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Abstract
Beam-driven plasma wakefield acceleration (PWFA) is considered as one of the most
promising novel acceleration technologies capable of drastically shrinking the footprints
of high-energy particle colliders. There are however several challenges that have to be ad-
dressed before PWFA can be deployed for high-energy, high-efficiency, high beam bright-
ness particle colliders. Transverse instabilities due to interactions between particle beams
and accelerating structures are known to restrict the maximum beam charge in conven-
tional accelerators, and are considered as one of the most important challenges for PWFA
accelerators. This thesis focuses on transverse instabilities induced by transverse wake-
fields and the corresponding implications for multi-TeV PWFA e+e− and γγ colliders.

First, a simplified model describing the PWFA transverse instability in the form of a wake
function parameterised only with an effective cavity aperture radius a is benchmarked
against PIC (Particle In Cell) simulations. This wake function implies a 1/a4-scaling
of the transverse wakefields, which indicates transverse intra-beam wakefields typically
several orders of magnitude larger than in conventional acceleration structures. Further-
more, the wakefield formalism is utilised to perform a parameter study for a 1.5TeV
plasma wakefield accelerator, where the constraint on drive beam to main beam effi-
ciency imposed by transverse wakefields is taken into account. Ultimately, an electron
accelerator parameter set with promising properties in terms of energy spread, stability
and luminosity per power is derived, and is the basis for subsequent PWFA e+e− and γγ
linear collider parameter studies.

The thesis then presents a beam-beam parameter study for a TeV-scale PWFA e+e−
linear collider using GUINEA-PIG (Generator of Unwanted Interactions for Numerical
Experiment Analysis - Program Interfaced to GEANT) simulations based on the derived
accelerator parameters. The beam-beam parameter study shows that the total luminosity
follows the 1/

√
σz-scaling predicted by beamstrahlung theory, where σz is the rms beam

length, which is advantageous for PWFA, as short beam lengths are preferred. We also
derive a parameter set for a 3TeV PWFA linear collider with main beam parameters
optimised for luminosity and luminosity spread introduced by beamstrahlung. Due to
the considerable challenges associated with positron acceleration in plasma, this thesis
also compares the performance for scenarios with reduced positron beam charge at 3TeV
and 14TeV with CLIC (Compact Linear Collider) parameters.

We also perform a similar beam-beam parameter study for a 3TeV γγ collider again
using the derived PWFA main beam parameters. The parameter study involved using
electron beams with short beam lengths in the range 2 µm ≤ σz ≤ 10 µm to scatter the
laser photons. The results for such short examined electron beam lengths indicate that
at 3TeV, the total luminosity, as well as the sharpness of the luminosity spectrum for a
γγ collider are independent of the beam length of the electron beams, given an adequate
final focus system and that the hourglass effect is avoided. The total luminosity can
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consequently be maximised by minimising the horizontal and vertical beta functions β∗
x,y

at the interaction point.

Furthermore, we perform background studies for both collider types using GUINEA-
PIG. Simulation results indicate that our proposed parameter set for a 3TeV PWFA γγ
collider is able to deliver a total luminosity significantly higher than a γγ collider based
on CLIC parameters, but gives rise to more background particles. The examined γγ
collider parameter sets are able to deliver significantly larger total luminosities than the
e+e− collider parameter sets considered in this thesis, but result in comparatively larger
luminosity spreads. The examined parameter sets for 3TeV and 14TeV e+e− colliders
offer interesting improvements over the CLIC parameter set in terms of luminosity and
beam power, but also suffer from strong backgrounds.
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CHAPTER 1

Introduction

1.1 High-energy physics – Quo vadis?

“As a layman I would now say I think we have it.” With these words, CERN’s Director-
General Rolf-Dieter Heuer proclaimed the discovery of a Higgs-like particle on 4 July
2012, which was the result of a 40-year search. In March 2013, the ATLAS and CMS
collaborations announced that the newly discovered particle indeed has properties con-
sistent with those of the Higgs boson predicted by the Standard Model of particle physics
[1, 2].

The Standard Model of particle physics is currently our best understanding of fundamen-
tal particles and their interactions. Developed in the early 1970s, it describes fundamental
particles in the language of quantum field theory, where both matter particles (fermions)
and force carriers (bosons) are manifestations of fundamental quantum fields. The mat-
ter particles are divided into leptons and quarks, while the force carrying bosons mediate
three of the four fundamental forces, along with the Higgs boson that gives particles their
masses through the Brout-Englert-Higgs mechanism [3, 4, 5, 6].

The Standard Model has been remarkably successful in providing predictions that have
later been confirmed experimentally. One of the most notable demonstrations is being
able to predict the electron magnetic moment with an accuracy of one part in a trillion.
Furthermore, in addition to the Higgs boson, the Standard Model predicted the existence
of particles such the gluon, top and charm quarks and the W and Z bosons, all of which
have been later experimentally confirmed.

Experiments at high energies are often required for the discovery of new particles, which

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: The fundamental particles of the Standard Model of Particles physics. The outer
shell consists of the 12 fermions divided into quarks and leptons, followed by the four force
carriers in the middle shell mediating the electromagnetic force (photon), the strong nuclear
force (gluon) and the weak nuclear force (W and Z bosons). Lastly, the Higgs boson in the
middle is the mediator for the Brout-Englert-Higgs field which gives particles their masses.
Source: Quanta magazine.

is why particle colliders have proven to be invaluable tools for subatomic physics. Notable
discoveries using particle colliders include the antiproton at the Berkeley Bevatron in 1955
[7], the muon-neutrino at the Alternating Gradient Synchrotron at Brookhaven National
Laboratory (BNL) in 1962 [8], the charm quark at BNL and Stanford Linear Accelerator
Center (SLAC) in 1974 [9, 10], the gluon at Deutsches Elektronen-Synchrotron (DESY)
in 1979 [11, 12], the W and Z bosons at CERN’s Super Proton Synchrotron in 1983
[13, 14] and most recently, the discovery of the Higgs boson in 2012 at CERN’s Large
Hadron Collider (LHC) [15, 16].

However, despite all the triumphs of the Standard Model, it clearly does not offer a
complete description of fundamental interactions, as many questions have yet to be an-
swered. First of all, since there are no accepted or verified quantum theory of gravity,
the Standard Model does not include gravitation. Secondly, it does not propose any dark
matter candidates possessing properties deduced from observational cosmology. Other
challenges include the matter-antimatter asymmetry, non-zero neutrino masses and the
accelerating expansion rate of the Universe.

2



1.2. PARTICLE ACCELERATORS AND COLLIDERS 3

Figure 1.2: Key particle discoveries timeline. Source: ATLAS Experiment © 2019 CERN.

The LHC is currently the most powerful particle collider in the world capable of reaching
an energy level of 14TeV. As a hadron collider, it is designed to be a discovery machine
capable of sweeping over a large range of energy levels, but as it so far has failed to
discover any particle heavier than the top quark (179GeV), attention is being gradually
shifted to precision machines based on leptons.

1.2 Particle accelerators and colliders

Considering past discoveries, particle accelerators and colliders are arguably the most
important workhorses of high-energy physics, and their development is closely related
to the quest for gaining understanding of the fundamental building blocks of the Uni-
verse. As outlined by the Livingston plot in figure 1.3, progression in high-energy physics
requires ever more powerful particle colliders able to collide fundamental particles at pro-
gressively higher energies, as well as other performance improvements. This has resulted
in particle accelerators and colliders becoming increasingly sophisticated machines with
correspondingly large footprints and price tags. Nevertheless, the basic principles for
acceleration are trivial and can promptly provide some insights into the development of
particle accelerators.

1.2.1 Acceleration principles
Amongst the four fundamental forces of nature, only the electromagnetic force is suitable
for particle acceleration, as gravity is too weak, the range of the strong nuclear force is
too small and the weak nuclear force has a weak relative strength and short range.

3



4 CHAPTER 1. INTRODUCTION

Figure 1.3: Livingston plot showing the centre of mass energy of several particle colliders
vs. time. Energies for hadron colliders have been adjusted to account for quark and gluon
constituents. Adapted from reference [17].

A particle with charge q and velocity v propagating in a region with electric field E and
magnetic field B is affected by the Lorentz force

F = q(E + v ×B). (1.1)

As the term v ×B is always perpendicular to the direction of motion, only the electric
field perform work on the particle. The change in energy for a particle moving from r1
to r2 is hence

∆E= q

r2ˆ

r1

E · dr. (1.2)

Even though magnetic fields cannot be used to increase the energy of the particles, they
are used to steer, bend and focus charged particle beams.

1.2.2 High-energy particles in particle colliders
The need for high-energy particles in particle physics experiments originates from two
requirements. The first requirement is related to resolution. When examining subatomic
structures, a probe that is able to resolve the structure is required, which means that one
needs a wave whose wavelength λ is small compared to the size of the structure.

4



1.2. PARTICLE ACCELERATORS AND COLLIDERS 5

The relation between a particle’s energy E and its wavelength is given by de Broglie
wavelength

λ =
hc

E
, (1.3)

where h is Planck’s constant and c is the speed of light in vacuum. Relevant structures
typically have sizes < 10−15m, which requires probe particles with energy > 1GeV to
resolve the structure.

The second requirement is given by the threshold energy for particle production. Let
pµ1 = (E1/c,p1) denote the four-momentum of an accelerated particle with rest mass m1,
pµ2 = (E2/c,p2) be the four-momentum of a target particle with rest mass m2 and M
be the total rest mass of all particles after collision. For a fixed target experiment,
accelerated particles are collided into a target at rest, so that the inner product of the
total four-momentum P µ = pµ1 + pµ2 before collision is

P µPµ = (m2
1 +m2

2)c
2 + 2E1m2. (1.4)

Conservation of four-momentum leads to the threshold energy

E1 =
(M2 −m2

1 −m2
2)c

2

2m2

. (1.5)

Alternatively, particle 2 can also be accelerated and collided head on with particle 1. The
inner product of the total four-momentum is now

P µPµ = (m2
1 +m2

2)c
2 + 2

(
E1E2

c2
+ p1p2

)
. (1.6)

For comparison, this shows that the centre of mass energy scales as ECM =
√
s ∼

√
4E1E2

for head on collisionsi, while it scales as ECM ∼
√
2E1m2 for a fixed target experiment.

For E1 = E2 = E, p2 = −p1 and p1, p2 � m1,m2, the threshold energy for head on colli-
sions is

E=
c2

2

√
M2 −m2

1 −m2
2, (1.7)

which scales more favourably with M than in the case of a fixed target experiment.
Colliding particle beams however requires the colliding beams to be focused to small
sizes in order to maximise chances of collision.

1.2.3 Luminosity
In addition to high-energy particles, a particle collider also needs to ensure high collision
rates. In a particle collider, the production rate of particles through a physical process

ip1, p2 � m1,m2

5



6 CHAPTER 1. INTRODUCTION

with interaction cross-section σp is given by the relation

dNp

dt
= σpL, (1.8)

where L is the luminosityii. The luminosity is a measure of the collider’s ability to
force beam particles through a given area in a given time, and is hence dependent on
the accelerator parameters. Processes studied in modern particle physics experiments
typically have very small interaction cross-sections, so that high luminosities are required
in order to complete measurements within a reasonable time frame.

For collisions of two pulses containing Nb equally spaced Gaussian beams arriving at the
interaction point (IP) with repetition frequency fr, the luminosity is given by

L =
N1N2

4πσ∗
xσ

∗
y

Nbfr, (1.9)

where σ∗
x, σ∗

y are the horizontal and vertical beam sizes at the IP and N1, N2 are the
number of particles in the colliding beams. Luminosity given by equation (1.9) is often
termed the geometric luminosity.

In an e+e− linear collider, the particles of each beam are focused by the other beam,
which leads to a pinch-effect that increases luminosity. This enhancement is measured
by the enhancement factor HD, and the total luminosity is given by

L = HD
N1N2

4πσ∗
xσ

∗
y

Nbfr. (1.10)

HD is typically in the range 1–2 and is generally calculated using simulation codes such
as CAIN [18] or GUINEA-PIG [19].

This can also be written in the form

L = HD
N2

4πσxσy

Pb

Eb

, (1.11)

where Pb = NbfrN1Eb is the beam power per beam, Eb is the beam energy and N1 is
chosen to be the largest number of N1, N2 in this thesis.

1.2.4 Circular collider
Beams in a circular collider are steered to follow a circular orbit using dipole magnets and
accelerated every time they pass through the accelerating section of the collider. After
the desired energy is reached, colliding beams that have been circulating in different beam

iiWe will later refer to this quantity as the total luminosity, but the term instantaneous luminosity is
also common.

6



1.2. PARTICLE ACCELERATORS AND COLLIDERS 7

pipes in the opposite direction with respect to each other are brought into collision at
the IP of the colliders, where the collisions are studied using particle detectors. Particles
that did not collide, are recycled, where they will again be brought into collision at the
next cycle. This is repeated until the beam intensities have been reduced below a certain
level.

The footprint of a circular collider can be estimated based on the field strength B of the
dipole magnets and the momentum p of the particles with the relation

R =
p

qB
, (1.12)

where R is the bending radius. The currently largest circular collider in the world is
CERN’s LHC, with a circumference of 27 km. The LHC is capable of accelerating and
colliding protons at 6.5TeV and ions at 2.5TeV per nucleon. Each fill consists of roughly
1014 protons grouped into beams that circulate for 1–35 hours, during which there are
about 600 million collisions per second.

1.2.5 Linear collider
In principle, one can set up a static electric field between two electrodes and use it to ac-
celerate charged particles between the electrodes. However, due to electric breakdowns,
the maximum energy gain is often limited to a few MeV. Instead, modern linear ac-
celerators use radio frequency (RF) cavities to accelerate particles over long distances.
This idea was first proposed by Gustav Ising in 1925 and first successfully tested by Rolf
Widerøe in 1928.

Ising’s concept was to use a series of metallic drift tubes with varying lengths separated by
gaps (illustrated in figure 1.4) and connected with alternating polarities to a RF supply.
The RF supply generates a high-frequency alternating voltage in the gaps that accelerate
the charged particles for half a RF period, after which the particles will arrive in a drift
tube before the direction of RF electric field is reversed. During the decelerating half
period, the particles will be inside a drift tube, which acts as a Faraday cage to shield
the particles from unwanted external fields. When the particles enter the next gap, they
will again undergo acceleration, and this can in principle be repeated to reach arbitrarily
high energies.

However, such an acceleration and shielding process clearly requires the separation be-
tween the gaps to be matched to the energy of the particles and the RF frequency, which
requires the separation lengths to increase as the particles gain energy in the gaps. This
may thus lead to large structures and high costs. Since the major part of a linear collider
consists of linear accelerators, its footprint can be estimated by the relation

L =
ECM

qEz

, (1.13)

7



8 CHAPTER 1. INTRODUCTION

where Ez is the average accelerating electric field, i.e. the accelerating gradient. The
footprint can thus be reduced by using a larger accelerating gradient, but the metallic
acceleration cavities in conventional accelerators are limited by electric breakdown.

In a linear collider, beams after collision cannot be reused for subsequent collisions,
which sets a more stringent requirement on luminosity and efficiency for linear colliders
compared to circular colliders.

Figure 1.4: Sketch of the Widerøe linear accelerator. Source: [20].

The largest constructed linear collider in the world was SLAC’s 3 km Stanford Linear
Collider (SLC) capable of colliding electrons and positrons at 90GeV centre of mass
energy. It ceased operation in 1989 and has been re-purposed and divided into 3 separate
1 km linear accelerators.

1.2.6 Future collider considerations
Since hadrons consist of quarks and gluons with unknown energy and momentum distri-
butions, the achievable precision is limited. Leptons, on the other hand, are elementary
particles with well-defined initial states and can achieve higher precision measurements.
Therefore, there has been a gradual shift in focus from high-energy discovery machines
based on hadrons to precision machines based on lepton collisions.

An electron-positron collider can produce Higgs bosons in a clean environment that en-
ables model-independent determination of the absolute Higgs couplings to fermions and
to gauge bosons through the Higgsstrahlung and WW-fusion processes [21, 22]. The focus
on lepton colliders is reflected in the European Strategy for Particle Physics, which has
identified an electron-positron Higgs factory as the highest priority next collider [23, 24].

