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Abstract

A simple model of spin decoherence in electron storage rings is presented

and its relevance to rf spin 
ipping at high energy is discussed.

INTRODUCTION

Stored electron and positron beams can become spin polarized by the emis-
sion of synchrotron polarization|-the so called Sokolov-Ternov e�ect(1,2,3).
In rings without vertical bends and solenoids, the polarization is vertical, an-
tiparallel to the guide �eld. It has recently been demonstrated at HERA that
spin rotators can be used to rotate the polarization vector into the beam di-
rection just before an interaction point and back again after the interaction
point so that longitudinally polarized electrons or positrons are available for
the high energy physics experiment(4).

Periodic reversal of the helicity is essential for the physics programme and it
is clear that it would also be useful to have a means of 
ipping the polarization
direction for short periods in order to check for systematic errors. The helicity
at the interaction point can be reversed by changing the geometry and �elds
of the rotators but that would mean a temporary loss of polarization or even
dumping the beam and re�lling. However, a faster, more convenient method
was already considered many years ago (5,6) and would utilize a horizontal rf
magnetic �eld.
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The rf magnetic �eld (or a combination of �elds forming a closed bump)
(5,7) would be installed at a position on the ring where the polarization were
vertical and it would run in resonance with the natural spin precession fre-
quency i.e. at a frequency close to fflip = fc � ~� or fflip = fc � (1 � ~�) where
fc is the circulation frequency and ~� is the fractional part of the spin tune, �,
which is the number of spin precessions per turn around the ring (19).

Flipping would involve sweeping slowly enough across resonance to ensure
that the polarization vector were tipped over adiabatically. This would require
that the spins in a bunch remain tightly bundled. Such 
ipping techniques are
routine at Novosibirsk (8,9) at low energy. These techniques are very closely
related to the method used to depolarize a beam and hence measure its energy
by noting the required rf frequency (10,11,12). 1

It has been suggested that if 
ipping were repeated at the suitable intervals
it would perhaps be possible to reach a periodic limit cycle for the polarization
(13,14,15).

However, if the projections of the spins on the horizontal plane were to
become spread out uniformly over the range �� (in an appropriate coordinate
system) during the sweep process, i.e. if there were complete decoherence, the
polarization vector would not be 
ipped but instead the polarization would
vanish. As we will see, one such source of decoherence is the stochastic nature
of synchrotron radiation photon emission. In proton rings, decoherence of this
nature cannot occur and full spin 
ip is not di�cult to achieve (16).

Spin 
ip is sometimes observed at LEP during energy calibrations (12)
using rf �elds of just a few gauss-metres but the value of the polarization is
much reduced and the e�ect is not consistently reproducible. It is also unclear
which are the best ranges of sweep rate and rf �eld strength(17).

But the fact that 
ip can be achieved suggests that the spin projections
remain coherent at least for several seconds during the sweep. Thus in or-
der to better understand the measurements it would be useful to estimate the
decoherence rate. One such calculation suggests that the characteristic deco-
herence time is proportional to the fourth power of the synchrotron tune and
could indeed be several minutes at LEP (18).

In this article we show, by a more complete treatment of the photon emis-
sion process and the subsequent development of the spin distribution function,
that with the same linear \smooth ring" model for the synchrotron motion
as in reference 18, the spin distribution actually reaches equilibrium in a few
damping times and that there need not be full decoherence. We then consider
other sources of decoherence and their consequences.

The calculation presented below is a very abbreviated version of a full
treatment based on a well de�ned and trusted formalism. The full calculation

1Actually it is the spin tune extracted from the complex eigenvalues of the one turn 3 x
3 spin transport matrix that is measured (19).
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will be published elsewhere.

