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Abstract. A new couple of Lax pairs both for the chiral O(3)-fields equations and
for the Landau-Lifshitz equation is found. In contrast to the already known pairs these
one are polynomial in the spectral parameter A\. We found also a new 4 x 4-Lax pair
in the case of cnoidal waves for the generalized Landau-Lifshitz equation.
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1. Introduction

In the last decades considerable attention has been paid to the so called soliton equations.
It is well known that their remarkable properties (see, e.g., [1]) are due to the possibility
to apply to them methods of integration based on the inverse scattering problems and
their modifications such as the @ problem. The main point, however, is the possibility
to cast the given evolution requation (or system of such equations) into the so called
Lax form, or equivalently, into the form of the compatibility condition

[0, —U,0,— V}=0U -0,V +[UV]=0 (1)
of two linear systems
(8. —U)¥ =0, (6,—V)¥=0. (2)

Here the matrix valued functions U and V depend on the spectral parameter A and
on a number of variables u;, us, ... , usually called potential functions. The evolution
equation (or system of equations) is written in terms of the potential functions. We
shall deal with evolution equations with one spatial variable € R, as usual ¢ is the
time variable.

At the present time there is a number of approaches to the soliton equations based
on the spectral theory of operators, on Lie group and on Lie algebra theory, on algebraic
and differential geometry and others which are difficult even to list. However, we believe
that there is one important problem which is open and untill now has not been paid
considerable attention. The question is whether the results of the main constructions
through which the soliton equations are solved such as the dressing method of Zakharov-
Shabat, the Riemann-Hilbert problem or the finite gap integration method, depend or
do not depend on the choice of the U-V-pair, as the constructions itself strongly depends
upon this choice.

It is clear that as the compatibility condition (1) is expressed through the
commutator [U, V] then, if U or V belong to a certain Lie algebra g, we can write the
same compatibility condition in another faithful representation of g and we shall obtain
the same evolution equation. It is not evident that the constructions of exact solutions
mentioned above will be compatible with such an alteration of the representation. One
of the authors has paid attention to some aspects of this problem in [4] but it seems that
it remains to be done for more even in the most trivial case when the pairs differ by the
choice of the representation. The problem becomes more complicated if we introduce
essentially different U-V pairs. It should be remarked also that finding U-V pairs is
a by no meaning straightforward process and sometimes to find them some fortune is
necessary. So the existence of different pairs is a quite rare phenomena and possibly this
explaines that the problem we mentioned above was not given attention up to now.
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2. Polynomial 6 x 6 pairs for the chiral O(3) fields equations and for the
Landau-Lifshitz equation

The system of the chiral fields equations can be written in the form [8]

Uty —uxJo = 0 22 S
{ Ut‘{)‘x—l—)‘x.]ﬁ = 0 ? u=v _1’ J_dlag(]lv]%]B)a (3)

where @ = (uy,u2,u3), U = (v1,v2,v3) are the two vector functions depending on z and
t, ,x" denotes the vector product.
The Landau-Lifshitz equation [9]

1

v =0 X U + @ x K,  @=1, K = diag(k,ky,ks) (4)

is written in terms of one vector function @ = (u,uq, u3), where the matrix K playes
the same role as J.
For convenience we shall write down the equations (3) and (4) in a different form.

Let us introduce the linear mapping M : R® — so(3) where so(3) is the Lie algebra of
3 x 3 schief-symmetric matrices

0 Uz — U2
M(ﬁ) = M(ul,ug,u3) = —Us 0 (751 . (5)
Uo —~—Uy 0
Clearly,
[(M(i), M(9)] = =M (i x T) (6)

and therefore we cast (3) and (4) into the equivalent form:
A) Chiral fields equations (CFE)
{ M), + M(d), + [M(

B) Landau-Lifshitz equation (LLE)
M(T), + [M(T), M(@)ee] + M (@), M(KT)] =0, @ =1. (8)
An inspiration to construct 6 x 6 pairs we got from reading the last lines in ref. [5],
where the authors claimed that there exist U-V pairs which are linear in A for CFE and
LLE and gave formulas for the U matrices in both cases. However, as fas as we know,
the final answer has not been obtained there or elsewhere. Besides we failed to obtain
a pair linear in A for LLE. The pair we obtained depends quadratically on A. So, it is
completely new.
Below we shall write the 6 x 6 matrices in the block form A = (’; 2), where a, b, c,d
are 3 x 3 matrices. Using these notations we present the following U-V pairs:
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A. The pair for the chiral O(3) fields equations

where J = (5 0) and ad ;4 means [J, A].