A circular collider can in principle be used to collide leptons, examples of which include
VEPP II–IV, PETRA, SuperKEKB, Beijing Electron-Positron Collider II (BEPC II) and
LHC’s predecessor Large Electron Positron collider (LEP). However, due to synchrotron
radiation, a circular lepton collider is limited in collision energy. For a charged particle
with charge e, rest mass m and energy E circularly accelerated in an orbit with bending

8
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radius R, the radiated power via synchrotron radiation is [25]

P =
e2

6πε0c7
E4

m4R2
. (1.14)

Since this scales as 1/m4, electrons/positrons lose energy at a rate that is 1.13 · 1013 times
faster than protons. At high energies, the energy loss of electrons/positrons cannot be
compensated in a feasible way, which is why linear accelerators are needed for accelerating
light particles such as electrons and positrons in order to reach high energies in the
multi-TeV scale.

Current proposed linear colliders include the 20–50 km International Linear Collider (ILC)
[26] and the 11–50 km Compact Linear Collider (CLIC) [27], which are designed to col-
lide electrons and positrons at 0.25–1TeV and 0.38–3TeV respectively. In addition,
several circular colliders have also been proposed. This includes the 100 km Future Cir-
cular Collider (FCC) [28, 29] aiming to reach 100TeV of proton collision energy and the
100 km Circular Electron Positron Collider (CEPC) [30] designed to collide electrons and
positrons at 240GeV centre of mass energy.

A common trait for these colliders is their titanic sizes, with estimated costs of tens of
billions of euros. In view of the ever-increasing size and cost, it is clear that innovation
in acceleration technology is crucial, if the field of high-energy physics is to survive in the
long term. After all, acceleration technology has largely remained unchanged for several
decades.

1.3 Novel acceleration techniques
Conventional acceleration technology is based on metallic cavities resonantly driven by
RF electromagnetic fields. L- and S-band cavities are driven by 1–4GHz RF-fields and
can sustain electric fields up to 20MV/m before breakdown occurs. CLIC uses 12GHz
X-band cavities able to sustain acceleration gradients up to 100MV/m. This is currently
the highest achievable acceleration gradient using conventional acceleration technology
[31], and would still require tens of kilometres of acceleration structure to reach TeV
energy levels. As indicated by the 3TeV CLIC layout in figure 1.5, the main linacs
(linear accelerator) occupy a major part of the collider length.

Thus, novel acceleration technologies able to reach higher gradients are crucial for short-
ening the length of the main linacs and hence also reducing the footprint of the linear
collider. The Advanced LinEar collider study GROup (ALEGRO) was formed at the
initiative of the International Committee for Future Accelerators (ICFA) to cultivate
research on advanced accelerator concepts for application in high-energy physics. ALE-
GRO is an international community of researchers from universities and accelerator lab-
oratoriesiii whose long-term goal is to design the Advanced Linear International Collider

iiiCERN, DESY, INFN-LNF (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati),

9



10 CHAPTER 1. INTRODUCTION

Figure 1.5: CLIC layout at
√
s = 3TeV. Source: reference [27].

(ALIC), an e+/e−/γ collider with up to 30TeV in the centre of mass energy.

The main purpose of advanced accelerator research is to study acceleration mechanisms
that can provide space- and energy efficient acceleration using large acceleration gradients,
while maintaining a high beam quality. Currently, the main acceleration media being
studied are dielectric materials and plasma, due to their ability to sustain electric fields
on the order of GV/m or higher. Two drivers commonly used to excite accelerating electric
fields in these media are high-powered lasers and high-current charged particle beams,
which gives four combinations between driver and medium. Of the four options, beam-
driven plasma wakefield acceleration (PWFA) is able to sustain larger accelerating fields
than the dielectric options and is more power efficient than laser wakefield accelerationiv

[34], and is the main focus of this thesis.

The 3TeV CLIC parameter set [27] is the main parameter set used to benchmark the
performance of PWFA parameters that we will derive in this thesis. Relevant parameters
from the 3TeV CLIC parameter set are summarised in table 1.1.

1.3.1 Beam-driven plasma wakefield acceleration
In PWFA, an ultra-relativistic electron drive beam sent into an initially uniform plasma
will repel plasma electrons away from the beam axis. After the drive beam has passed
by, the attracting forces from the background ions will pull the plasma electrons back

PSI (Paul Scherrer Institut), ANL, LBNL (Lawrence Berkeley National Laboratory), BNL and SLAC.
ivIn e.g. CLIC, particle beams can be produced and accelerated with a wallplug-to-beam power

efficiency of around 60% [32], while the wallplug-efficiency of high-powered laser systems are typically
less than 0.1% [33].

10
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Parameter Symbol Unit Value
Centre of mass energy

√
s TeV 3.0

Acceleration gradient Ez MV/m 100
Total linac length Llinac km 42.16
Particle number per beam N 109 3.72
Number of beams per pulse Nb 312
Repetition rate fr Hz 50
rms beam length σz µm 44
Horizontal beta function at IP β∗

x mm 6.9
Vertical beta function at IP β∗

y mm 0.068
Normalised horizontal emittance γεx mmmrad 0.66
Normalised vertical emittance γεy mmmrad 0.02
Wall plug to main beam efficiency ηtot % 7
Beam power per beam Pb MW 14
Luminosity L 1038 m−2 s−1 5.9
Peak luminosity L0.01 1038 m−2 s−1 2

Table 1.1: 3TeV CLIC parameters.

towards the axis and set up a density oscillation. This oscillation is known as the plasma
wake, and a trailing beam placed at the correct phase of the wake can extract energy
from the wake and be accelerated. Such a two-beam plasma acceleration scheme was first
demonstrated at Argonne National Laboratory (ANL) in 1988 [35].

Assuming electric fields of the form E ∼ E0 exp(−iωpz/c) and applying Gauss’s law, we
obtain an estimate for the typical field strength

E0 =
mecωp

e
=

√
mec2n0

ε0
, (1.15)

where ωp =
√
e2n0/(ε0me) is the plasma angular frequency and n0 is the plasma particle

number density. For a typical plasma density of n0 = 1016 cm−3, we obtain an electric field
of 10GV/m. Proof of concept PWFA experiments have demonstrated large accelerating
gradients of more than 50GV/m [36] and an energy transfer efficiency that can exceed
30% [37], but space- and energy efficient acceleration of beams with collider-grade beam
quality have yet to be demonstrated.

In order to be able to compete with conventional RF technology, novel plasma acceleration
technology must be able to provide similar beam quality and efficiency, while offering a
larger acceleration gradient. One of the main detrimental effects leading to beam quality
deterioration is transverse wakefields, which may lead to transverse instabilities. Such
transverse instabilities can restrict the maximum beam charge that can be accelerated and
thus also constrain the efficiency of the accelerator. Hence, transverse instabilities and

11
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their mitigation mechanisms are considered by the community to be amongst the most
important challenges to be addressed towards developing a high-energy, high-efficiency,
high beam brightness PWFA electron accelerator [32, 38]. Other challenges such as
positron acceleration, coupling between plasma stages, preservation of emittance, high
repetition rate plasma acceleration and energy deposition in the plasma sources have been
identified in a number of papers, workshops and strategy sessions [39, 40, 41, 42, 43, 44].

This thesis applies formalism used in conventional linear collider studies to model the
transverse wakefields and transverse instabilities in PWFA to perform parameter studies
on the efficiency constrain. The wakefield model is also benchmarked against particle-in-
cell simulations.

1.3.2 Plasma sources in PWFA facilities

Plasma source development for PWFA applications is currently focusing on density uni-
formity, density reproducibility, beam energy spread minimisation, high repetition rate
(kHz-level) and long operation time (months). Common plasma sources used in current
PWFA experiments include alkali-metal vapour sources, gas cells, electrical discharges
and capillary discharges [43, 44].

Plasma sources used by some current and planned PWFA facilities are summarised in
table 1.2.

Facility Plasma species Source type Density [cm−3] Length [cm]
AWAKE Rb Vapour 1014–1015 1000
CLEAR Ar, He Capillary 1016–1018 5–20
FACET-II Li Pipe oven 1015–1018 10–100
FLASHForward H, N Gas cell 1015–1018 1–30
SPARCLAB H Capillary 1016–1018 3
EuPRAXIA H Capillary 1016–1018 > 30
CLARA He Capillary 1016–1018 10–30
MAX IV H Gas cell 1015–1018 10–50

Table 1.2: Plasma source overview for some current and planned PWFA facilities.

Relative density uniformity of less than 1% has been demonstrated in metal vapour
sources in e.g. AWAKE [45] and rms energy spread of a few percent has been measured
in reference [37, 46]. Issues such as high repetition rates, long operation times and
dissipation of energy not extracted by the main beam are still considered major challenges
in plasma source development.

12
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1.3.3 The positron challenge

While conventional RF accelerators can accelerate both electrons and positrons by simply
using appropriate phases of the RF field, the plasma response can be charge asymmetric
due to the large difference in plasma electron mass and plasma ion mass. This leads to
serious challenges in achieving simultaneous acceleration and focusing of positron beams,
especially in the non-linear regime, where the accelerating structures consist of plasma ion
bubbles with expelled plasma electrons concentrated in thin sheaths around the bubbles
(see chapter 2). The non-linear regime has many ideal properties for electron acceleration,
but the regions that are simultaneously accelerating and focusing for positrons are much
smaller than the corresponding regions for electrons. In addition, the accelerating field
has a very steep slope in these regions, and both the focusing and accelerating fields vary
transversely, which can lead to large energy spreads and beam quality degradation.

Several alternative schemes have been proposed to address the challenge of positron
acceleration in plasma. Examples include:

• The linear/quasi-linear regime of PWFA (see chapter 2) has a charge symmetric
response, but has non-linear focusing fields that lead to beam quality degradation.

• Doughnut-shaped drivers can be used to shape the wakefields in the non-linear
regime to obtain linear focusing fields and strong positron accelerating fields [47].
The generation and preservation of such beams are however challenging,

• Hollow channel plasmas makes use of plasma tubes where there is no plasma in
the centre, and thus avoid positron being defocused by background ions. This can
provide large accelerating fields, but no focusing fields, which makes this accelera-
tion scheme very susceptible to transverse instabilities. In addition, in contrast to
acceleration using uniform plasma, the symmetry axis is not defined by the drive
beam, which introduces additional misalignment and instability challenges. Proof
of concept experiments at FACET have demonstrated production of hollow channel
plasmas and acceleration of a trailing positron beam using hollow channel plasma
[48, 49], but transverse wakefields about 10000 times stronger than those found in
CLIC have also been reported [50].

• Recent analytical and numerical studies [51, 52] have demonstrated that using a
plasma column with column radius smaller than the maximum ion bubble radius
can create a long high-density electron filament at the axis return point. This can
enlarge the region that is simultaneous accelerating and focusing for positrons, and
the studies have demonstrated that quasi-matched positron beams with tailored
current profiles can be combined with this scheme to accelerate high-charge beams
with sub-percent relative energy spread and percentage level emittance growth.
The feasibility of this scheme remains to be demonstrated experimentally.

13



14 CHAPTER 1. INTRODUCTION

Currently, high-gradient, high-efficiency and high beam quality positron acceleration in
plasma remain considerably more challenging than electron acceleration.

1.3.4 The photon collider alternative

Photon colliders, or γγ colliders, were first proposed in the 1980s as potential extensions to
VLEPP and SLC [53, 54]. In the 1990s, γγ colliders were suggested as potential add-ons
for several high-energy linear colliders such as SLAC’s NLC, KEK’s JLC and DESY’s
TESLA, and then saw a decline in interest as ICFA in 2009 rejected the proposal for
building a 180GeV γγ collider as an initial step towards a full-scale ILC [55]. A turning
point came in 2012 following the discovery of the Higgs boson with the relatively low
mass of 125GeV. γγ collisions can produce Higgs bosons through the process γγ → H,
which has a cross section that is comparable to the that of the e+e− → ZH process. The
required energy for a photon beam is however only 63GeV, compared to 120GeV for an
electron beam [55].

γ

γ

H

W,t

(a) γγ → H.

e+

e−

H

Z

Z

(b) e+e− → ZH.

Figure 1.6: Feynman diagrams for common Higgs production processes in γγ and e+e− colli-
sions.

As the path for stable and efficient positron acceleration in plasma remains unclear, fur-
ther attention has been given to photon colliders as PWFA γγ colliders could potentially
be a viable alternative to PWFA e+e− colliders. Photon colliders circumvent the positron
acceleration challenge and use high-energy electron beams accelerated by PWFA to in-
crease the energies of laser photons through inverse Compton scattering in a conversion
region located shortly upstream of the IP. Back-scattered photons will be boosted to
energies close to the electron energies, and are collided against an opposite photon beam
in the IP.

At high energies a γγ collider has a comparable discovery potential as a e+e− collider
for processes involving charged products [56], with cross sections for pairs of scalars,
fermions or vector particles all being significantly larger in γγ collisions compared to
e+e− collisions, as seen in figure 1.7. A γγ collider is however unable to perform model-
independent measurements of the Higgs couplings [57], so the results should ideally be
combined with those of a sub-TeV e+e− collider, for instance ILC at 250 GeV or CLIC
at 380 GeV [58].

14
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Figure 1.7: Cross sections for pair production of charged scalars (S), fermions (F) and W
bosons in γγ and e+e− collisions [57].

1.4 Thesis outline
This thesis first presents a review of beam dynamics and wakefield theory for the linear
and non-linear regimes of PWFA ending with introducing a transverse wake function
for the non-linear regime. This wake function is then benchmarked against QuickPIC
simulations and incorporated into a simplified quasi-static model used to describe the
transverse dynamics of trailing beams in the PWFA non-linear regime in chapter 3. By
combining the simplified model with QuickPIC simulations, we perform a parameter scan
for a 1.5TeV PWFA electron accelerator taking the effects of beam loading, energy spread
and transverse instabilities into account to derive a parameter set with reasonable energy
spread, stability and efficiency. This parameter set then forms the basis for subsequent
PWFA e+e− and γγ collider parameter studies.

After deriving a parameter set able to provide a satisfying acceleration process, the the-
sis proceeds to optimise main beam parameters at the IP. Optimistically assuming that
positrons can be accelerated in a similar manner, the derived PWFA electron accelerator
parameter set is adopted in chapter 4 to perform a beam-beam parameter study (using
GUINEA-PIG simulations) for a multi-TeV PWFA e+e− collider in order to optimise the
main beam parameters at the IP with respect to luminosity and luminosity spread intro-
duced by beam-beam effects. Furthermore, chapter 4 also presents background studies
and examines asymmetric collision scenarios with reduced numbers of positrons at 3TeV
and 14TeV.

In chapter 5 we perform a beam-beam parameter study for a 3TeV γγ collider with
electron beams accelerated by a 1.5TeV PWFA electron accelerator. The study is again
performed with GUINEA-PIG simulations with electron beam parameters based on the
parameter set derived in chapter 3 to optimise beam parameters in the IP.

Lastly, we provide a summary of the thesis in chapter 6, as well as suggestions for future
directions.
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CHAPTER 2

Beam Dynamics and PWFA Theory

In this chapter, we will give a brief introduction to relevant concepts in beam dynamics
and plasma wakefield theory, ending with introducing a transverse wake function for
the non-linear PWFA regime. This transverse wake function is benchmarked against
simulations and used to model transverse beam dynamics in chapter 3.

2.1 Beam dynamics
Particle motions are described with respect to a nominal trajectory, also referred to as the
orbit, given by the design of the accelerator. In circular accelerators, the orbit can have a
complicated shape consisting of several sections of curves connected by straight sections
with various lengths. The orbit in linear accelerators can simply be a straight line. We
introduce a Cartesian co-moving coordinate system K = (x, y, ξ), whose origin follows a
reference particle moving along the orbit. With the ξ-axis pointing along the direction of
beam propagation, the co-moving coordinate ξ describes a particle’s longitudinal position
in a beam, while x and y describe transverse motions with respect to the orbit. See figure
2.1 for an illustration.

2.1.1 Relativistic space charge cancellation
We will here show that the space charge forces are rapidly suppressed as the particle
beam approaches the ultra-relativistic limit. For a cylindrical beam with constant charge
density ρ, the radial electric field inside the beam is

Er =
ρ

2ε0
r, (2.1)

where ε0 is the permittivity in vacuum.

17
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x

x′

y

ξ

Orbit

Figure 2.1: Schematics of the co-moving coordinate system used to describe particle motions,
whose origin follows the design orbit of the accelerator.

Using Ampere’s law, we obtain the azimuthal magnetic field

Bϕ =
ρv

2ε0c2
r, (2.2)

where v is the velocity of the beam.