EQUATIONS OF LINEARIZED ORBIT MOTION

The linearized equation of orbit motion with respect to the closed orbit in
the presence of stochastic excitation and damping due to synchrotron radiation
takes the form used in the SLIM program (19) :

d

ds
~̂y = Â � ~̂y + �Â � ~̂y + �~̂c ; (1)

where s is the distance around the ring and ~̂y is the vector of orbit variables
(x̂; p̂x; ẑ; p̂z ; �̂; p̂�). Here, �̂ is the distance to the centre of the bunch and
p̂� is the fractional energy deviation. Â represents the `hamiltonian' motion
due to the Lorentz forces and �Â describes damping. Both are s{dependent
6 x 6 matrices. The vector �~̂c = (0; 0; 0; 0; 0; �c) accounts for the stochastic
excitation in the energy variable due to photon emission (20) :

�c =
p
! � �(s) ; (2)

where in terms of the curvatures Kx and Kz, ! = (jKxj3 + jKzj3) � C2 with

C2 =
55 � p3
48

�C1 � � � 
20 ; C1 =
2

3
e2 � 


4

0

E0

; � =
�h

m0c
; (3)

and where the stochastic averages of the kicks �(s) are

< �(s) � �(s0) > = �(s� s0) ; < �(s) > = 0 : (4)

Thus, as is usual and su�cient (20,21,22), we take the synchrotron radi-
ation to be a white noise process. For our present purpose it will be more
convenient to work with dynamical variables which allow a clearer separation
of the in
uence of energy oscillations from the purely \betatron" motion due
to the quadrupoles. To achieve this we introduce the dispersion by means of
a canonical transformation to obtain a new set of variables (x; px; z; pz; �; p�)
de�ned by :

x = x̂� p̂� �Dx ; (5)

px = p̂x � p̂� �D0

x ; (6)

z = ẑ � p̂� �Dz ; (7)

pz = p̂z � p̂� �D0

z ; (8)

� = �̂ � p̂x �Dx + x̂ �D0

x � p̂z �Dz + ẑ �D0

z ; (9)

p� = p̂� (10)
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where the D0s are the components of the dispersion vector (23).
In terms of the variables x; px; z; pz ; �; p� the equation of motion now

takes the form:

d

ds
~y = A � ~y + �A � ~y + �~c : (11)

If the dispersion is zero at the position of the rf cavities, there is no transverse{
longitudinal coupling and the matrices A and �A have a simple block diagonal
form. For example :

A(s) =

0
@ A

(�)

(4�4)
(s) 0

(4�2)

0(2�4) A
(�)

(2�2)
(s)

1
A : (12)

The matrixA(�)

(4�4)
(s) describes betatron motion in the focussing �elds. A(�)

(2�2)
(s)

describes the synchrotron motion. When acting alone this gives :

d

ds
� = �[Kx �Dx +Kz �Dz] � p� ; (13)

d

ds
p� = h � 2�

L
� eV (s)
E0

cos' � � ; (14)

where the symbols have their usual meaning.
In this calculation we also work in the \smooth ring" approximation and

consider only synchrotron motion. Thus we will follow exactly the philosophy
of reference 18. So the matrix elements in A(�)

(2�2)
and �A(�)

(2�2)
are averaged over

one turn (of length L) and we obtain :

 
�0

p0�

!
=

 
0 ��


2

s=� 0

!
�
 
�

p�

!
+ �A

(�)

(2�2)
�
 
�

p�

!
+ �~c ; (15)

where �A(�)

(2�2)
and �~c take the forms:

�A
(�)

(2�2)
�
 
0 0
0 �2 � �s=L

!
; �~c �

p
~! �
 

0
�(s)

!
: (16)

Here, �s is the one turn synchrotron damping decrement and ~! is the one turn
averaged !. Also, 
s = 2� � Qs=L where Qs is the synchrotron tune and � is
the compaction factor.

