CERN Accelerating science

Published Articles
Title Laser cooling of antihydrogen atoms
Author(s)

Baker, C J (Swansea U.) ; Bertsche, W (Manchester U. ; Cockcroft Inst. Accel. Sci. Tech.) ; Capra, A (TRIUMF) ; Carruth, C (UC, Berkeley) ; Cesar, C L (Rio de Janeiro Federal U.) ; Charlton, M (Swansea U.) ; Christensen, A (UC, Berkeley) ; Collister, R (TRIUMF) ; Mathad, A Cridland (Swansea U.) ; Eriksson, S (Swansea U.) ; Evans, A (Calgary U.) ; Evetts, N (British Columbia U.) ; Fajans, J (UC, Berkeley) ; Friesen, T (Calgary U.) ; Fujiwara, M C (TRIUMF) ; Gill, D R (TRIUMF) ; Grandemange, P (TRIUMF ; Calgary U.) ; Granum, P (Aarhus U.) ; Hangst, J S (Aarhus U.) ; Hardy, W N (British Columbia U.) ; Hayden, M E (Simon Fraser U.) ; Hodgkinson, D (Manchester U.) ; Hunter, E (UC, Berkeley) ; Isaac, C A (Swansea U.) ; Johnson, M A (Manchester U. ; Cockcroft Inst. Accel. Sci. Tech.) ; Jones, J M (Swansea U.) ; Jones, S A (Aarhus U.) ; Jonsell, S (Stockholm U.) ; Khramov, A (TRIUMF ; British Columbia U.) ; Knapp, P (Swansea U.) ; Kurchaninov, L (TRIUMF) ; Madsen, N (Swansea U.) ; Maxwell, D (Swansea U.) ; McKenna, J T K (TRIUMF ; Aarhus U.) ; Menary, S (York U., Canada) ; Michan, J M (TRIUMF ; British Columbia U.) ; Momose, T (TRIUMF ; British Columbia U.) ; Mullan, P S (Swansea U.) ; Munich, J J (Simon Fraser U.) ; Olchanski, K (TRIUMF) ; Olin, A (TRIUMF ; Victoria U.) ; Peszka, J (Swansea U.) ; Powell, A (Swansea U. ; Calgary U.) ; Pusa, P (Liverpool U.) ; Rasmussen, C Ø (CERN) ; Robicheaux, F (Purdue U.) ; Sacramento, R L (Rio de Janeiro Federal U.) ; Sameed, M (Manchester U.) ; Sarid, E (Soreq Nucl. Res. Ctr. ; Ben Gurion U. of Negev) ; Silveira, D M (TRIUMF ; Rio de Janeiro Federal U.) ; Starko, D M (York U., Canada) ; So, C (TRIUMF) ; Stutter, G (Aarhus U.) ; Tharp, T D (Marquette U.) ; Thibeault, A (TRIUMF ; Sherbrooke U.) ; Thompson, R I (Calgary U. ; TRIUMF) ; van der Werf, D P (Swansea U.) ; Wurtele, J S (UC, Berkeley)

Publication 2021
Number of pages 18
In: Nature 592 (2021) 35-52
DOI 10.1038/s41586-021-03289-6
Subject category Physics in General
Accelerator/Facility, Experiment CERN ALPHA
Abstract The photon—the quantum excitation of the electromagnetic field—is massless but carries momentum. A photon can therefore exert a force on an object upon collision1. Slowing the translational motion of atoms and ions by application of such a force known as laser cooling, was first demonstrated 40 years ago. It revolutionized atomic physics over the following decades, and it is now a workhorse in many fields, including studies on quantum degenerate gases, quantum information, atomic clocks and tests of fundamental physics. However, this technique has not yet been applied to antimatter. Here we demonstrate laser cooling of antihydrogen, the antimatter atom consisting of an antiproton and a positron. By exciting the 1S–2P transition in antihydrogen with pulsed, narrow-linewidth, Lyman-α laser radiation, we Doppler-cool a sample of magnetically trapped antihydrogen. Although we apply laser cooling in only one dimension, the trap couples the longitudinal and transverse motions of the anti-atoms, leading to cooling in all three dimensions. We observe a reduction in the median transverse energy by more than an order of magnitude—with a substantial fraction of the anti-atoms attaining submicroelectronvolt transverse kinetic energies. We also report the observation of the laser-driven 1S–2S transition in samples of laser-cooled antihydrogen atoms. The observed spectral line is approximately four times narrower than that obtained without laser cooling. The demonstration of laser cooling and its immediate application has far-reaching implications for antimatter studies. A more localized, denser and colder sample of antihydrogen will drastically improve spectroscopic and gravitational studies of antihydrogen in ongoing experiments. Furthermore, the demonstrated ability to manipulate the motion of antimatter atoms by laser light will potentially provide ground-breaking opportunities for future experiments, such as anti-atomic fountains, anti-atom interferometry and the creation of antimatter molecules.
Copyright/License © 2021-2024 The Author(s) (License: CC-BY-4.0)

Corresponding record in: Inspire


 ჩანაწერი შექმნილია 2021-04-22, ბოლოს შესწორებულია 2021-04-22


Fulltext from Publisher:
სრული ტექსტის ჩამოტვირთვაPDF
გარე ბმული:
სრული ტექსტის ჩამოტვირთვაInteractions.org article