The transverse force acting on a particle with charge q inside the beam is then given by
the Lorentz force

Fr = q(Er − vBϕ) =
qρr

2ε0

(
1− v2

c2

)
=
qρr

2ε0

1

γ2
, (2.3)

which is suppressed by 1/γ2, where γ is the Lorentz factor.

Since we are mainly considering electron beams, which can be accelerated rapidly, we
assume that γ � 1, so that the entire beam can be considered as an ensemble of non-
interacting charged particles.

2.1.2 Single particle transverse dynamics
Even though the space charge forces of particles inside an ultra-relativistic beam can be
neglected, the trajectories of individual particles within a beam may still diverge due to
inherent angular divergence, which is affected by external electromagnetic fields.

In order to bring transversely offset particles back to the axis and focus the beam, it is
common to use a magnetic quadrupole, which can provide a transverse force proportional
to the transverse offset. A magnetic quadrupole provides the magnetic field

B = gyx̂+ gxŷ, (2.4)

where g = ∂B/∂r is the radial magnetic field gradient.

18
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A charged particle with charge q, velocity v and offset x, y is focused by the force

F = qvg(−xx̂+ yŷ) (2.5)

in the x-direction. Since a magnetic quadrupole can only provide a focusing force in one
direction, quadrupole magnets that alternate between focusing in the x- and y-direction
are placed after each other to achieve net focusing.

In order to derive the equation of transverse motion, we apply Newton’s second law in
the x-direction. For a particle with mass m, this yields

Fx =
dpx
dt

= γmẍ. (2.6)

It is however more practical to express quantities as functions of the propagation distance
s instead of time. The transverse force can thus be written as

Fx = γmv2x′′, (2.7)

where a prime denotes differentiation with respect to s.

Assuming that only the magnetic force is acting on the particle, we arrive at Hill’s equa-
tion.

x′′(s) + k(s)x(s) = 0, (2.8)
where k(s) = qg(s)/γmv. This equation has the solution

x(s) =
√
εxβx(s) cos(µ(s)), (2.9)

and describes a particle undergoing a betatron oscillation with phase

µ(s) =

sˆ

0

ds′

βx(s′)
(2.10)

and amplitude
√
εxβx(s) that depend on the focusing structure along s. The constant

εx is known as the single particle emittance, while the function βx(s) is termed the beta
function.

2.1.3 Emittance and Twiss parameters
The derivative of the trajectory x(s) can be written as

x′(s) = −
√

εx
βx(s)

[αx(s) cos(µ(s)) + sin(µ(s))] , (2.11)

where we have introduced the optical function

αx(s) = −β
′
x(s)

2
(2.12)
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20 CHAPTER 2. BEAM DYNAMICS AND PWFA THEORY

that represents the x–x′ correlation of the beam and contains information about the
divergence of the beam.

The phase µ can be eliminated using simple substitution and the identity sin2 θ+cos2 θ = 1
to describe the particle motion in the x–x′ trace space plane. This is given by

γx(s)x
2(s) + 2αx(s)x(s)x

′(s) + βx(s)x
′2(s) = εx, (2.13)

where
γx(s) =

1 + α2
x(s)

βx(s)
, (2.14)

and must not be confused with the Lorentz factor γ. The functions αx, βx and γx are
known as the Twiss parameters.

Equation (2.13) describes an ellipse in the x–x′-plane with area πε, and is illustrated
in figure 2.2. Liouville’s theorem states that the density of particles in phase space
is constant with respect to time if the particles obey Hamilton’s equations, i.e. when
considering a conservative system. This condition is satisfied in a linear magnetic lattice
in the non-accelerating parts of an accelerator, and implies that the area of the phase
space ellipse and hence that the emittance is invariant of particle motion. The shape and
position of the phase space ellipse evolve according to the beta function as the particle
moves through the non-accelerating parts of the orbit, but the area remains constant, as
illustrated in figure 2.3.

x

x′

√
βxεx

√
γxεx

πεx

Slope: −αx/βx

Figure 2.2: The phase space ellipse in the
x–x′-plane. Particles on the ellipse have the
same emittance, but are in different phases.

s1

x

x′ x

x′

x

x′

s2

s3

Figure 2.3: Evolution of phase space ellipse
in non-accelerating parts of the orbit.

When non-conservative forces such as a RF-field perform work on the particles, the
emittance, also termed geometrical emittance, will shrink due to the increase of the
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particle momentum. Assuming a high energy beam where pz � px, the angle that the
particle’s trajectory forms with the longitudinal axis can be written as

x′ =
∂x

∂s
≈ px
pz

≈ px
γmv

. (2.15)

In order to recover an invariant quantity, the geometrical emittance is multiplied by γv/c
to obtain the normalised emittance

εN =
v

c
γε, (2.16)

which is conserved under acceleration.

2.1.4 Beam description
We have so far only considered single particle dynamics, but each particle moves with
different amplitudes corresponding to different trace space ellipses. We must therefore
specify what we mean by the average emittance of a particle beam.

A particle beam at a given time can be described as a collection of points in a six-
dimensional phase space spanned by the spatial positions (x, y, ξ) and momenta (px, py, pz).
It is however more convenient to describe the beam in 6D trace space (also referred to
as phase space) where (x, y, ξ, px, py, pz) → (x, y, ξ, x′, y′, E), where E is the energy of a
particle. The density function Ψ = Ψ(x, y, z, x′, y′, E) describes the distribution of parti-
cles in trace space, so that the number of particles found in a given region of trace space
is found by integrating over a that region of trace space

dN = Ψ(q, q′)d3qd3q′, (2.17)

and we can use the statistical moments of the density function to characterise the beam.
For simplicity, we will only consider the x–x′-plane so that Ψ = Ψ(x, x′). The mean value
is given by the first order moment

〈x〉 =
ˆ
xΨ(x, x′) dxdx′ (2.18)

〈x′〉 =
ˆ
x′Ψ(x, x′) dxdx′, (2.19)

while the variances and correlation are calculated using the second order moments:

〈x2〉 =
ˆ
(x− 〈x〉)2Ψ(x, x′) dxdx′ (2.20)

〈x′2〉 =
ˆ
(x′ − 〈x′〉)2Ψ(x, x′) dxdx′ (2.21)

〈xx′〉 = 〈x′x〉 =
ˆ
(x− 〈x〉)(x′ − 〈x′〉)Ψ(x, x′) dxdx′. (2.22)
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For Gaussian beams, we can obtain the following relations between the second order
moments and the Twiss parameters:

〈x2〉 = βxεrms (2.23)
〈x′2〉 = γxεrms (2.24)
〈xx′〉 = −αxεrms, (2.25)

where εrms is the rms emittance, i.e. the emittance for particles located one standard
deviation σx away from the beam axis. We can thus define

σx(s) =
√
εrmsβx(s) (2.26)

as the (horizontal) transverse beam size.

Since we can describe the second order moments of a beam of particles using the Twiss
parameters, this implies that Gaussian beams are uniquely defined by the Twiss param-
eters. Furthermore, even though individual particles may have different single particle
emittances and phases, they all have the same Twiss parameters. We can thus express
the single particle emittance in terms of the Twiss parameters as

εx(x, x
′) = γxx

2 + 2αxxx
′ + βxx

′2. (2.27)

As a particle propagates through the accelerator, the particle traverses an ellipse with
constant area, where its angular location on the ellipse is given by the phase µ. Assuming
that all the particles are uniformly distributed in phase, the corresponding distribution
in the x–x′-plane is given by the bi-Gaussian

Ψ(x, x′) =
1

2π
√
|Σ|

exp

(
−1

2
XTΣ−1X

)
, (2.28)

where X = (x, x′)T and the sigma beam matrix is given by

Σ =

(
〈x2〉 〈xx′〉
〈x′x〉 〈x′2〉

)
= εrms

(
βx −αx

−αx γx

)
. (2.29)

The rms emittance can be expressed with the determinant of the sigma matrix as

εrms =
√
|Σ| =

√
〈x2〉〈x′2〉 − 〈xx′〉2, (2.30)

so that the density function can also be written as

Ψ(x, x′) =
1

2πεrms

exp

(
−1

2

ε(x, x′)

εrms

)
. (2.31)
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2.1.5 Beam size matching
The beta function is given by the equation

1

2
βx(s)β

′′
x(s)−

1

4
β′2
x (s) + k(s)β2

x(s) = 1, (2.32)

which is obtained by inserting the solution for x(s) into Hill’s equation. An alternative
way for describing the evolution of the transverse beam size is by using the envelope
equation

σ′′
x(s) + k(s)σx(s) =

ε2x
σ3
x(s)

. (2.33)

In order to preserve the normalised emittance of a beam, the beam size has to be matched
to the magnetic lattice structurei. A matched beam has little to no variation in its spot
size, so by requiring σ′′

x = 0, we obtain

σmat
x =

(
ε2x
k

)1/4

, (2.34)

or alternatively,

βmat
x =

1√
k
=

√
γmv

qg
. (2.35)

So far, we have only considered magnetic lattice structures that are linear in x and y.
When contributions from non-linear fields are included, particles in a mismatched beam
with a nonzero energy spread will not rotate in phase space at the same rate, resulting
in dilution in phase space, and thus also emittance growth.

2.1.6 Wakefields
A driving charge with a m-th multipole moment propagating in a vacuum chamber with
a periodic structure that is not perfectly smooth or perfectly conducting can excite a
wake electromagnetic field behind it [59] that will affect trailing charges. The electric
fields in this case are not perpendicular to the chamber walls, and the magnetic fields are
not parallel to the chamber walls, so that the wavefront moving with the leading charge
can be scattered against the chamber walls and affect trailing charges.

The longitudinal component of the short-range wakefield in metallic cavities is usually
dominated by the m = 0 mode, and can provide acceleration for trailing particles placed
at appropriate distances behind the driving particle. Transverse (short-range) wakefields
are usually dominated by the m = 1 dipole fields that behave similarly to the bending

iIn a linear magnetic lattice there is emittance preservation also for a mismatched beam, if there is
no energy spread.
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24 CHAPTER 2. BEAM DYNAMICS AND PWFA THEORY

effects seen in dipole magnets, and can deflect trailing particles and cause instabilities, as
explained in chapter 3. For a beam with longitudinal beam head position ξH, longitudinal
position distribution λ(ξ) and particle charge q, the wakefields acting on a beam slice with
mean transverse offset X located at longitudinal position ξ after an elapsed propagation
distance s can be written in the formii [59, 60]

Wz(ξ) = q

ξˆ

ξH

Wz(ξ
′ − ξ)λ(ξ′) dξ′ (2.36)

W⊥(ξ, s) = q

ξˆ

ξH

W⊥(ξ
′ − ξ)λ(ξ′)X(ξ′, s) dξ′. (2.37)

where Wz(ξ
′ − ξ) and W⊥(ξ

′ − ξ) are the longitudinal and transverse wake functions,
respectively. The wake functions describe the shock response of the vacuum chamber
environment to a δ-function beam which carries an m-th moment, and resemble Green’s
functions.

Transverse wakefields can lead to transverse instabilities known to limit the amount
of charge that can be transported in an accelerator and hence constrain the efficiency.
The wakefield formalism has been used in the parameter study of CLIC to study such a
limitation [27]. Since for small perturbations, the hose instability (see chapter 3) in plasma
is similar to the transverse instabilities found in conventional acceleration cavitiesiii, we
will subsequently make the ansatz that similar formalisms can be applied for plasma
acceleration in the non-linear regime. The model based on the wakefield formalism is
benchmarked against particle-in-cell simulations in chapter 3.

The beam slices and coordinates are illustrated in figure 2.4.

2.2 Linear plasma wakefield theory
In beam-driven plasma wakefield acceleration (PWFA), an ultra-relativistic drive beam
is used to “plough through” a plasma to excite a plasma wake by transferring its energy
to the plasma. As the drive beam propagates through the plasma, the space charge field
from the beam will expel some of the plasma electrons from the propagation axis and
create a trailing region with a lower plasma electron density. In most cases, the heavy
plasma ions will remain stationary during relevant time scales, and will thus exert an
attracting force on the expelled plasma electrons. Thus, after the electron beam has
passed, the plasma electrons will be attracted back onto the propagation axis and set up
a density oscillation known as the plasma wake. This process is illustrated in figure 2.5.

iiNote that different definitions are commonly used in literature. W is sometimes referred to as kick,
while W is also referred to as the wake.

iiiWith the main difference being the accelerating structure can be transversely displaced by the beam
fields, whereas the accelerating structure in conventional acceleration cavities are rigid.
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Figure 2.4: Illustration of beam slices and coordinates.

Large electric fields can be created by such plasma wakes, and a trailing witness beam
appropriately placed can thus be accelerated by extracting energy from the wake.

Figure 2.5: An illustration of the linear plasma acceleration process. A low-density ultra-
relativistic electron beam expels part of the plasma electrons from the beam axis to form
plasma ion cavities that can be used to accelerate a trailing electron beam. The yellow arrow
illustrates the decelerating fields for electrons in one of the decelerating regions for electrons, the
blue arrows indicate the accelerating fields for electrons and the green and red arrows highlight
the focusing and defocusing fields for electrons, respectively.

2.2.1 Quasi-static approximation
The lab frame and the co-moving frame are related by the coordinate transformation
(x, y, z, t) → (x, y, ξ, s) with

s = ct (2.38)
ξ = z − ct (2.39)
∂

∂t
=
∂ξ

∂t

∂

∂ξ
+
∂s

∂t

∂

∂s
= −c ∂

∂ξ
+ c

∂

∂s
(2.40)

∂

∂z
=
∂ξ

∂z

∂

∂ξ
+
∂s

∂z

∂

∂s
=

∂

∂ξ
. (2.41)

An ultra-relativistic beam evolves over a much larger time scale compared to the plasma,
which is evident when one compares the plasma wavelength with the betatron wavelength

λβ = 2πβ =
√

2γλp, (2.42)
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which is
√
2γ times larger than the plasma wavelengthiv. The quasi-static approximation,

∂

∂t
≈ c

∂

∂s
for an ultra-relativistic beam, (2.43)

∂

∂t
≈ −c ∂

∂ξ
for a plasma, (2.44)

exploits the fact that a short ultra-relativistic beam and its wake does not evolve signif-
icantly during the time it takes to pass by a plasma particle. This allows the beam and
plasma evolution to be treated with separate scales.

2.2.2 Density perturbation

In the linear regime, the drive beam is only able to excite small density perturbations.
Specifically, we make the following assumptions:

1. The plasma is initially neutral and uniform, with both the electron and ion number
density equal to n0.

2. The ions are much heavier than the plasma electrons, and remain stationary on
relevant time scales.

3. The source is an ultra-relativistic particle beam with v ≈ c and number density
nb � n0. This means that the evolution of the beam distribution in response
to forces generated in the plasma is negligible, and the system can be described
perturbatively.

The evolution of the plasma electron number density n is governed by the continuity
equation

∂n

∂t
+∇ · (nv) = 0, (2.45)

where v is the velocity field.

The forces acting on the electrons are given by

me
∂v

∂t
= −e (E + v ×B) , (2.46)

ivThe derivation of this relation is given later as part of the derivation of equation (3.8).
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and the evolution of the fields is governed by Maxwell’s equations

∇ ·E =
ρ

ε0
(2.47)

∇ ·B = 0 (2.48)

∇×E = −∂B
∂t

(2.49)

∇×B = µ0J + µ0ε0
∂E

∂t
. (2.50)

Equations (2.45)-(2.50) fully describe the evolution of the plasma and the fields, but the
combination of these equations will result in non-linear partial differential equations that
cannot be solved analytically for arbitrary sources. We therefore invoke our assumptions
and express the density as a sum of the initial density and a perturbation δn as

n(r, t) = n0 + δn(r, t). (2.51)

In addition, the plasma velocity v and the fields E and B are also treated as perturba-
tions. Inserting equation (2.51) into (2.45) and (2.46) and keeping only terms that are
first order in the perturbative quantities yields

∂δn

∂t
= −n0∇ · v (2.52)

∂v

∂t
= − e

me

E. (2.53)

By taking a time derivative of equation (2.52) and divergence of (2.53), these equations
can be combined into

∂2δn

∂t2
+ ω2

pδn = −ω2
pnb, (2.54)

where the plasma frequency is given by

ωp =

√
e2n0

ε0me

, (2.55)

and the divergence of E has been eliminated using Gauss’ law

∇ ·E =
e

ε0
(δn+ nb). (2.56)

It is however more convenient to use the co-moving coordinate ξ = z − ct instead of time,
and equation (2.54) written in terms of ξ reads

∂2δn

∂ξ2
+ k2pδn = −k2pnb, (2.57)

where the plasma wave number is given by

kp =

√
e2n0

ε0mec2
. (2.58)
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28 CHAPTER 2. BEAM DYNAMICS AND PWFA THEORY

Equation (2.57) describes a driven harmonic oscillation without a damping term, which
means the plasma is non-dissipative. This is expected since we assumed that the plasma
has zero temperature before interacting with the beam and is a collision-less perfect
conductor.