The equilibrium covariance matrix for � and p� then takes the usual value
(24) viz :

�2(1) =

 
�2� 0
0 �2p�

!
; �2p� =

~! � L
4 � �s ; �2� =

�2


2
s

� �2p� : (17)
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INCLUSION OF SPIN

After this recapitulation of the basis for the matrix formulation of the stan-
dard smoothed description of damped stochastic synchrotron motion we are in
a position to introduce spin motion. Although spin is a quantum mechanical
phenomenon, in high energy storage rings it can be treated at the semiclassical
level using the Thomas-BMT equation (19)

d

ds
~S = ~
 � ~S ; (18)

describing the precession of a classical spin ~S in electric and magnetic �elds.
The precession vector ~
 is a function of the magnetic and electric �elds and
of the particle velocity and energy. As is usual for spin calculations in storage
rings we now write ~
 as a sum of a piece ~
0 accounting for the �elds on
the closed orbit and a piece ~
osc accounting for synchro-betatron motion with
respect to the closed orbit.

We will assume that the ring has no vertical bends, solenoids or skew
quadrupoles, and that it is perfectly aligned so that there is no vertical closed
orbit deviation. For electrons the vertical emittance can then be taken to be
zero and only motion in the horizontal plane need be considered. For this
naive estimate the betatron motion and the radial rf magnetic �eld will be
ignored. Spin motion will be calculated with respect to a pair of mutually
orthogonal axes precessing at the rate 
0 in the horizontal plane around the
vertical dipole �eld. The direction of a horizontal spin in this frame is denoted
by a phase angle  so that we have  0 = 
osc. After averaging we then obtain
 0 = 2��=L � p� where the spin tune � is (g � 2)=2 � 
. Thus  only couples to
and is only driven by p�. When the spin phase  is included, the stochastic
di�erential equation for the system takes the form :

0
B@

�0

p�
0

 0

1
CA =

0
B@

0 a 0
b 0 0
0 d 0

1
CA �

0
B@

�

p�
 

1
CA

| {z }
Hamiltonianmotion

+

0
B@

0 0 0
0 c 0
0 0 0

1
CA �

0
B@

�

p�
 

1
CA

| {z }
Damping

+
p
~! �
0
B@

0
�

0

1
CA

| {z }
Excitation

;

(19)

where the constants a; b; c and d are de�ned as :

a = �� ; b = 
2

s=� ; c = �2 � �s=L ; d = 2��=L : (20)

This can be rewritten in the form :

~x0 = A � ~x+ �~c3 ; (21)
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where

~x �
0
B@

�

p�
 

1
CA ; A �

0
B@

0 a 0
b c 0
0 d 0

1
CA ; �~c3 �

p
~! �
0
B@

0
�

0

1
CA : (22)

This linear Langevin equation is interpreted according to the Stratonovich
convention and leads to the following Fokker-Planck equation (25,26) for the
distribution function W (�; p�;  ):

@W

@s
= �

3X
j=1

@

@xj
[Dj �W ] +

3X
i;j=1

@2

@xi@xj
[Dij �W ] ; (23)

where

Dj �
3X

k=1

Ajk � xk ; Dij � ~!

2
� �ij � �i2 (i; j = 1; 2; 3) : (24)

So the Fokker-Planck equation has the �nal form :

@W

@s
= �c �W � a � p� � @W

@�
� [b � � + c � p�] � @W

@p�
� d � p� � @W

@ 

+
~!

2
� @

2W

@p�2
: (25)

With such Fokker-Planck formulations for this and more complicated mod-
els we can carry out perfectly standard detailed studies of spin decoherence
under all possible conditions just by looking for the possible solutions for
W (�; p�;  ) compatible with the initial conditions. In the present model, by
starting with a delta function distribution in �, p� and  , corresponding to a
pointlike beam and a tight bundle of spin projections, the distribution func-
tion (i.e. the transition probability in this case ) evolves so that the covariance
matrix for the �, p� and  is given by (25,26) :

�
3(s) = 2 �

Z s

0

ds0 M(s0) � D �MT (s0) ; (26)

where M is the real valued transfer matrix solving :

