never be as accurate as ResNet and Split Convolution. 

 

 

2) If the goal is to lose as few signal as possible: 

 

Then, ResNet is the most promising. It was able to correctly predict about 92 % of all 

clusters and achieved a TPR of up to 95%, which means that only five to seven percent 

of the good matches are lost. In addition, ResNet showed good threshold performance. 

The threshold could be adjusted in order to achieve a TPR of 99% and still reduce about 

74% of the noise at that threshold (Table 5). However, it is definitely the slowest of the 

three networks (2000 samples/s on GPU). Even though it might be possible to reduce 

the number of parameters, due to its level of complexity, it will never be as fast as the 

other two networks. 

 

Table 5: TPR vs. FPR performance comparison of Perceptron, ResNet and Split Convolution 
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3) A compromise of both: 

 

On the one hand, Split Convolution has shown a very similar performance to ResNet. 

While ResNet performed better by a tiny margin, Split Convolution needs less than five 

percent of the parameters (4.600 to 95.00) and it has in general a less complex 

architecture. Thus, it is operating much faster and able to predict around 39.000 samples 

a second and it clearly outperforms the Perceptron. On the other hand, it is still slower 

than the Perceptron, especially when run on CPU (14.000 samples/s vs. 77.000 

samples/s). 
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5 Outlook 

Above all, this work shows that dense feed-forward and convolutional neural networks can in 

principle be successfully used to filter noisy clusters in the TPC data of the NA61/SHINE 

experiment. 

Note that a little scepticism is healthy and only natural. Especially when one has to trust an 

algorithm whose decision path may not be fully comprehensible. The following tests are 

therefore proposed to increase confidence in the proposed machine and deep learning 

algorithms, but would have been beyond the scope of this work. 

Proposal:      Learning and prediction based on cross-energy and/or cross-particle collisions. 

Example 1:   Train a classifier on Argon-Scandium data and test it on data from Lead-Lead 

collisions. Likewise, of course, the other way around. 

Example 2:   Train a classifier on 𝑥 MeV Argon-Scandium data on and test it on 𝑦 MeV 

Argon-Scandium data, with 𝑥 ≠ 𝑦. 

Positive tests will increase confidence in the AI's decision-making, as they would highlight the 

ability to learn generalized patterns.  

It is worth noting that although all three networks have shown good results, they are obviously 

not the only options available. For example, even though ResNet was still state of the art in 

2020, many other promising approaches have also been introduced since ResNet was first 

introduced in 2015. However, this work highlights the great potential in further exploring the 

application of artificial neural networks as a method for noise filtering in the NA61/SHINE 

experiment. The world is changing rapidly, especially in the field of artificial intelligence, and 

it is exciting to see what future research might bring. 
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Internship at FIAS – A Report from Janik Pawlowski 

 

The NA61/SHINE Collaboration 

During the internship, I have worked on a very specific project as part of the NA61/SHINE collaboration 

with researchers at CERN, Switzerland.  

NA61/SHINE (standing for "SPS Heavy Ion and Neutrino Experiment") is a scientific research project 

for particle physics at the Super Proton Synchrotron (SPS) at CERN in Switzerland. About 135 

physicists from 14 countries and 35 institutions are working on the NA61 project under the leadership 

of Marek Gazdzicki. On behalf of the collaboration, FIAS is conducting research on whether and to 

what extent artificial intelligence methods could be used in the filtering of measurement data, or more 

precisely in the filtering of noise. 

The NA61/SHINE experiment uses beams of hadrons and nuclei from the SPS to measure the production 

of hadrons. Three different types of collisions are performed(NA61/SHINE Team): 

1. Nucleus-nucleus, proton-proton and proton-nucleus: 

(part of the strong interactions programme) 

 

To investigate properties of the transition between the quark-gluon plasma and hadron gas by 

collision energy scans with various beam and target nuclei. 

 

“NA61/SHINE aims to uncover properties of the onset of deconfinement by systematic 

and precise measurements of collision energy and nuclear mass dependence of its 

signals. It is also looking for evidence of a critical point on the transition line between 

two phases of strongly interacting matter: quark-gluon plasma and hadron 

gas.”(NA61/SHINE Team) 

 

2. Proton-nucleus: 

(part of the neutrino programme) 

 

Recording of their interactions with the goal to determine parameters of neutrino beams 

produced at J-PARC, Japan and Fermilab, US.  