Green’s functions can be used to solve equation (2.57). The Green’s function for the
operator ∂2ξ + k2p is

G(ξ′ − ξ) =
1

kp
sin(kp(ξ

′ − ξ))Θ(ξ′ − ξ), (2.59)

where Θ(ξ) is the Heaviside step function. For a cylinder symmetric drive beam, the
solution can then be written as

δn(r, ξ) = −kp

∞̂

ξ

nb(r, ξ
′) sin(kp(ξ

′ − ξ)) dξ′. (2.60)

A comparison of the plasma density oscillation in the linear regime with QuickPIC sim-
ulation results is shown in figure 2.6.
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Figure 2.6: Linear plasma density oscillation calculated with QuickPIC simulation compared
with the linear model.

2.2.3 Wakefields
We will now derive expressions for the electric fields due to the interaction between beam
and plasma by using a similar approach as [61]. Taking the curl of Faraday’s law, the
time derivative of Ampère-Maxwell’s law and using the vector identity

∇×∇× F = ∇(∇ · F )−∇2F , (2.61)
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we obtain
∇(∇ ·E)−∇2E = −µ0

(
∂J

∂t
+ ε0

∂2E

∂t2

)
. (2.62)

Applying Gauss’ law to the first term and rearranging yields(
∇2 − 1

c2
∂2

∂t2

)
E = µ0

∂J

∂t
+

1

ε0
∇ρ. (2.63)

The sources can be divided into components associated with the drive beam and plasma
such that ρ = −e(nb + n0 + δn) and J = Jb + Jp = −enbcẑ − en0v. Furthermore, equa-
tion (2.53) can be used to obtain

∂Jp

∂t
= −en0

∂v

∂t
= ε0ω

2
pE, (2.64)

and finally also (
∇2 − 1

c2
∂2

∂t2
−
ω2
p

c2

)
E = − e

cε0

∂nb

∂t
ẑ − e

ε0
∇(nb + δn). (2.65)

Transforming to the co-moving coordinate system, we obtain

(∇2
⊥ − k2p)E = − e

ε0
(∇⊥nb +∇δn), (2.66)

where ∇⊥ is the transverse gradient operator. The longitudinal wakefield Wz that is
used for particle acceleration, is given by the longitudinal component of equation (2.66)
in linear wakefield theory since the Lorentz force has no longitudinal component in first
order. Assuming cylindrical symmetry, the solution for the longitudinal component is
[61]

Wz(r, ξ) = Ez(r, ξ) =
e

ε0

∞̂

0

∂δn(r′, ξ)

∂ξ
G0(r, r

′)r′dr′, (2.67)

where

Gn(r, r
′) = In(kpr

′)Kn(kpr)Θ(r − r′) + In(kpr)Kn(kpr
′)Θ(r′ − r), (2.68)

with In and Kn denoting n-th order modified Bessel functions of the first and second
kind, respectively.

By taking the curl of equation (2.65) and using Faraday’s law, we obtain(
∇2 − 1

c2
∂2

∂t2
−
ω2
p

c2

)
B =

e

cε0
∇× nbẑ, (2.69)
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which in co-moving cylindrical coordinate reads

(∇2
⊥ − k2p)B =

e

cε0
∇× nbẑ. (2.70)

We now define the transverse wakefield as

W⊥ = E⊥ + (v ×B)⊥. (2.71)

Combining equation (2.66) and (2.70) gives

(∇2
⊥ − k2p)W⊥ = − e

ε0
∇⊥δn, (2.72)

which in the case of cylinder symmetry has the solution

Wr(r, ξ) = − e

ε0

∞̂

0

∂δn(r′, ξ)

∂r′
G1(r, r

′)r′dr′. (2.73)

for the radial component Wr = Er − cBϕ [61].

From equation (2.73) one can see the fundamental limitation of the linear regime. Since
the transverse forces are proportional to the transverse wakefield, and Wr contains non-
linear defocusing terms, the main beam beam size σr would have to be very small
(kpσr � 1) in order to be affected only by the linear focusing part of the wakefield.

2.3 Non-linear plasma wakefield theory
Due to the fundamental limitation of the linear regime, non-linear plasma wakefield accel-
eration, also referred to as the blowout regime, is considered to be a much more reliable
option. In the blowout regime, the drive beam has a density nDB � n0, and creates
non-linear plasma density perturbations. The plasma electrons are completely expelled
from a region around the propagation axis, forming a thin sheath around an unshielded
positive ion column. The much heavier plasma ions will still remain stationary during rel-
evant time scales, and attract the plasma electrons back towards the axis, where they will
overshoot and thus create a plasma density oscillation with plasma cavities completely
devoid of plasma electrons. The blowout regime is illustrated in figure 2.7.

This section considers the theory for the blowout regime and examines its properties
for electron acceleration. We will start the analysis using the Hamiltonian for a plasma
electron to obtain a constant of motion, and then largely follow the derivations of [62]
in SI units. The constant of motion is then combined with Maxwell’s equations in the
Lorenz gauge to derive an equation of motion for plasma electrons forming the electron
sheath around the ion column. Lastly, expressions for the wakefields are presented, which
will be used to model transverse beam dynamics in chapter 3.
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Figure 2.7: An illustration of the non-linear plasma acceleration scheme. A high-density ultra-
relativistic electron beam expels all the plasma electrons from a region close to the beam axis to
form plasma ion cavities that can be used to accelerate a trailing electron beam. Only positive
plasma ions are left in the plasma ion cavities. The yellow arrow illustrates the decelerating
fields for electrons in one of the decelerating regions for electrons, the blue arrows indicate
the accelerating fields for electrons and the green and red arrows highlight the focusing and
defocusing fields for electrons, respectively.

2.3.1 Hamiltonian mechanics and constant of motion
In canonical coordinates, the Poisson bracket for two functions f(q, P, t) and g(q, P, t) is
defined as

{f, g} =
∑
i

(
∂f

∂qi

∂g

∂Pi

− ∂f

∂Pi

∂g

∂qi

)
. (2.74)

Let f(q, P, t) be a function of the canonical coordinates q, P and time t. The total time
derivative is then given by

df

dt
=

∑
i

(
∂f

∂qi
q̇i +

∂f

∂Pi

Ṗi

)
+
∂f

∂t
(2.75)

=
∑
i

(
∂f

∂qi

∂H

∂Pi

+
∂f

∂Pi

∂H

∂qi

)
+
∂f

∂t
(2.76)

= {f,H}+ ∂f

∂t
, (2.77)

where we in the second line used Hamilton’s equations

q̇i =
∂H

∂Pi

, Ṗi = −∂H
∂qi

. (2.78)

We assume that the Hamiltonian depends on z and t through the co-moving coordinate
ξ. It follows that

∂H

∂t
= −c∂H

∂ξ
= cṖz, (2.79)

and from equation (2.77) we have dH/dt = ∂H/∂t, which leads to the constant of motion

d

dt
(H − cPz) = 0. (2.80)
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The Hamiltonian for a plasma electron is

H = γmec
2 − eφ, (2.81)

where φ is the scalar electric potential, and the canonical momentum is given by

P = p− eA, (2.82)

where p = p⊥ + pzẑ is the electron’s momentum and A is the vector potential.

Before interacting with the beam, the plasma electron is at rest. Thus, we set the
constant of motion equal to the electron’s rest energy and insert the expressions for the
Hamiltonian and the canonical momentum. This yields

γmec
2 − eψ − cpz = mec

2, (2.83)

where we have introduced the pseudo-potential

ψ = φ− cAz. (2.84)

The constant of motion can also be rearranged into

1− vz
c

=
1

γ

(
1 +

eψ

mec2

)
, (2.85)

which is more convenient for later derivations.

By combining the constant of motion and

γ =

√
1 +

p2⊥ + p2z
(mec)2

, (2.86)

it can be shown that

γ =
1

2(1 + eψ/(mec2))

[
1 +

(
p⊥
mec

)2

+

(
1 +

eψ

mec2

)2
]

(2.87)

pz =
mec

2(1 + eψ/(mec2))

[
1 +

(
p⊥
mec

)2

−
(
1 +

eψ

mec2

)2
]
, (2.88)

which shows that once the transverse momentum p⊥ and the pseudo-potential ψ are
solved, γ and pz are also known.
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2.3.2 Equation of motion for a plasma electron
The forces acting on a plasma electron is given by Lorentz’s force equation

dp

dt
= −e(E + v ×B). (2.89)

Using the quasi-static approximation and the constant of motion, the total time derivative
can be written as

d

dt
≈ ∂

∂t
+

∂

∂ξ

dξ

dt
≈ (vz − c)

∂

∂ξ
= − c

γ

(
1 +

eψ

mec2

)
∂

∂ξ
. (2.90)

It follows that
∂p⊥

∂ξ
=

eγ

c(1 + eψ/(mec2))
(E⊥ + (v ×B)⊥). (2.91)

In order to eliminate E⊥ and B⊥, we now use Maxwell’s equation in the Lorenz gauge

∇ ·A+
1

c2
∂φ

∂t
= 0, (2.92)

which can be written as (
∇2 − 1

c2
∂2

∂t2

)
φ = − ρ

ε0
(2.93)(

∇2 − 1

c2
∂2

∂t2

)
A = −µ0J . (2.94)

Again by transforming to the co-moving frame, Maxwell’s equations can be written as

∇2
⊥φ = − ρ

ε0
(2.95)

∇2
⊥A = −µ0J , (2.96)

and can also be combined into a Poisson’s equation for ψ

∇2
⊥ψ =

1

ε0

(
1

c
Jz − ρ

)
. (2.97)

Assuming cylinder symmetry, we can write

E⊥ + (v ×B)⊥ = (Er − vzBϕ)r̂ =

(
−∂φ
∂r

+ (c− vz)
∂Ar

∂ξ
+ vz

∂Az

∂r

)
r̂. (2.98)

In order to substitute for the terms in equation (2.98), we solve equation (2.95) and (2.96)
for σr � r ≤ rb, where σr is the transverse size of the beam and rb = rb(ξ) is the plasma
bubble radius at ξ. This yields

∂φ

∂r
=

e

ε0

(
λ

r
− 1

2
n0r

)
(2.99)

∂Az

∂r
=

eλ

ε0cr
, (2.100)
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where λ(ξ) =
´ r
0
nb(r

′, ξ)r′dr′, and nb is the number density of the beam. In order to
substitute for ∂ξAr, we will first solve equation (2.97). By assuming cylinder symmetry
and using cylinder coordinates, it can be written as

1

r

∂

∂r

(
r
∂ψ

∂r

)
=

1

ε0

(
1

c
Jze + ene − en0

)
, (2.101)

where Jze is the plasma electron axial current density, ne is the plasma electron density and
contributions from the ultra-relativistic beam to Jz/c− ρ have been cancelled out. For
σr � r ≤ rb, only the contribution from the unshielded ion column remains, so equation
(2.101) can be directly integrated to obtain

ψ(r, ξ) = ψ0(ξ)−
en0

4ε0
r2, (2.102)

with ψ0(ξ) = ψ(r = 0, ξ) to be determined later. Lastly, the gauge condition can also be
written as

∇⊥ ·A⊥ =
1

c

∂ψ

∂ξ
, (2.103)

which then leads to Ar = r/(2c)dξψ0 and

∂Ar

∂ξ
=

r

2c

d2ψ0

dξ2
. (2.104)

Substituting equation (2.99), (2.100) and (2.104) into (2.98) leads to

Er − vzBϕ =
en0

2ε0
r −

(
1− vz

c

) e

ε0

λ

r
+
(
1− vz

c

) r
2

d2ψ0

dξ2
, (2.105)

and invoking equation (2.85) yields

Er − vzBϕ =
en0

2ε0
r −

(
1 +

eψ

mec2

)
e

γε0

λ

r
+

(
1 +

eψ

mec2

)
r

2γ

d2ψ0

dξ2
. (2.106)

The radial momentum of a plasma electron can be written as

pr = γmevr = γme
dr

dt
= −mec

(
1 +

eψ

mec2

)
∂r

∂ξ
, (2.107)

so that the equation of motion for a plasma electron following the innermost trajectory
r = rb(ξ), which defines the inner boundary of the bubble, is

mec
2 ∂

∂ξ

[(
1 +

eψ

mec2

)
drb
dξ

]
= −e

2n0

2ε0

γ

1 + eψ/(mec2)
rb +

e2

ε0

λ

rb
− e

2

d2ψ0

dξ2
rb. (2.108)

34



2.3. NON-LINEAR PLASMA WAKEFIELD THEORY 35

By eliminating γ, we can obtain an equation of motion fully specified by ψ. Inserting
equation (2.107) into (2.87), we obtain an expression for γ dependant only on ψ and rb:

γ =
1

2(1 + eψ/(mec2))

[
1 +

(
1 +

eψ

mec2

)2(
drb
dξ

)2

+

(
1 +

eψ

mec2

)2
]
. (2.109)

This enables the trajectory of the innermost plasma electrons to be fully specified by
ψ(rb(ξ), ξ) through

mec
2 ∂

∂ξ

[(
1 +

eψ

mec2

)
drb
dξ

]
= −e

2n0

4ε0
rb

[
1

(1 + eψ/(mec2))2
+

(
drb
dξ

)2

+ 1

]

+
e2

ε0

λ

rb
− e

2

d2ψ0

dξ2
rb.

(2.110)

ψ0 remains to be specified in order to obtain a closed equation of motion. Reference [62]
reported that the results are very insensitive to the ρ− Jz/c profile, and chose a simplified
profile such that

ρ− 1

c
Jz =


en0 0 < r ≤ rb
−en0n∆ rb < r < rb +∆
0 rb +∆ < r

, (2.111)

where
n∆(ξ) =

r2b(ξ)

(rb(ξ) + ∆)2 − r2b(ξ)
(2.112)

and ∆ = ∆s +∆L is the thickness of the plasma electron sheath, as outlined in figure
2.8.

Now we invert equation (2.101) and set ψ(r, ξ) = 0 for r → ∞ to obtain

ψ0(ξ) =
1

ε0

∞̂

0

1

r

rˆ

0

(
ρ− 1

c
Jz

)
r′dr′dr, (2.113)

and by applying the simplified profile, we obtain

ψ0(ξ) =
en0

4ε0
κ(ξ)r2b(ξ), (2.114)

where
κ =

(1 + ∆/rb)
2 ln(1 + ∆/rb)

2

(1 + ∆/rb)2 − 1
. (2.115)

In the ultra-relativistic limit, ∆ � rb so that κ→ 1 except at the back of the bubble. In
this limit, equation (2.110) reduces to

rb
d2rb
dξ2

+ 2

(
drb
dξ

)2

+ 1 =
4λ

n0r2b
, (2.116)

which is often referred to as Lu’s equation.

35



36 CHAPTER 2. BEAM DYNAMICS AND PWFA THEORY

Figure 2.8: (a) Electron density with bubble radius rb(ξ). (b) ρ− Jz/c profile. The figures
are adapted from reference [62].

2.3.3 Wakefields
The electric field is given by

E = −∇φ− ∂A

∂t
. (2.117)

Assuming ∂sEz � ∂ξEz, i.e. that the longitudinal component does not evolve significantly
over the propagation distance s, the longitudinal component can be written as

Ez = −∂φ
∂ξ

+ c
∂Az

∂ξ
= −∂ψ

∂ξ
. (2.118)

In the ultra-relativistic limit,

ψ(r, ξ) =
en0

4ε0
(r2b(ξ)− r2). (2.119)

We then obtain an expression for the longitudinal wakefield from an ultra-relativistic
drive beam in the non-linear regime by substituting equation (2.119) into (2.118):

Wz = Ez = −en0

2ε0
rb
drb
dξ

. (2.120)
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Assuming cylinder symmetry, the transverse wakefield from an ultra-relativistic drive
beam is given by

WrD = Er − cBϕ (2.121)

= −∂φ
∂r

+ c
∂Az

∂r
(2.122)

= −∂ψ
∂r

(2.123)

=
en0

2ε0
r, (2.124)

which acts as a linear focusing force for electrons. This shows that the non-linear regime
is ideal for electron acceleration, as Wz is independent of r, WrD provides linear focusing
for electrons and is independent of ξ.