B. The pair for the Landau-Lifshitz equation

~ ) 1 {0 o 1 M(@) 0

U= ( 0)+§(0—M(Jﬁ)>+5adj( 0 o)

(@) M Maxi) o) 1 M) 0
) () e (M)

0
M(J2i) 0 1 M@xi) 0
( 0 M x i) ) +g2ds ( 0 aM(Ji) ) - 10

It is clear that these pairs are polynomial in contrast to the already known pair of
Sklianin-Borovik [2, 3] and Cherednik [6] which are elliptic in A.

In order to obtain from this pair the LLE one has to put in addition k° = %\/—jz,
s = 1,2,3. It should be mentioned that for j, = 0, s = 1,2,3 the pair (10) becomes
equivalent to the pair

U= 5/\4(&)

=AM() a

The nonlinear evolution equation which corresponds to this pair is the Heisenberg
ferrromagnet equation (HFE):

M(@ x @) (11)

Ut = UpUgy .

The pair (11), taking into account the well known isomorphism between the algebras
so(3, R) and su(2) could be written in terms of 2 x 2 matrices. In that way we obtain the
well known pair for HFE [6]. There are other questions arising from the pair (10). As we
already mentioned the pair which was used up to now for LLE is the Sklianin-Borovik
pair [2, 3] containing elliptic functions in A. It is known, however, that the Heisenberg
ferromagnet equation is gauge equivalent to the nonlinear Schrédinger equation (see
[6]) and the first operator in the pair for the Heisenberg ferromagnet equation 1s gauge
equivalent to the Zakharov-Shabat linear problem. It is natural to ask whether the
Landau-Lifshitz equation is gauge equivalent to some Schrodinger like equation. It is
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evident that the operator 9, — U in the Cherednik pair cannot be gauge equivalent to
the Zakharov-Shabat type linear problem. As this difficulty and as the eigenvalues of
M(d) 0

0 0

mentioned gauge equivalence.

do not depend on 4 it is possible that through (10) one can establish the

3. Polynomial 4 x 4 pairs for CFE and LLE

The pairs (9) and (10) have an important property which allows us to write them in tems

of 4 x 4 matrices. Both they belong to the Lie algebra soc(3,3) - the complexification
of so(3,3):

soc(3,3) = {LA: A € Hom(C*,C°); ATo+0A=0}, ¢ = (g g) :

IfA= ( j g ) belongs to soc(3,3) then o' = —a, §7 = —§, 87 = v and vice versa.

A simple similarity transformation establishes the isomorphism between sog(3,3) and
so(6,C). Indeed, if we introduce the matrix

1 I I
T—“ﬁ(—in —2'11)

then the similarity transformation A — T~'AT converts soc(3,3) into so(6,C). It
is well known that so(6,C) is isomorphic to sl(4,C) — the algebra of 4 x 4 traceless
matrices. Thus it is possible to write the pairs (9), (10) in 4 x 4 form. However,
one needs to construct explicitely the isomorphism between soc(3,3) and sl(4,C).
We could not find the explicite form of this isomorphism which is of course trivial

in terms of Dynkin diagrams: O—g ~ 0-0-0. This is why we shall briefly sketch how
one can obtain isomorphic Cartan-Weyl bases for these algebras. In order to present
the Cartan subalgebra with diagonal matrices we shall use another representation of
soc(3,3) ~ so(6,C). Let us introduce

1 (1T _
R_ﬂ(]“[)_fz.

Then it is easy to see that if RBR € so¢(3,3) then B € so(6) and vice versa, where

S/O\(G):{A : A:(: _iT)aﬁT:_ﬂa ’7T_—7}



Now the Cartan subalgebra h can be defined as

h= {( : g ) , 5=diag(el,52,53)} C 50(6).

£ 0
0 ¢
fz (£1,&2,&3). The Killing form of s/(-)\/(fi) is well known:

We shall represent every element ( ) from the Cartan subalgebra by the vector

B(z,y) =tr(ady ady) = 4trXY; X,Y € so(6).
Let the elements ¢; from the dual space A* been given by
€(é)=¢,:=1,2,3.
Then it is easy to see that the set of simple roots ay, az, az is given by
Q] = €] — €3, Qg = €3 — €3, O3 = €3 + €3
and the set of all roots is then
A = {%ai1, taz, (a1 + a2), (a1 + a3), £(a1 + az + a3)} .
The Dynkin diagram is clearly OO0 4 the elements corresponding to a; through

g 1 O3

the isomorphism established by R are

1 1 1
Ha =3 1’_13 s Hcrz:_oa]w_ s o3 — 5 17130

and it is easy to calculate that

1 1 1
<(13,03> = Z. (al,ag> = —g, <a1,a3> = —'8—, (ag,a3) =0

(Here and below we use the notations and normalizations of {7] which are universally
accepted.)