M 0 = A �M ; M (s = 0) = 1 : (27)

After some initial damped oscillatory behaviour, in a few synchrotron damping
times the elements of �3 reach the asymptotic values :

�3(1) =

0
B@

�2� 0 d

a
� �2�

0 �2p� 0
d

a
� �2� 0 d2

a2
� �2�

1
CA : (28)
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This result follows exactly from the stochastic di�erential equation 19. Thus
the � and p� distributions acquire the equilibrium spreads given earlier. This
is to be expected since in these approximations the spin has no in
uence on the
orbital motion. However, and this is perhaps unexpected, equation 28 shows
that the  distribution also reaches equilibrium (on the same time scale) with
a value � (1) = jd

a
j ��� = ��p�=Qs : apart from an initial decoherence lasting

a few dampimg times there is no continual decoherence in this model with
these starting conditions! But of course, if � (1) were very large the spins
would be e�ectively decoherent.

In the HERA electron ring at 27.5 GeV, � is about 62:5, �p� is about 10
�3

and Qs is about 0:06. So the asymptotic � is about 60 degrees corresponding
to a polarization of about 58%. However, several extra points should be noted.
Firstly,  is correlated to �, not as one might have expected, to the energy
deviation p�. Secondly, the last column of A is empty and the �3(s) is singular
for all s. For a linear problem such as this, one expects that the asymptoticW
is a generalized gaussian in �, p� and  . But, the coe�cients of the quadratic
form in the exponent of this gaussian clearly cannot be obtained by inverting
�3(s). So another method suitable for problems of this type must be used.
Then one �nds that the asymptotic W function is not unique but reaches an
equilibrium form depending on the initial conditions. For example to discuss
decoherence according to the picture in the Introduction, one begins with
gaussian distributions in � and p� with their equilibrium asymptotic variances
and with a delta function distribution �( ) in  . Then the asymptotic  
distribution has a variance of 2(��p�=Qs) which is about 120 degrees! However,
so far we have allowed the azimuthal angle  to cover the range �1 whereas
the physical range is ��. If this latter is taken into account the asymptotic
polarization in this case is about 34% 2. This calculation and further aspects
of the problem will be treated in another article. The asymptotic variances of
� and p� are unique.

According to our model, in machines running at one or two GeV, the asymp-
totic � is just a few degrees. So within this simple linear model there is no
complete decoherence in such machines. Conventional wisdom suggests in-
stead that � should increase as

p
s. This is not the case as we have just seen.

However, in the simpler 2 x 2 pure di�usion problem for p� and  without
synchrotron oscillations the

p
s growth does emerge after a few damping times

and for HERA quickly results in complete decoherence. So the synchrotron
motion is an essential ingredient in our calculation. Our model is much too
simple to represent a realistic storage ring but it has enabled us to reconsider
the calculation in reference 18.

Elaboration of the model shows that if the \smoothness" is abandoned

2This e�ect was also taken into account when calculating the 58% mentioned above.

7



there can be decoherence but that the rate is sensitive to the details 3. Indeed,
so far we have neglected the detailed structure of the ring and misalignments
which tilt the equilibrium polarization axis and generate vertical dispersion.
Horizontal and vertical betatron motion have been neglected as have the non-
linear spin tune spread and the e�ects of sextupoles. In the presence of these
e�ects SITROS (27) predicts complete decoherence (i.e. zero polarization) in
about �fteen damping times at HERA.

This shows that our simple smooth linear model was completely inade-
quate. Also, it appears initially that it would be impossible to obtain spin

ip at HERA unless the 
ip could be achieved within a few damping times by
applying a strong enough rf �eld. But in considering decoherence in isolation,
a key component, the rf �eld itself, was ignored and partial spin 
ip is some-
times seen at LEP with small rf �elds. Even if decoherence calculations of this
type are relevant at HERA and LEP energies it is likely that the extracted
decoherence time is very sensitive to the details included.
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