However, we have so far only considered beams that are aligned and centered at the
plasma bubble axis. In the case of a transversely misaligned main beam, the total trans-
verse wakefield consists of the drive beam transverse wakefield and the main beam intra-
beam wakefield Wr, which is excited by the beam head and similar to a dipole wake field
in RF cavities.

We now assume that the transverse forces can be expressed using the wake function
formalism [63, 59], which is used for describing the well-known beam breakup instability
[59] in RF accelerators, and will allow for easier comparison with RF accelerators. In
CLIC, single beam transverse wakefield for small distances between a driving particle
located at ξ′ and a witness particle located at ξ is modelled using [32, 60]

Wr(ξ
′ − ξ) =

2

πε0

ξ′ − ξ

a4
Θ(ξ′ − ξ), (2.125)

where a is the accelerating structure iris radius. The structure iris is however not
well-defined for a plasma, but an effective structure iris [64, 65] can be defined by
a = rb(ξ

′) + αk−1
p . Here rb(ξ′) is the plasma bubble radius at the location of the driving

particle, α a numerical coefficient on the order of one, and the plasma skin depth k−1
p

accounts for the penetration depth of the electromagnetic fields. Equation (2.125) along
with the modification a = rb(ξ

′) + αk−1
p has been proposed for the PWFA blowout regime

in reference [65].

Wr(ξ
′ − ξ, α) =

2

πε0

ξ′ − ξ

(rb(ξ′) + αk−1
p )4

Θ(ξ′ − ξ), (2.126)

We adopt this wake function, and use the value α = 0.75, which is the same value used
in reference [65]. A transverse wake function of the form given by equation (2.125) can
in fact be derived from non-linear plasma wakefield theory. This is shown in appendix A.
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The transverse wake intra-beam wakefield acting on a beam slice located at ξ after an
elapsed propagation distance s is given by the convolution integral

Wr(ξ, s) = −e
ξˆ

ξH

Wr(ξ
′ − ξ)λ(ξ′)X(ξ′, s) dξ′ (2.127)

where e is the elementary charge, ξH is the longitudinal position of the beam head, λ(ξ)
is the longitudinal number density of the main beam and X(ξ, s) is the mean transverse
offset of the beam slice located at ξ after an elapsed propagation distance s.
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CHAPTER 3

Transverse Instabilities and
Mitigation

For a transversely offset beam, the intra-beam transverse (dipole) wakefield excited by the
head of the beam will act as a defocusing force and deflect the trailing part of the beam.
This can build up resonantly along the beam and lead to beam breakup (BBU) instability
in high-intensity RF linacs. This phenomenon was observed for the first time by Kelliher
and Beadle in 1960 [66], and later by Panofsky and Bander, who also presented their
theory on BBU instability [67].

A similar phenomenon called hose instability is considered one of the most important
instabilities for intense beam-plasma interactions, and was first described by Whittum
et al. [68]. Like BBU instability, the electron hose instability is usually seeded by a
transverse beam offset. A transversely offset electron beam slice will perturb the plasma
electron blow-out trajectory and displace the ion channel, which responds like a harmonic
oscillator and deflects the subsequent portion of beam. If left unmitigated, the coupling
between beam and plasma will result in amplification of beam slice centroid transverse
displacement during propagation in plasma.

The effect of hose instability and mitigation mechanisms must be taken into account
in the parameter study of a PWFA linear collider. The main difference between BBU
instability in RF cavities and hose instability in plasma is RF cavities being rigid struc-
tures, while ion channels in plasma can be displaced. Thus, for small perturbations, the
hose instability is similar to BBU instabilities. In this chapter, we utilise the wakefield
formalism used in conventional accelerator studies to study the transverse instabilities in
the main beam with a simplified quasi-static model. The simplified quasi-static model
is then combined with QuickPIC to perform a parameter study of a TeV-scale PWFA
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40 CHAPTER 3. TRANSVERSE INSTABILITIES AND MITIGATION

linear accelerator in the non-linear regime, where the restriction on efficiency imposed
by transverse instabilities is taken into account. Part of the findings are also outlined in
reference [69].

3.1 Simplified quasi-static model
The total time derivative can be written as

d

dt
=

∂

∂t
+

dz

dt

∂

∂z
(3.1)

= −c ∂
∂ξ

+ c
∂

∂s
+

dξ

dt

∂

∂ξ
(3.2)

= c
∂

∂s
. (3.3)

Newton’s second law of motion for a beam electron with transverse position X = X(ξ, s)
in the x-direction can thus be written as

Fx =
dpx
dt

= c
∂

∂s

(
γme

dX

dt

)
. (3.4)

For an ultra-relativistic beam electron focused by the background ion force and deflected
by the transverse intra-beam wakefield, the equation reads

∂

∂s

(
γ
∂X

∂s

)
=

Fx

mec2
(3.5)

= − e

mec2
Wr −

e2n0

2ε0mec2
X (3.6)

= − e

mec2
Wr −

1

2
k2pX. (3.7)

∂2

∂s2
X +

1

γ

∂γ

∂s

∂

∂s
X + k2βX = − e

E
Wr, (3.8)

where γ = γ(ξ, s) is the Lorentz factor, kβ = kβ(ξ, s) = 1/β(ξ, s) = kp/
√

2γ(ξ, s) is the
betatron wave number, and E= E(ξ, s) = γ(ξ, s)mec

2 is the electron energy of an electron
located at ξ that has been accelerated by the longitudinal field Ez(ξ) over a distance s.

Furthermore, since the forces depend on the charge to mass ratio, equation (3.8) is also
valid for a beam slice macroparticle with mean transverse offset X(ξ, s). The beam slices
can be considered as rigid point charges with charge −N(ξ)e, where N(ξ) is the number
of particles in a beam slice located at ξ.

The driving term of equation (3.8) is attributed to the transverse wakefields. All beam
slices preceding a reference slice located at ξ contribute to the driving force acting on
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the reference slice through the wakefield Wr. The interaction with the plasma and drive
beam is represented by the wake function and the interaction with the total longitudinal
wakefield Ez(ξ). While rb(ξ) and Ez(ξ) can be estimated using non-linear wakfield theory,
both rb(ξ) and Ez(ξ) were calculated numerically with QuickPIC [70]. Assuming that
rb(ξ) and Ez(ξ) do not change significantly during propagation, these quantities only
need to be calculated once in QuickPIC, and can then be used with equation (2.126),
(2.127) and (3.8) to model transverse beam dynamics inside the plasma ion bubble. Note
that this approach assumes that the transverse wakefields are not large enough to deflect
the beam into the plasma ion bubble boundary during the propagation process.

Note that there are more complicated models for modelling transverse beam dynamics
in PWFA that does not directly utilise the wakefield formalism. One of the earliest
models was formulated by Whittum et al. to describe transverse instabilities through
the coupled transverse displacement of beam centroid and plasma density perturbation
centroid [68]. This was improved upon in reference [71], which accounted for relativistic
sheath electrons, the ξ-dependence of the blowout radius and the beam current. Reference
[72] made further improvements by accounting for the damping/amplification of the beam
centroid oscillations due to relativistic mass gain/loss of beam electrons, in addition to
including the damping effect of the centroid oscillations arising from energy chirp and
sub-percent uncorrelated beam energy spread.

3.1.1 QuickPIC

While the theories outlined in chapter 2 are able to describe beam-plasma interactions
in certain situations, numerical simulations are required in general to study plasma ex-
citation and acceleration processes. In most cases of interest, the excitation process of
wakefields is highly non-linear and results in non-laminar flows. Thus, a particle-based
approach such as particle-in-cell (PIC) codes are required.

In a fully explicit PIC algorithm, all particles are represented by a large collection of
macroparticles whose motions are calculated based on the electromagnetic fields calcu-
lated on a 3D grid of cells covering the simulation domain. The number of macroparticles
must be large enough to suppress fluctuations of the electromagnetic fields on the grid
points caused by the randomness of particle motion.

The calculation cycle in PIC-codes typically follows the steps

1. Weight the charge and current densities onto the grid points by using nearby
macroparticles.

2. Solve Maxwell’s equations to calculate the electromagnetic fields at the grid points.
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42 CHAPTER 3. TRANSVERSE INSTABILITIES AND MITIGATION

3. Calculate the forces acting on the macroparticles by interpolating the electromag-
netic fields to particle positions.

4. Update particle positions and velocities by integrating the equations of motion.

5. Repeat previous steps until end conditions are met.

For most plasma simulations, the grid cell size ∆x has to be small compared to the Debye
length in order to produce meaningful results. In PWFA, a cold plasma is assumed so
that the simulation has to resolve the collisionless skin depth k−1

p = c/ωp. In addition, the
time step ∆t between successive updates must be able to resolve characteristic timescales
for plasma oscillations and satisfy the Courant condition ∆t < ∆x/c (for 1D) to avoid
numerical instabilities. For typical plasma densities n0 ∼ 1016 cm−3, k−1

p ∼ 10 µm, while
a typical simulation domain is on the order of mm−3. This implies a minimum of ∼ 106

grid cells, while it requires ∼ 1013 particle pushes to model a single GeV PWFA stage
[70]. In addition, full PIC-codes can give rise to spurious Cherenkov radiation due to
a non-ideal dispersion relation for electromagnetic waves in a full PIC-code. Thus, full
PIC-codes are not feasible for simulating a full length TeV-scale plasma accelerator.

In order to reduce the computational cost, QuickPIC [70], which is a fully parallelised,
fully relativistic, 3D PIC-code, utilises the quasi-static approximation to treat the evolu-
tion of the beam and plasma wake separately. Under the quasi-static approximation, the
coordinate ξ corresponds to the fast timescale that a short ultra-relativistic beam needs to
pass a plasma particle, and the timescale in which a plasma wake is developed in response
to the beam. s then corresponds to the large timescale associated with the evolution of
the beam. In QuickPIC, the plasma response and wakefields are only updated once the
beam has been propagated and evolved, as illustrated in figure 3.1.

Figure 3.1: Schematics of the update routine of beam and plasma response in QuickPIC. The
figure is adapted from reference [70].
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Using this approximation, QuickPIC has achieved a speed-up of several orders of magni-
tudes, while maintaining a good agreement compared to full PIC-codes such as OSIRIS.
A comparison of radial electric and azimuthal magnetic fields for an electron drive beam
between QuickPIC and Osiris can be seen in figure 3.2. Furthermore, Cherenkov radia-
tion does not develop in codes using the quasi-static approximation, as the quasi-static
approximation does not describe radiation.

Figure 3.2: Comparison of radial electric and azimuthal magnetic fields for an electron drive
beam between QuickPIC and Osiris. The figures are adapted from reference [70].

Due to
√
2γ � 1 in the studied cases, a quasi-static code such as QuickPIC is suitable

for modelling beam-plasma interactions. However, at even higher energies, radiation
phenomena such as betatron radiation may become more significant.

3.1.2 Benchmarking the wakefield model with QuickPIC
In order to satisfy the assumption of non-evolving Ez(ξ) and rb(ξ), we performed all
benchmarking using a set of parameters based on the FACET-II parameters [73], where
the energy of the beams was increased to 100GeV to avoid any significant head erosion
[74] of the drive beam, and hence also avoid significant changes in Ez(ξ) and rb(ξ). σr was
also modified to match the beams to a plasma with density n0 = 4 · 1016 cm−3. Relevant
benchmarking parameters are given in table 3.1.

Equation (2.127) gives the transverse wakefield along the main beam after a propagation
length s, as is illustrated in figure 3.3a-3.3d, where the transverse wakefield calculated
using equation (2.126) and (2.127) is compared against the corresponding fields extracted
from QuickPIC simulations at several values of s. As already mentioned, inside the ion
bubble, the transverse fields acting on the main beam consist of the background ion
focusing and intra-beam wakefields, which are similar to dipole fields. To avoid noise
and to eliminate the contribution from the background ion focusing, the dipole fields
extracted from QuickPIC were measured on axis. The particle number in the beam slices
is given by N(ξ) extracted from QuickPIC, which is also plotted for reference.
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44 CHAPTER 3. TRANSVERSE INSTABILITIES AND MITIGATION

Drive beam Main beam
E0 [GeV] 100 100
Q [nC] −1.6 −0.5
σr [µm] 2.05 2.05
σz [µm] 12.77 6.38

Table 3.1: Modified FACET-II beam parameters used for benchmarking. E0 is the initial
beam energy, Q is the beam charge, σr is the rms transverse beam size and σz is the rms beam
length.
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Figure 3.3: The transverse wakefield calculated using equation (2.126) and (2.127). N(ξ) is
the beam particle number at ξ, and is extracted from QuickPIC simulation results along with
X(ξ, s). The model is compared to corresponding fields extracted from QuickPIC simulations
at several propagation distances s.

In addition, the evolution of the transverse force in s is benchmarked against QuickPIC
simulation results for three beam slices. λ(ξ) and X(ξ) in equation (2.127) are extracted
from QuickPIC simulations, and the transverse force predicted by the convolution inte-
gral is then compared against the corresponding fields extracted from QuickPIC results.
Figure 3.4a-3.4c show the evolution of the transverse wake on beam slices located 0-2 σz
behind the main beam center.
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The transverse wakefield given by equation (2.126) and (2.127) tends to slightly overesti-
mate positive oscillation amplitudes and underestimate negative oscillation amplitudes,
but achieves a good overall agreement with simulations.
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(c) 2σz behind the beam centre.

Figure 3.4: Evolution of the transverse wake field at various positions along the beam. The
fields extracted from QuickPIC are measured on axis.

For comparison, we also considered the wake function from reference [64]

Wr(ξ
′ − ξ) =

2

πε0

ξ′ − ξ

rb(ξ)r3b(ξ
′)
Θ(ξ′ − ξ), (3.9)

where ξ′ and ξ are defined in the same way as in equation (2.126) and rb(ξ′) and rb(ξ) are
the plasma bubble radius at the driving particle and trailing particle’s locations, respec-
tively. The corresponding benchmarking results are displayed in figure 3.5a-3.5d, which
exhibit a significantly larger disagreement with simulations than the results obtained with
Stupakov’s wake function.

3.1.3 Benchmarking the simplified quasi-static model with Quick-
PIC

Equation (2.127) and (3.8) were solved numerically with the quasi-static approximation,
where the main beam is evolved in s, alternating between propagation with frozen trans-
verse forces and interaction with the plasma ion bubble through equation (2.127) and
(2.125), where the transverse forces were updated.

This model was benchmarked against QuickPIC by comparing the mean transverse offset
of several beam slices with initial transverse offset X0. The results are shown in figure
3.6a-3.6e. The simplified model agrees very well with the simulation results both in phase
and amplitude as long as the main assumptions are valid. As expected, the transverse
deflection grows along the beam so that slices towards the beam tail are deflected more
violently as the beam propagates along s, while the wakefield close to the front of the
beam is too weak to perturb the betatron oscillations significantly.
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Figure 3.5: The transverse wakefield calculated using equation (3.9) and (2.127). N(ξ) is
the beam particle number at ξ, and is extracted from QuickPIC simulation results along with
X(ξ, s). The model is compared to corresponding fields extracted from QuickPIC simulations
at several propagation distances s.

This benchmarking also indicates the significant speed-up achieved using the simplified
model. In order to obtain results for the benchmarking shown in figure 3.6a-3.6e, cal-
culations in QuickPIC required ∼ 650CPUhours, while calculations using the simplified
model only required ∼ 80CPU seconds.

3.2 Damping mechanisms

In the design of CLIC [27], beam breakup due to short range wakefields are known to
put a constrain on the maximum beam charge and consequently also limits efficiency and
luminosity. Thus, understanding of the transverse instabilities and relevant mitigation
mechanisms is one of the main components towards obtaining an improved estimate of
the efficiency of a PWFA linear collider. In this section, we will give a brief outline of
some relevant mitigation mechanisms.

46



3.2. DAMPING MECHANISMS 47

0 100 200 300
-1.5

-1

-0.5

0

0.5

1

1.5

(a) 2σz in front of the beam cen-
ter.

0 100 200 300
-1.5

-1

-0.5

0

0.5

1

1.5

(b) One σz in front of the beam
center.

0 100 200 300
-1.5

-1

-0.5

0

0.5

1

1.5

(c) Beam center.

0 100 200 300
-3

-2

-1

0

1

2

3

(d) One σz behind the beam cen-
ter.

0 100 200 300
-5

0

5

(e) 2σz behind the beam center.