Of course, the Dynkin diagram is isomorphic to the diagram of the algebra
s1(4,C) ~ Aj. As it is well known, for this algebra it holds

B(z,y) = tr(adxady) =8 trXY; X,Y €5s1(4,C).

The Cartan subalgebra is

4
h= {diag(hl,hg,hg,h4), D hi= 0} .
i=1

If we introduce ¢; € & by
é,- (dlag(hl, h2, h3, h4)) = hi .
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then the set of roots A is A = {e.— ¢, i# 7}, 1,7 = 1,2,3,4 and the set of simple
roots is given by
dl = €A1 - EA;),’ dz = EAQ - €A3, d3 = €3 - 6A4 .

The Dynkin diagram is 3 &2 2. Then we can define an isomorphism 1 of the root

systems supporting that for the simple roots we have
Y(a1) = g, Y(az) = b1, Y(as) = a3

extending ¥ by linearity. It is well known that the mapping ¢ then generates the
isomorphism of the algebras. We shall denote it by ¥. Finally we have

U(E,) = Eye), a €A,
U(H,,) = Hy(any, ©=1,2,3,

where {F,,H,,,a0 € A, 1 =1,2,3} and {E&,Hd,,d € A 1= 1,2,3} are the Cartan-
Weyl basis for soc(3,3) ~ so(6,C) and sl(4,C), respectively. Using the explicit
expressions for this basises in [7] we can construct the needed isomorphism. We put

aside the cumbersome but straightforward calculations and present only the final results:
1. U-V pair for the chiral O(3) fields equations

-1 ~
U= (A1 - A2) (A+ )
1 ~
V=§(A1+A2) (A+J) (12)
where
0 Uy Ug Uus
1 —u; 0 Uz —Us
A=< 13
! 2 —Ug —Us 0 U1y ( )
\ —Ug Ug — U 0
0 vy Uy —U3
1 —U1 0 U3 V2
I 14
A2 2 —Vy —U3 0 —U ( )
K vy —uvp vy 0
-1 —J2t7Js 0 0 0
T 0 —n+J2—Js 0 0
J = ) ) : 15
0 0 J1—J2—J3 0 (15)

0 0 0 J1+J2+ 73



2. U-V pair for the Landau-Lifshitz equations

1 .
U= ‘Q‘Al()\ +J)
1 ~
where
0 Jiuy J2u2 Jaus
1 ~Jiy 0 Jaus  —Jauy
Ag==| 7 | . , 17
2J 2 —Ja2U2 —J3U3 0 J1ug ( )
—JaUs  JoUz  —J1Us 0

J is given by (15) and 4, by (13).

We shall make only one comment about the pair for LLE. When j, =0, s =1,2,3
the matrixes in this pair become elements of the subalgebra so(4) C sl(4). As it is well
known, so(4) is isomorphic to so(3) x so(3). Then for j; = 0 the pair is equivalent to
the pair (11) or to the well known 2 x 2 pair for HFE.

4. A new 4 x 4 pair for the generalized LLE in the case of cnoidal waves

The next in turn of the simplest generalizations of LLE has the form

{at = @ X iiee+ @ x JG, J=diag(j1.j,Ja) (18)
Uy = UXUp+0xJT,.
It describes the anisotropic interaction of two isotropic ferromagnetic lattices. The Lax
pair for this system was not known up to now, except for the case u(z,t) = u(z — at),
v(z,t) = v(z — at) known as the case of cnoidal waves. For this case the Lax pair of the
classic kind

L=I[L,A] (19)
was found in [10] with matrices 6 x 6 belonging to so(3,3). Using the same isomorphism
as in the forgoing sections we rewrite this Lax pair in a new form in terms of 4 x4 matrices
belonging to sl(4,C).

The result of this straightforward calculations can be represented in its final form.
The Lax pair for the generalized LLE is

L= —2)A14; + Ma(Ar + A2) + [(A1 + Az), (A1 + Az)e)) = J
A = - 2)\A1A2
with £ = 2 — at and the operators A;, Aj, J have the same form as in (13)-(15).

We hope that this pair, which looks much more simpler, will allow for finding of
new classes of solutions and stimulate the search for new Lax pairs in the general case.
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