 

3. Hadron-nucleus: 

(part of the cosmic ray programme) 

 

Interactions are measured in order to improve the modelling of cosmic ray showers. This 

information is needed for studies on very high-energy protons and nuclei of extragalactic origin, 

which are performed by the Pierre Auger Observatory and KASKADE experiments. 
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The main tracking devices of the NA61/SHINE experiment are four large volume Time Projection 

Chambers (TPC).  

 

The Time Projection Chamber 

A TPC consists of a large gas-filled volume. A uniform vertical electric field is applied by a surrounding 

field cage. 

Particles passing through the chamber ionize the gas, leaving a trail of electrons. Due to an external 

electric field, the electrons drift with a constant velocity in the direction of the upper plate. There their 

position, arrival time, and total number is measured. The chamber top plates are divided into pads of 

about one square centimeter in order to achieve a high spatial resolution.(NA61/SHINE Team) 

The four TPCs can be divided into two main TPCs, main TPC Left (MTPCL) and Main TPC Right 

(MTPCR), and two vertex TPCs (VTPC1 and VTPC2). 

Each Main TPC has a readout surface at the top of around 3,9x3,9 m² and height of the field cage of 

around 1.1 m. They are filled with a mixture of gas composed of 95 parts of Argon and 5 parts of CO2. 

Twenty-five proportional chambers read out values. This way, up to 90 measurements of each particles 

trajectory are possible.(NA61/SHINE Team) 

Each Vertex TPC has a top surface area of 2.0x2.5 m² and 0.67 m depth. Because of the electric field 

structure, regions of 0.12 m on each side of the beamline are excluded. The particle density in Pb + Pb 

reactions is so high that trajectories cannot be resolved. The gas consists of a 90/10 mixture of Argon 

and CO2. Six proportional chambers perform the readout on the top, providing up to 72 measurements 

on the particle trajectories.(NA61/SHINE Team) 

The experiments setup is shown in Figur and a 3D visualization of the measurements after a collision is 

shown in Figure. 

 

Figure 1: Tracking devices setup in NA61/SHINE experiment. The beam first passes two vertex TPCs and then two main TPCs. 



 

 

55 

 

 

Figure 2: 3D Visualization of particle trajectories in NA61/SHINE experiment. The particles first pass two vertex TPCs and then two main 

TPCs. Credit: Michalski F, Palayda (Michalski & Palayda). 
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The Data Sets  

Two data sets were available for my project. Data from 100 random events of one of the vertex TPCs 

(VTPC2) as well as from one of the main TPCs (MTPCL). One event consists of many thousands so-

called clusters. A cluster consists of all charge deposition data points that belong to the same particle 

track. These tracks are found via a reconstruction algorithm.  

For each event, the procedure was the following: 

1) Take 100 signal cluster and 100 noisy clusters randomly 

2) For each cluster find the pad ID and timestamp with max charge deposit and include the charge 

deposit information from +- 5 neighbouring pads, for + 10 and - 9 timestamps 

The result is a two-dimensional picture for each cluster. For visualization, one cluster is shown in a 

three-dimensional Plot (Figure). 

 

Figure 3: Exemplary cluster of charge deposition data over 20 time steps on 11 pads. 

 

  



 

 

57 

 

Data Classification 

All clusters that belong to a track, found by the reconstruction algorithm, are labelled as signal, the rest 

as noise. 

In sum, each data set consists of 10.000 signal clusters and 10.000 noisy clusters, each out of 100 random 

events. Therefore, a full data set consists of 20.000 labelled clusters. Where 10.000 are positive examples 

(signal) and 10.000 are negative examples (noise).  

Construction of One-dimensional Data Sets 

The original data sets have a shape of (20.000, 11, 20). Twenty thousand samples, each consisting of 

charge deposition data over 20 time steps from one pad and its ten nearest neighbours (11Px20T): five 

to the left and five to the right.  

I constructed two sub data sets out of each. One that contains data from the one pad of a cluster, which 

received the maximum average charge deposition (the pad in the middle of a cluster). Consequently, 

this data set has a shape of (20.000, 1, 20) as it consists of 20.000 samples with data only from single 

pads over 20 time steps (1Px20T) similar to the one Manjunath trained his networks with but with 20 

time steps included instead of 220.   

Secondly, I constructed a data set, which includes data from all eleven pads but only within one time 

step (11Px1T), the middle time step. Consequently, these samples consist of eleven data points. The 

data set has a shape of (20.000, 11, 1). 

 

Figure 4: Cut out a row or column to prepare one-dimensional data sets consisting of slices of the original two-dimensional data 
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