Figure 3.6: Comparison of QuickPIC simulations results against simplified model calculations
of the mean transverse position of main beam slices located at various positions.

3.2.1 Adiabatic damping
As the energy of the beam increases, the beam becomes more rigid, and less susceptible
to being kicked transversely by the transverse wakefield. This phenomenon is termed
adiabatic damping, and is outlined in reference [59] for metallic cavities. For simplicity,
we consider a two-particle model where each macroparticle has charge −Ne/2 and are
separated by ∆ξ. In the case of no acceleration, equation (3.8) gives

∂2

∂s2
X2(s) + k2βX2(s) =

Ne2Wr(∆ξ)

2E
X1(s), (3.10)

where Xi is the transverse offset of slice i. The leading macroparticle is not affected by
any transverse wakefield and thus undergoes a free betatron oscillation

X1(s) = X0 cos(kβs), (3.11)

while the trailing macroparticle sees a transverse wakefield generated by the leading
macroparticle. The solution for equation (3.10) is then

X2(s) = X0 cos(kβs) + Y (s)X0 sin(kβs), (3.12)

where the second term describes the resonant response of the trailing particle to the
transverse wakefield, and has an amplitude that grows linearly with s described by the
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dimensionless growth parameter

Y (s) =
Ne2Wr(∆ξ)

4kβγmec2
s. (3.13)

Assuming uniform acceleration rate

γ = γ0

(
1− eEz

γ0mec2
s

)
= γ0(1− gγs) (3.14)

with initial Lorentz factor γ0, the equations of motion for the macroparticles become

∂2

∂u2
X1 +

1

u

∂

∂u
X1 +

(
kβ
gγ

)2

X1 = 0 (3.15)

∂2

∂u2
X2 +

1

u

∂

∂u
X2 +

(
kβ
gγ

)2

X2 =
Ne2Wr(∆ξ)

2γ0mec2g2γu
X1, (3.16)

where we have performed the substitution u = 1− gγs.

In most cases of interest, kβ � gγ
i, and it can be shown [59] that

X1 ≈
X0√
1− gγs

cos(kβs) (3.17)

X2 ≈
X0√
1− gγs

(
cos(kβs)−

Ne2Wr(∆ξ)

4kβγ0mec2gγ
ln(1− gγs) sin(kβs)

)
, (3.18)

with the growth parameter now given by

Y = −Ne2Wr(∆ξ)

4kβγ0mec2gγ
ln
γ(s)

γ0
, (3.19)

which shows that in addition to damping the unperturbed betatron motion with a factor
1/
√

1− gγs, the oscillation amplification compared to the leading particle now grows
logarithmically instead of linearly with s. Note that this expression can also be derived
from equation (3.13) by replacing s/γ with

´ s
0
ds′/γ(s′).

3.2.2 BNS damping
A common mitigation technique for the BBU instability is BNS (Balakin, Novokhatsky
and Smirnov) damping [75], where additional focusing is introduced along a beam in order
to change the betatron frequency of each longitudinal slice of the beam. This will then
mitigate the resonant build-up of transverse oscillations. We consider a slice at ξ with

iFor instance, for Ez = 10GV/m, γ0 = 48924, n0 = 2 · 1016 cm−3 and γ = 5.87 · 106, gγ/kβ = 0.05.
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betatron wave number kβH+∆kβ. For simplicity, we consider a case without acceleration
so that ∂sγ = 0. The driven harmonic oscillation equation (3.8) yields

∂2

∂s2
X(ξ, s) + (kβH +∆kβ)

2X(ξ, s) = − e

E(ξ)
Wr(ξ, s). (3.20)

The first slice does not experience any driving force, and undergoes a betatron oscillation
X(ξH, s) = x0 cos(kβHs). We want the BNS damping to mitigate the resonant build-up,
so that the entire beam undergoes the same betatron oscillation as the first slice. The
main idea of the BNS damping mechanism is to introduce a stronger betatron focusing
strength at the back of the beam in order to compensate the beam breakup mechanism
of the beam head resonantly driving the beam tail. Physically, the stabilisation is due to
the additional external focusing force compensating for the defocusing dipole deflection
force caused by the wake field left behind by the preceding particles.

Under the BNS condition, all slices exhibit the same betatron oscillation. Our desired
solution to equation (3.20) is therefore X(ξ, s) = X(s) = x0 cos(kβHs), which yields

−k2βH + (kβH +∆kβ)
2 =

e2

E
w (3.21)

1

2

(
∆kβ
kβH

)2

+
∆kβ
kβH

=
e2w

2k2βHE
, (3.22)

where

w(ξ) =

ξˆ

ξH

Wr(ξ
′ − ξ)λ(ξ′) dξ′. (3.23)

Assuming ∆kβ/kβH � 1, we obtain the BNS focusing criteria

∆kβ
kβH

(ξ) =
e2w(ξ)

2k2βHE(ξ)
=

e2

2k2βHE(ξ)

ξˆ

ξH

Wr(ξ
′ − ξ)λ(ξ′) dξ′. (3.24)

This additional focusing effectively compensates for the defocusing dipole deflection force
caused by the transverse wakefield left behind by the preceding particles.

In addition to providing BNS damping by using focusing components that changes its
strength as the beam pass by, BNS damping can also be achieved by introducing an
energy spread along the beam in which the tail of the beam gains less energy than the
head. This can be accomplished by placing the beam at an appropriate phase of the
longitudinal wakefield, such that the beam tail is accelerated by a weaker field than the
head.
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In practice, an uncorrelated energy spread along the beam can also have a damping effect.
Furthermore, in addition to adiabatic damping and BNS damping, moderate amount of
ion motion has also been proposed as a damping mechanism for mitigating hose instability
[76, 77], as well as using a tailored plasma density transition before the acceleration stage
[77]. More recent models can be found in reference [71, 72].

3.3 Parameter study using beam loading
Several conceptual parameter sets for a PWFA linear collider have been proposed to
identify the main challenges and base parameters, one example being the Snowmass
parameter set [78, 41]. The PWFA linear collider concept outlined in reference [41]
represents an attempt to propose a reasonable preliminary design that can be used to
identify the critical parameters and necessary R&D to address their feasibility. The design
takes advantage of the extensive studies that has been performed for conventional RF
linear colliders such as ILC and CLIC.

However, in contrast to CLIC, the effect of transverse wakefields on efficiency has so
far not been taken into account in PWFA linear collider parameter studies, even though
Lebedev et al. have studied the relationship between efficiency and instability, and derived
an analytical expression [64]

ηt ≈
η2p

4(1− ηp)
, (3.25)

where ηt is the ratio of the transverse wake deflecting force to the focusing force and ηp is
the power transfer efficiency from a drive to a trailing beam. In deriving this expression,
it was however assumed that both the drive beam and trailing beams have trapezoidal
current profiles, which result in constant longitudinal fields according to beam-loading
theory [79].

In this section, we will conduct a parameter study of the efficiency of a 1.5TeV plasma
wakefield linac using the Snowmass parameter set [78] as a basis. A summary of the
Snowmass parameter set with transformer ratio T = 1 is shown in table 3.2. This study
will take into account transverse wakefields and the damping effect of non-linear energy
spread caused by a loaded longitudinal wakefield, using the approach of a parameter scan
with Gaussian beam profiles.

The range of the parameter scan is 2 · 109 ≤ N ≤ 1010, 160 µm ≤ ∆ξ ≤ 210 µm, while the
range for σz was adjusted for different N in order to localise the minimum energy spread in
the σz–∆ξ plane. For each combination of N , σz and ∆ξ, the main beam parameter scan
only used results from the first time step of QuickPIC simulation as input, where the main
beam was initially transversely offset by X0 = 3.65 µm. From the QuickPIC results, we
extracted Ez(ξ) to accelerate the main beam and calculate the associated energy spread.
Furthermore, rb(ξ) and λ(ξ) were extracted to calculate the transverse wakefield using
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Parameter Symbol Unit Value
Plasma density n0 1016 cm−3 2
Drive beam particle number NDB 109 20
rms drive beam beam length σzDB µm 40
Main beam particle number N 109 10
rms main beam beam length σz µm 20
Beam separation distance ∆ξ µm 187
Matched rms horizontal beam size σx µm 0.69
Matched rms vertical beam size σy µm 0.69
Normalised horizontal emittance γεx mmmrad 2
Normalised vertical emittance γεy mmmrad 2
Initial Lorentz factor γ0 48924
Efficiency η % 50

Table 3.2: Summary of Snowmass T = 1 parameters.

equation (2.126) and (2.127). Equation (3.8) was then solved to model the main beam
transverse dynamics and evolve the transverse wakefield using equation (2.127). In the
parameter study, we made the optimistic assumption that no additional perturbation are
introduced between the acceleration stages, so that all acceleration stages can be merged
together and treated as a single stage.

3.3.1 Evaluation of the Snowmass parameter set
Figure 3.7 compares results from a QuickPIC simulation against the simplified model
using the Snowmass parameter set. The QuickPIC results show that the Snowmass
parameter set produced a highly unstable main beam, and eventually caused the tail of
the main beam to come into contact with the bubble boundary. It can be seen that the
simplified model and QuickPIC were in good agreement until the beam tail penetrated
the plasma at s ≈ 140 cm, as is depicted in figure 3.8, after which the transverse motion
of the beam could not be described by equation (3.8). Such unstable cases are however
irrelevant for this study, as the objective is to find a set of parameters for a stable main
beam, and not to model highly unstable oscillations.

Nonetheless, because of the unstable beam, the Snowmass parameter set has to be mod-
ified in order to achieve stable propagation with high efficiency and low energy spread.
This is done in subsequent sections, where we conduct a parameter study of a 1.5TeV
plasma wakefield accelerator using the Snowmass parameter set as a basis.

3.3.2 Energy spread
By varying the number of particles N , rms beam length σz and the separation distance
∆ξ between drive beam and main beam, the beam loading effect will lead to a loaded Ez
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Figure 3.7: Comparison of QuickPIC simulations results against simplified model calculations
of the mean transverse position of the main beam slice located at the centre of the beam. The
Snowmass parameters were used in this simulation, and resulted in a highly unstable main beam
after the beam tail came into contact with the bubble boundary at s ≈ 140 cm, as seen in figure
3.8. The transverse motion for s > 140 cm can thus not be described with equation (3.8).

Figure 3.8: Electron number density ne per unit initial plasma density n0 and the longitudinal
electric field at s ≈ 140 cm obtained from QuickPIC simulation with Snowmass parameters.
The plasma electron density has been increased by a factor 10 in order to highlight the bubble
boundary.

with different shapes, and hence also a different energy spread. This is demonstrated in
figure 3.9a-3.9i.

Using Ez(ξ) obtained from QuickPIC, we can obtain the energy spread as a function
of propagation distance s if we assume that the longitudinal field Ez remain unchanged
during the entire acceleration process. For a beam with N particles divided into n
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(a) N = 2 · 109, σz = 5 µm, ∆ξ =
200µm.

(b) N = 5 · 109, σz = 5 µm,
∆ξ = 200 µm.

(c) N = 9 · 109, σz = 5 µm, ∆ξ =
200 µm.

(d) N = 5 · 109, σz = 4 µm,
∆ξ = 200 µm.

(e) N = 5 · 109, σz = 7 µm, ∆ξ =
200 µm.

(f) N = 1010, σz = 10 µm, ∆ξ =
200 µm.

(g) N = 8 · 109, σz = 5 µm, ∆ξ =
160µm.

(h) N = 8 · 109, σz = 5 µm,
∆ξ = 190 µm.

(i) N = 8 · 109, σz = 5 µm, ∆ξ =
210 µm.

Figure 3.9: QuickPIC simulations with different combinations of main beam particle number
N , rms beam length σz and separation distance ∆ξ between drive beam and main beam. The
electron density ne is plotted together with the longitudinal field Ez. Beams such as those
shown in figure 3.9b, 3.9d and 3.9e have flattened Ez over large parts of the beam through
beam loading, and have low energy spreads.

longitudinal slices, the weighted average longitudinal field is given by

〈Ez〉 =
1

N

n∑
i=1

NiEzi, (3.26)

where Ni is the number of particles in slice i and Ezi is the longitudinal electric field
experienced by a particle in slice i.
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The energy of an electron in slice i is given by

Ei = −eEzis+ E0i, (3.27)

where E0i is the initial energy. The mean single particle energy is then given by

〈E〉 = 1

N

n∑
i=1

NiEi = −e〈Ez〉s+ 〈E0〉. (3.28)

The variance of energy is

σ2
E =

1

N

n∑
i=1

Ni (Ei − 〈E〉)2 = 1

N

n∑
i=1

Ni (−eEzlis+ e〈Ez〉s+ E0i − 〈E0〉)2 , (3.29)

and for an initially monochromatic beam, E0i = 〈E0〉, this reduces to

σ2
E =

e2s2

N

n∑
i=1

Ni (〈Ez〉 − Ezi)
2 . (3.30)

The relative rms energy spread is given by

σE

〈E〉
=

es

〈E0〉 − e〈Ez〉s

√√√√ 1

N

n∑
i=1

Ni (〈Ez〉 − Ezi)
2. (3.31)

Lastly, we obtain the final energy spread independent of the initial energy by letting
s→ ∞

σE

〈E〉
= − 1

〈Ez〉

√√√√ 1

N

n∑
i=1

Ni (〈Ez〉 − Ezi)
2. (3.32)

Thus, by using equation (3.32), the final energy spread can be extrapolated from the
initial longitudinal field Ez(ξ), assuming that Ez(ξ) and the longitudinal particle number
density λ(ξ) do not change significantly during propagation. By extracting Ez(ξ) from
QuickPIC simulation results using various combinations of main beam particle number
N , rms main beam beam length σz and beam separation distance ∆ξ, we obtained a
series of contour plots for 2 · 109 ≤ N ≤ 1010 that provide an overview over the effect of
N , σz and ∆ξ on the energy spread. These contour plots are shown in figure 3.10a-3.10i.
This overview reveals the region of minimum energy spread in the σz–∆ξ plane for various
charges, which is crucial for the study of accelerator parameters. The distance between
data points in the σz-direction is 1 µm, and 10 µm in the ∆ξ-direction. This applies to
all contour plots in this parameter study.

In the non-linear regime, Gaussian beams often behave similarly to a flat-top beam in
terms of beam-loading [79]. From beam-loading theory [79], a flat-top beam achieves
optimal beam-loading if its longitudinal particle density λ is given by

λ =
n0R

4
b

8r2bH
, (3.33)
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(i) N = 1010.

Figure 3.10: Relative rms energy spread vs. beam separation distance ∆ξ and the rms beam
length σz for main beams with various particle numbers N . The rest of the parameters are from
the Snowmass parameter set.

where Rb is the maximum bubble radius and rbH is the bubble radius at the head of the
beam. Since rbH increases with decreasing ∆ξ, equation (3.33) implies that λ has to be
reduced when the main beam is loaded close to the drive beam. If N is held constant,
this requires that σz must be reduced in order to maintain optimal beam-loading and
hence also minimal energy spread. This approximation seems to only hold partially for
small N . E.g. for N = 4 · 109 we see that to stay on the same level of energy spread
when ∆ξ is reduced, one can increase σz. This however only holds for up to σz = 4 µm,
after which σz has to be increased in order to maintain the same level of energy spread.
Similar patterns can be seen in other sub figures in figure 3.10 for 2 · 109 ≤ N ≤ 6 · 109.
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3.3.3 Normalised amplitude
We now transform x and x′ into normalised coordinates xN and x′N using the transfor-
mation (

xN(s)
x′N(s)

)
=

√
γ(s)

βx(s)εNx

(
1 0

αx(s) βx(s)

)(
x(s)
x′(s)

)
. (3.34)

By performing the inverse transformation(
x(s)
x′(s)

)
=

√
εNx

γ(s)βx(s)

(
βx(s) 0
−αx(s) 1

)(
xN(s)
x′N(s)

)
(3.35)

and substituting x and x′ into equation (2.13), we obtain

xN + x′N = 1. (3.36)

This shows that the particle trajectory in phase space in normalised coordinates is a circle
with radius 1 when considering a conservative system. Thus, the phase space trajectory
for an unperturbed betatron motion in normalised coordinates is also a circle with radius
1.

For our cases of interest, αxx� βxx
′. Thus, for a beam divided into n slices each with

transverse centroid position Xi and angle X ′
i, the normalised amplitude defined as

Λ(s) =
n∑

i=1

(XNi(s)
2 +X ′

Ni(s)
2) =

n∑
i=1

[(
Xi(s)

σx(s)

)2

+

(
X ′

i(s)

σx′(s)

)2
]
, (3.37)

where

σx(s) =

√
β(s)εNx

γ(s)
, σx′(s) =

√
εNx

γ(s)β(s)
(3.38)

should therefore remain constant in the absence of transverse wakefields. When transverse
wakefields perturb the betratron oscillation, the normalised amplification factor

Λ(s)

Λ0

=

n∑
i=1

(XNi(s)
2 +X ′

Ni(s)
2)

n∑
i=1

(XNi(0)2 +X ′
Ni(0)

2)
(3.39)

can thus be used to quantify the amplification of the transverse jitter of the incoming
beam. We propose Λ/Λ0 . 10 to be an acceptable level of amplification, but this rough
criteria should be investigated by studying e.g. emittance growth at a later stage.

Analogously to energy spread, we obtained an overview of Λ/Λ0 for different combinations
ofN , σz and ∆ξ from the parameter scan. The results for Λ/Λ0 corresponding to a 1.5TeV
acceleration process are shown in figure 3.11.
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Figure 3.11: Normalised amplification factor Λ/Λ0 vs. beam separation distance ∆ξ and rms
beam length σz for main beams with various particle numbers N . The rest of the parameters
are from the Snowmass parameter set. The values of Λ/Λ0 were extracted at the end of a
1.5TeV acceleration process. Note that different colour scales have been used in some plots.

The effects from transverse wakefields are expected to become more apparent as N is
increased. Since transverse wakefields grow along the beam, a long beam will lead to
stronger perturbations of the betatron oscillations and a more unstable beam. Further-
more, larger values of ∆ξ implies smaller rb, since the main beam is placed further towards
the end of the bubble. This will then lead to smaller effective iris radii a and hence also
stronger transverse wakefields and a more unstable beam. These patterns become evi-
dent for N ≥ 6 · 109, and the results in figure 3.11 are thus qualitatively consistent with
theoretical considerations.

Note that we initially assumed that all parameters used in this parameter scan were
able to generate main beams sufficiently stable to satisfy the basic assumptions for the
simplified quasi-static model. As the procedure of this parameter scan did not terminate
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beam propagation for the cases where the beam collided with the bubble boundary, large
values of Λ/Λ0 in figure 3.11 should be ignored.

For N ≥ 5 · 109, there are regions of large ∆ξ and small σz that can provide beam
propagation with promising stability with log(Λ/Λ0) . 1. As will become evident in
subsection 3.3.4, this region in the N–σz–∆ξ parameter space can also provide high
efficiency.

3.3.4 Efficiency
For a main beam with charge QMB accelerated in the wake excited by a drive beam with
charge QDB, we define the drive beam to main beam efficiency as

η =
∆EMB

EDB

QMB

QDB

, (3.40)

where ∆EMB is the energy gain of the main beam and EDB is the initial drive beam
energy. This definition considers all the energy of the drive beam as spent regardless
of how much energy has been extracted by the main beam. Assuming the drive beam’s
energy is fully depleted in a plasma of length Ld, the efficiency can also be written as

η =
EALd

EDLd

QMB

QDB

= T
NMB

NDB

, (3.41)

where ED is the peak decelerating field of the drive beam and EA is the mean accelerating
field of the main beam and T = EA/ED is the transformer ratio.

Contour plots of the efficiency in the σz–∆ξ plane for several N are shown in figure 3.12,
which shows that regardless of N and σz, efficiency is increased by increasing ∆ξ. This
qualitatively agrees with theory, as the longitudinal field Ez is stronger towards the end
of the plasma ion bubble.

It is therefore desirable to position the main beam as far behind in the bubble as possible
in order to maximise the efficiency, but this will also lead to stronger transverse wakefields
as explained earlier. Furthermore, placing the main beam at large ∆ξ may also lead to a
large energy spread, as seen in figure 3.10.

3.3.5 Summary of parameter scan
An optimal set of parameters for an accelerator requires low values for σE/〈E〉 and Λ/Λ0,
while high values of η are desirable. These requirements can be conflicting, as shown
in figure 3.10, 3.11 and 3.12. In order to arrive at a reasonable compromise, the data
for σE/〈E〉, Λ/Λ0 and η in the N–σz–∆ξ parameter space are combined to obtain an
overview shown in figure 3.13. The scatter plots in figure 3.13 summarise the results in
figure 3.10, 3.11 and 3.12 to provide an overview of the relation between energy spread,
stability and efficiency for several N .
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Figure 3.12: Efficiency vs. beam separation distance ∆ξ and rms beam length σz for main
beams with various particle numbers N . Note that different colour scales have been used in
some plots.

For N ≥ 4 · 109, it is evident that good beam stability generally requires a large energy
spread, and high efficiency combined with low energy spread tend to lead to an unstable
beam. We can however find reasonable compromises, and our operating point of choice in
figure 3.13d is marked with a red circle. The corresponding parameter set is summarised
in table 3.3. The normalised emittances are based on the 3TeV CLIC parameter set
[27], where the normalised horizontal emittance has been increased proportionally due
to the larger beam charge that is used here. Drive beam parameters are identical to the
Snowmass T = 1 parameters summarised in table 3.2.

3.3.6 Performance improvements
The derived main beam parameters offer improvements over the Snowmass parameter
set both in terms of energy spread and stability, but result in a lower efficiency. These
parameters and results are summarised in table 3.4, where the energy spread for the
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Figure 3.13: Scatter plots displaying the relation between relative rms energy spread, nor-
malised amplification factor and efficiency for main beams with several particle numbers. The
chosen candidate for a main beam parameter set is marked with a red circle. Note that different
colour scales have been used in some plots.

Snowmass parameter set has been re-calculated using the definition (3.32). The value
for Λ/Λ0 for the Snowmass parameters was obtained after accelerating the main beam to
1.5TeV while ignoring the collision into the bubble boundary.

A PWFA multi-TeV accelerator can be envisioned being used as the main linac (linear
accelerator) for a linear collider. A core metric of performance for a linear collider is
luminosity per input power PAC, which scales as

L/PAC ∝ η/
√
σz (3.42)

when beamstrahlung has been taken into account. This scaling is shown in chapter
4. Assuming that the beam sizes can be appropriately adjusted (see chapter 4) for
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Parameter Symbol Unit Value
Plasma density n0 1016 cm-3 2.0
Particle number N 109 5
rms beam length σz µm 5
Beam separation distance ∆ξ µm 200
Normalised horizontal emittance γεx mmmrad 0.887
Normalised vertical emittance γεy mmmrad 0.02
Relative rms energy spread σE/〈E〉 % 1.1
Normalised amplification factor Λ/Λ0 6.2
Drive beam to main beam efficiency η % 37.5

Table 3.3: New parameter set for a 1.5TeV PWFA linear e− accelerator derived from the
parameter scan.

Unit Snowmass T = 1 New parameters
NMB 109 10.0 5.0
σz µm 20.0 5.0
∆ξ µm 187 200
σE/〈E〉 % 12 1.1
Λ/Λ0 670 6.2
η % 50 37.5

Table 3.4: Comparison of the Snowmass T = 1 parameter set and the new parameter set.

the new parameter set, the luminosity per power is actually 1.5 times higher than the
corresponding value provided by the Snowmass T = 1 parameters, even though the new
parameter set offers a lower efficiency.

3.4 Parameter study using linear energy spread
In this section, we will present a parameter study for a PWFA electron accelerator that
explores the potential for damping transverse instabilities using linear energy spread. The
procedure is similar to section 3.3, where we scan over a range of N and σz, but instead
of varying ∆ξ to change the shape of Ez using beam loading and consequently obtain a
set of non-linear energy spread, we held ∆ξ constant and artificially introduced a linear
longitudinal field of the form

Ez(ξ) = g(ξ − ξH) + EzH (3.43)

over the length of the main beam. Here ξH is the position of the beam head, EzH is the
longitudinal field at ξH and g = ∂ξEz is the slope of the longitudinal field.

In this parameter scan, we used energy spread as an input parameter and scanned over a
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set of energy spread 0.5% ≤ σE/〈E〉 ≤ 10% for each combination of N and σz. g is then
determined by the input energy spread as follows:

The mean Ez weighted by the number of particles in the beam slices is

〈Ez〉 =
g

N

n∑
i=1

Ni(ξi − ξH)︸ ︷︷ ︸
S1

+EzH. (3.44)

The energy spread can be written as

σE

〈E〉
= − 1

〈Ez〉

√√√√ 1

N

n∑
i=1

Ni(〈Ez〉 − Ezi)2 = − 1

gS1/N + EzH

√√√√√√g2

N

n∑
i=1

(
S1

N
− ξi + ξH

)2

︸ ︷︷ ︸
S2

.

(3.45)
This can be rearranged to a quadratic equation in g,[(

S1

N

σE

〈E〉

)2

− S2

N

]
g2 + 2EzH

S1

N

(
σE

〈E〉

)2

g +

(
σE

〈E〉
EzH

)2

= 0, (3.46)

which can be solved to obtain values for g corresponding to given beam slice particle
distribution, EzH and energy spread. For BNS damping, we choose the negative solution
of equation (3.46) such that the beam tail gains less energy than the beam head.

The maximum beam separation distance in the QuickPIC data used in the parameter
scan in section 3.3 is ∆ξ = 210 µm, and we adopted this value throughout this parameter
scan in order to maximise efficiency. For each combination of N and σz, we extracted
rb(ξ) and EzH from the corresponding QuickPIC results to use as input in the simplified
quasi-static model as before. An overview of g for different combinations of N , σz and
σE/〈E〉 is displayed in figure 3.14.

In contrast to the previous parameter study, here we terminated the beam dynamics
calculations using the simplified quasi-static model if the beam collided into the plasma
ion bubble boundary.

3.4.1 Results of parameter scan
An overview of the effects of N , σz and σE/〈E〉 on Λ/Λ0 is shown in figure 3.15. The
distance between actual data points in the σz-direction is 1 µm, and 0.5% in the σE/〈E〉-
direction. This applies to all contour plots in this parameter study.

There is an evident pattern of Λ/Λ0 increasing with σz and decreasing with energy spread.
As the transverse wakefield deflection is weaker for short beams, shorter beams can be
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Figure 3.14: An overview of the slope of the longitudinal field g = ∂ξEz for different combina-
tions of beam particle number N , rms beam length σz and relative rms energy spread σE/〈E〉.
g is obtained using equation (3.46). Note that different colour scales have been used in some
plots.

damped by a lower energy spread. This therefore results in the σz–σE/〈E〉 plane being
divided obliquely into a region with log(Λ/Λ0) . 1 and a region with log(Λ/Λ0) & 1. As
the transverse wakefield increases with N , the more stable log(Λ/Λ0) . 1 region also
seems to become smaller, since a larger energy spread is required to damp the transverse
oscillations.

Furthermore, the region log(Λ/Λ0) & 1 corresponds to highly unstable main beams that
all resulted in collision with the plasma ion bubble boundary. This is the cause for con-
tours along the oblique boundary rising very steeply, and since the resolution in σE/〈E〉
is 0.5%, we see that stability is very sensitive to linear energy spread. For the N = 1010

case, the parameter scan only returned unstable outcomes, but acceptable stability may
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be possible with shorter beams.
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Figure 3.15: Normalised amplification factor Λ/Λ0 vs. relative rms energy spread and rms
beam length σz for main beams with various particle numbers N .

For a fixed N , efficiency only depends on the average accelerating field, which in the case
of linear energy spread mainly depends on the input energy spread and beam length.
A smaller input energy spread and a shorter beam yield a stronger average accelerating
field and hence also a higher efficiency. This can be partially seen in the scatter plots
in figure 3.16, where data points with high values of efficiency are concentrated at low
energy spread. The sharp boundary between acceptably stable and unstable propagation
is also apparent in figure 3.16.

As in the parameter study in section 3.3, N = 5 · 109 provides several high stability
operating points with less than 2% of energy spread and more than 30% in efficiency.
At larger N , it is possible to obtain operating points with good stability with less than
2% of energy spread and even higher efficiency. N = 7 · 109 can provide acceptably
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stable propagation with low energy spread and η ∼ 60%, while N = 9 · 109 can yield
more than 70% efficiency. However, figure 3.15h shows that the region for adequately
stable beam and σE/〈E〉 ≤ 2% is very small, so that the stability of operating points
with σE/〈E〉 ≤ 2% for N = 9 · 109 should therefore be further verified.

Even though linear energy spread yields very promising results, it is not clear how to gen-
erate longitudinal fields of the form Ez = g(ξ − ξH) + ExH with |g| ∼ 1014V/m2, although
a tuneable plasma dechirper with a maximum dechirping strength of 1.8GeV/mm/m was
successfully implemented in an experiment carried out at FLASHForward, DESY [80].
In the following chapters, we therefore focus on the parameter set in table 3.3.
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Figure 3.16: Scatter plots showing the relation between relative rms energy spread, normalised
amplification factor and efficiency for main beams with several particle numbers. Note that
different colour scales have been used.
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3.4.2 Comparison with the BNS damping requirement
Here we compare the energy spread threshold that gives acceptably stable propagation,
seen in figure 3.15, to the BNS damping requirement given by equation (3.24). For
most N -σz pairs, there is a minimum relative rms energy spread σE/〈E〉 that gives an
acceptable stability. These minimum values of σE/〈E〉 form the sharp boundaries seen
in figure 3.15.

In order to make the comparison, we first convert the boundary σE/〈E〉 to a longitudinal
field slope g using equation (3.46) for a given pair of N and σz. The head to tail energy
spread is then given by

∆γ

γH
=

E(ξT)− E(ξH)

E(ξH)
=
Ez(ξT)− Ez(ξH)

Ez(ξH)
=

g

EzH

(ξT − ξH), (3.47)

where ξT is the longitudinal location of the beam tail. Lastly, this is converted into a
betatron wave number spread through

∆kβ
kβH

=

(
∆γ

γH
+ 1

)−1/2

− 1. (3.48)

The comparison is shown in figure 3.17. Results for N = 1010 are omitted, as no stable
results were found for this charge in this parameter scan. The precision of this comparison
is limited by factors such as the resolution of the parameter scan. Despite the σE/〈E〉
resolution for the parameter scan being 0.5%, we found reasonable agreement between
the BNS damping requirement and the energy spread threshold for stability found in
the parameter scan. Thus, for linear energy spread, equation (3.24) can be used to
make estimates of minimum head to tail energy spread required for damping transverse
instabilities.

In this chapter, we have presented possible working points for a 1.5TeV PWFA linear
electron accelerator. In particular, the parameter set derived in section 3.3 will be used
in collider parameter studies in chapter 4 and 5. However, the parameter scans in this
chapter are not exhaustive and the working points are expected to change in more detailed
studies. In particular, damping from moderate ion motion is expected to affect the results
significantly.
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Figure 3.17: Comparisons of the head to tail betatron wave number spread.
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CHAPTER 4

PWFA e+e− Linear Collider
Parameter Study

In this chapter we will first give a brief review of beamstrahlung theory and creation of
unwanted particles due to beam-beam interactions to outline the constrain on luminosity
imposed by beam-beam interactions. This is followed by a beam-beam parameter study
for a TeV-scale e+e− PWFA linear collider based on the parameter set in table 4.2,
where we optimised beam parameters at the interaction point (IP) in order to maximise
luminosity and limit luminosity spread introduced by beam-beam effects. In particular,
we studied the luminosity spectrum using GUINEA-PIGi [19] simulations for very short
bunches, as favoured by PWFA linear accelerators. This preference of short beams in
PWFA can be exploited to reduce the beam sizes accordingly without increasing the level
of beamstrahlung, while achieving a higher luminosity. Some of the findings can be found
in reference [81].

4.1 Beamstrahlung theory
We will here provide a brief review of beamstrahlung theory. More details can be found
in reference [82].

Colliding beams in a linear collider are focused to small transverse dimensions in order to
reach high luminosity. This gives rise to intense electromagnetic fields that will bend the
trajectories of particles in the opposite beam, and cause the particles to emit radiation
in the form of beamstrahlung, and hence lose energy. A large fraction of particles will
therefore collide with a less than nominal energy, and form a luminosity spectrum. In

iGenerator of Unwanted Interactions for Numerical Experiment Analysis – Programme Interfaced to
GEANT.
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this chapter, we define peak luminosity L0.01 to be luminosity in the energy band above
99% of nominal centre of mass energy. The luminosity spectrum for CLIC is shown in
figure 4.1.

Figure 4.1: The luminosity spectrum of CLIC at 3TeV given as integrated luminosity per
energy band and beam crossing bx. Luminosity in the energy band above 99% of nominal
centre of mass energy is defined as L0.01. Adapted from reference [83].

4.1.1 Beamstrahlung parameter
Beamstrahlung can be characterised by the critical energy defined at half power spectrum
[19]

Ec = ~ωc =
3

2

~γ3c
R

, (4.1)

where γ is the Lorentz factor and R is the bending radius of the particle trajectory. It
is however more convenient to use the dimensionless Lorentz invariant beamstrahlung
parameter defined as

Υ =
e~
m3

ec
3
(pµF

µλpνFλν)
1/2, (4.2)

where pµ is the four-momentum of the particle, and F µν is the electromagnetic field tensor
of the beam field. The beamstrahlung parameter can also be written as

Υ =
2

3

~ωc

E
= γ

〈E + cB〉
Bc

, (4.3)

where E is the energy of a particle before emitting radiation and

Bc =
m2

ec
2

e~
= 4.4140GT (4.4)

is the Schwinger critical field. Υ can be interpreted as a measure for the strength of the
electromagnetic fields in the rest frame of the electron in units of Bc. Since fields above
Bc are expected to cause nonlinear QED effects, Υ � 1 is associated with the classical
regime, while Υ � 1 corresponds to the (deep) quantum regime.
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Υ is not constant during collision. For Gaussian beams with N particles, rms beam length
σz and whose horizontal and vertical beam sizes at the IP are σ∗

x and σ∗
y respectively, the

average and maximum Υ can be approximated as

〈Υ〉 ≈ 5

6

Nr2eγ

ασz(σ∗
x + σ∗

y)
and Υmax ≈

12

5
〈Υ〉, (4.5)

where re is the classical electron radius and α is the fine structure constant.

4.1.2 Photon emission spectrum
The radiation equation describing photon emission for arbitrary Υ can be derived by
solving the Dirac equation in a uniform magnetic field and compute the transition rates.
This was first done by Sokolov-Ternov [84], and reads

∂Ṅγ

∂ω
=

α√
3πγ2

 ∞̂

q

K5/3(q
′) dq′ +

~ω
E

~ω
E− ~ω

K2/3(q)

 , (4.6)

where K5/3 and K2/3 are modified Bessel functions, and q = ω
ωc

E
E−~ω .

In order to obtain the expected number of emitted photons per unit time, we integrate
the photon emission spectrum over the photon frequency up to E/~ to obtain

dNγ

dt
=

E/~ˆ

0

∂Ṅγ

∂ω
dω =

5

2
√
3

α2cΥ

reγ
U0(Υ), (4.7)

with
U0(Υ) ≈ 1

(1 + Υ2/3)1/2
. (4.8)

The average relative energy loss per unit time is〈
− 1

E

dE

dt

〉
=

∞̂

0

~ω
E

∂Ṅγ

∂ω
dω =

2

3

α2cΥ2

reγ
U1(Υ), (4.9)

where
U1(Υ) ≈ 1

[1 + (1.5Υ)2/3]2
. (4.10)

For Gaussian beams, the average number of emitted photons per electron during the
collision can be approximated as

nγ ≈ 2.54
α2σz
reγ

〈Υ〉U0(〈Υ〉), (4.11)
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while the relative beam particle energy loss can be approximated by

δE =

〈
− ∆E

E

〉
≈ 1.24

α2σz
reγ

〈Υ〉2U1(〈Υ〉). (4.12)

In order to keep δE < 10%, most linear collider designs choose α2σz〈Υ〉/(reγ) ∼ 1. We
then also have nγ ∼ 1.

4.1.3 Beamstrahlung and luminosity
In the classical regime, Υ � 1, U0 ≈ U1 ≈ 1, so that

nγ ≈ 2.54
α2σz
reγ

〈Υ〉 = 2.12
αNre
σ∗
x + σ∗

y

. (4.13)

Since L ∝ 1/(σ∗
xσ

∗
y) and nγ ∝ 1/(σ∗

x + σ∗
y), choosing a flat beam with σ∗

x � σ∗
y can limit

nγ without sacrificing luminosity. This gives the following relation on σ∗
x and nγ:

σ∗
x = 2.12

αreN

nγ

, (4.14)

which leads to
L =

0.47HD

4πα

nγ

reσ∗
y

ηPAC

Eb

, (4.15)

where we have used NNbfrEb = ηPAC. η is the total (wall-plug to beam) conversion
efficiency, PAC the wall-plug power for beam acceleration and Eb is the beam energy.

In the quantum regime with Υ � 1, U0 ≈ Υ−1/3. This yields

nγ ≈ 2.54
α2σz
reγ

〈Υ〉2/3 = 2.25

(
α2√reσzN√
γ(σ∗

x + σ∗
y)

)2/3

. (4.16)

We can again use flat beams to mitigate beamstrahlung, which yields

σ∗
x = 3.38

α2N

n
3/2
γ

√
reσz
γ
. (4.17)

Inserting this into the equation for the total luminosity, we obtain

L =
0.30HD

4πα2

√
γ

reσz

n
3/2
γ

σ∗
y

ηPAC

Eb

. (4.18)

Equation (4.17) shows that for Υ � 1, a shorter beam can suppress beamstrahlung.
This implies that σ∗

x can be reduced accordingly for a flat beam, as described by equation
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(4.17), without increasing nγ. Consequently, the luminosity can be increased for shorter
beams, as outlined by equation (4.18). This is particularly advantageous for PWFA
colliders, since short beams are preferred in PWFA due to the high plasma frequency.
E.g. for a plasma with density n0 = 1016 cm−3, the plasma wavelength is λp = 334 µm.
For comparison, λRF = 2.51 cm in CLIC.

Due to the optics of the beam delivery system (BDS), the design of the BDS of a linear
collider will put a practical lower limit on β∗

y . Assuming that this practical limit can
be overcome, the lower limit for β∗

y is set by the hourglass effect. If β∗
y < σz, the beam

is focused to a small size, but only over a short length, which leads to a reduction in
luminosity. In order to mitigate the luminosity reduction caused by the hourglass effect,
one requires β∗

y ≥ σz. Choosing β∗
y = σz, the luminosity for the classical regime can be

written as
L =

0.47HD

4πα

nγ
√
γ

re
√
εNyσz

ηPAC

Eb

, (4.19)

where εNy is the normalised vertical emittance.

For the quantum regime, the luminosity is given by

L =
0.30HD

4πα2

γn
3/2
γ√

reεNyσz

ηPAC

Eb

, (4.20)

which still benefits short beams and is advantageous for PWFA colliders.

4.2 Background considerations
Beam-beam effects can give rise to a number of events that contribute to the background
signal in the detectors that may potentially compromise the relevant measurements of the
experiment. This includes the spent beams after collision and the creation of unwanted
particles through beam-beam interactions.

4.2.1 Spent beam
The disruption of beam particles after collision is often described using the disruption
parameter. For a flat Gaussian beam, one can define two disruption parameters in x and
y as [85]

Dx =
2Nreσz

γσ∗
x(σ

∗
x + σ∗

y)
, Dy =

2Nreσz
γσ∗

y(σ
∗
x + σ∗

y)
. (4.21)

For Dx,y � 1, the beams will act as a thin lens with focal length σz/Dx,y for a particle
in the opposite beam. We can thus define a nominal disruption angle

θD =
2reN

γ(σ∗
x + σ∗

y)
=
Dxσ

∗
x

σz
=
Dyσ

∗
y

σz
(4.22)

that characterises the disruption angle of a beam.
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4.2.2 Coherent pairs
A photon can fluctuate into a virtual e+e− pair, and in a strong electromagnetic field,
these virtual particles can be set onto their mass shells and thus become real. This process
can be contributed both by the real beamstrahlung photons or by the virtual photons
co-moving with the high-energy beam particles. For coherent pair creation sourced by
beamstrahlung, the average number of e+e− pairs created per beam particle after collision
can be calculated by folding the photon emission spectrum given in equation (4.6) with
the probability of the photons to turn into pairs. The result is [86]

nr
e+e− =

4
√
3

25π

(
ασz
λ̄eγ

Υ

)2

Ξ(Υ), (4.23)

where

Ξ(Υ) =
1

2Υ2

1ˆ

0

 ∞̂

q

K5/3(q
′) dq′ +

~ω
E

~ω
E− ~ω

K2/3(q)

K2
1/3

(
4

3yΥ

)
dy

y
(4.24)

=

{
0.5 exp(−16/(3Υ)), Υ � 1
2.6Υ−2/3 lnΥ, Υ � 1,

(4.25)

y = ~ω/E and λ̄e is the reduced electron Compton wavelength.

Contribution from virtual photons becomes significant for Υ � 1. This process is often
termed trident cascade, and the average number of coherent pairs created per primary
particle is given by

nv
e+e− =

4
√
3

25π

(
ασz
λ̄eγ

Υ

)
Ω(Υ) (4.26)

Ω(Υ) ≈ 2.6α lnΥ, Υ � 1. (4.27)

Coherent pairs are generally created with significantly lower energies than the beam
particles, and will thus be deflected more severely than the high-energy primary particles.
This can therefore potentially cause significant event reconstruction problems for high-
energy physics experiments.

4.2.3 Incoherent pairs
In addition to coherent pairs, e+e− pairs can also be created through incoherent pair
creation, which are caused by the interactions of real beamstrahlung photons, virtual
photons accompanying an electron or positron or a combination of these. There are three
incoherent processes [87]:
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1. In the Breit-Wheeler process γγ → e+e−, two real beamstrahlung photons interact
to produce an incoherent pair. The total cross section is given by [88]

σBW =
4π~2c2α2

s

[(
1 +

4m2
ec

4

s
− 8m4

ec
8

s2

)
ln

1 + β

1− β
−

(
1 +

4m2
ec

4

s

)
β

]
, (4.28)

where β =
√

1− 4m2
ec

4/s.

Figure 4.2: Breit-Wheeler process.

2. In the Bethe-Heitler process e±γ → e±e+e−, a real photons interacts with a virtual
photon to produce an incoherent pair. The total cross section can be approximated
by [88]

σBH ≈ 28αr2e
9

(
ln

s

m2
ec

4
− 109

42

)
. (4.29)

Figure 4.3: Bethe-Heitler process.

3. In the Landau-Lifshitz process e±e± → e±e±e+e−, an e+e− pair is created by the
interaction of two virtual photons. The total cross section can be found in reference
[88]:

σLL ≈ α2r2e
π

(
1.04 ln3 s

m2
ec

4
− 6.59 ln2 s

m2
ec

4
− 11.8 ln

s

m2
ec

4
+ 104

)
. (4.30)

Most incoherent pairs have low energies and small angles, but some are created with
large angles. Like coherent pairs, incoherent pairs deflected by the beam fields may cause
significant background problems. This can be mitigated by using a solenoid field inside
the detector to confine the unwanted particles.
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Figure 4.4: Landau-Lifshitz process.

4.2.4 Hadronic events
In addition to fluctuating into a virtual electron-positron pair, a photon can also fluctuate
into a quark-antiquark pair. At energy scales of about 1GeV, the virtual qq̄ pair has
sufficient time to evolve into a complicated hadronic state that cannot be described by
using only perturbation theory [89]. This may occur in a direct scattering γγ → qq̄
between two photons, which may put the qq̄ pair on their mass shell. The majority
of the secondary particles produced in such events have small transverse momenta and
angles, but a small number of jets termed minijets have a large transverse momentum,
which may impact the detector and provide an additional background complicating the
re-construction of interesting events.

Moreover, the hadronic structure of the photons, which can be described as “internal”
quark and gluon densities of the photon, can also undergo scattering. The scattering
of these partons give rise to two additional processes that contribute to the hadronic
background, see figure 4.5. In the once-resolved process, only one of the photons scatters
via its partons, which produces an additional hadronic jet from the remnant part of the
photon. In the twice-resolved process, the partons in both the photons undergo scattering,
and produce two additional jets. These additional jets travel along the beam axis and
are commonly named spectator jets.

4.2.5 Background mitigation using a solenoid field
If left unmitigated, particles with angles larger than the opening angle of the vertex
detector will hit the detector. One of the simplest ways for reducing the number of hits
is to introduce a solenoid field Bs inside the detector to trap the charged particles. A
particle with transverse momentum p⊥ will then travel along a helix with radius

r =
p⊥
eBs

. (4.31)
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J1

J2
(a) Direct scattering.

SJ1
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J2

(b) Once-resolved scattering.

SJ1
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J2

SJ2

(c) Twice-resolved scattering.

Figure 4.5: Scattering processes resulting in minijets J and spectator jets SJ.

The particle’s distance to the beam axis as a function of the longitudinal distance z to
the IP is then given by [19]

a(z) = r
√
2(1− cosϕ(z)) (4.32)

ϕ(z) =
z

r
tan θ, (4.33)

where θ is the particle’s polar angle.

Let ` be the half length of the inner cylindrical part of the vertex detector, which is
fixed by the vertex detector’s opening angle θ0 and inner radius R through ` = R/ tan θ0.
Particles that perform more than half a helix motion during the detector half length `,
i.e. particles with ϕ(`) > π, are trapped and cannot hit the detector if 2r < R, where
r is the helix radius of the particles, and R is the detector inner radius. Particles that
undergo less than half a helix period during `, will travel along a bent trajectory, where
the helix motion has effectively reduced the particles’ original polar angle θ, and may
thus further reduce the number of hits depending on the particles’ θ and p⊥.

The detector parameters used for background considerations are summarised in table 4.1.
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Parameter Symbol Value
Inner Radius R 1.0 cm
Total angular coverage | cos θ0| 0.99
Distance from IP to exit L 3.0m
Solenoid field Bs 4.0T

Table 4.1: Detector parameters.

4.3 Luminosity optimisation results for equal e+e−

beam charges

We performed beam-beam simulations using GUINEA-PIG, where we optimised collisions
of e+e− beams with respect to luminosity spread by performing parameter scans over β∗

x,
β∗
y and short σz’s, as favoured by PWFA linear accelerators. In this study, we assumed

that both the e+ and the e− beams have N = 5 · 109 particles, as derived in chapter 3,
and that β∗

y can be made arbitrarily small.

Results on luminosity optimised with respect to luminosity spread are presented followed
by results on background study.

4.3.1 Luminosity optimisation results

We define the peak luminosity L0.01 as the part of the luminosity corresponding to centre
of mass energy

√
s > 0.99

√
s0, where √

s0 is the nominal centre of mass collision energy.
The acceptable level of luminosity spread is chosen to be L0.01/L ≈ 1/3, where L is the
total luminosity. Contour plots of the ratio of peak luminosity to total luminosity are
plotted in the β∗

x–β∗
y plane for several σz in figure 4.6.

Both beams have N = 5 · 109 particles, as derived in the PWFA parameter study in
chapter 3, and were collided at √

s0 = 3TeV. For a given pair of β∗
y and σz, we used

the result in figure 4.6 to find an optimal β∗
x that yields L0.01/L ≈ 1/3. This process was

repeated for each pair of β∗
y and σz, where we only kept the results given by an optimal β∗

x

that corresponds to the defined luminosity spread tolerance. The corresponding results
for L and L0.01 are shown in figure 4.7 and 4.8, respectively. The unit bx−1 denotes “per
beam crossing”.

Assuming σx can be made sufficiently small to keep nγ constant as σz is reduced, and
that σy is kept constant, equation (4.18) gives the scaling L ∝ 1/

√
σz. The luminosity is

plotted against σz for a selection of β∗
y along with the corresponding L ∝ 1/

√
σz fits in

figure 4.9.
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(a) σz = 2 µm.
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(b) σz = 3 µm.
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(c) σz = 4 µm.
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(e) σz = 6 µm.
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(f) σz = 7 µm.
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(g) σz = 8 µm.
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(h) σz = 9 µm.
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(i) σz = 10 µm.

Figure 4.6: An overview of the ratio of peak luminosity to total luminosity for different
combinations of rms beam length σz, horizontal beta function β∗

x and vertical beta function β∗
y .

The 1/
√
σz-scaling agree very well with simulation results, especially for larger values of

β∗
y . The disagreement at small β∗

y may be due to the hourglass effect, which imposes
β∗
y ≥ σz. When β∗

y < σz, a small beam size is only maintained over a small length, which
reduces luminosity. Thus, using our range of σz-values, the luminosity appears to decrease
faster than the 1/

√
σz-scaling.

In chapter 3 we found a parameter set for the main beam with acceptable stability, energy
spread and efficiency. We now consider beams with N = 5 · 109 particles and a rms beam
length of σz = 5 µm (table 3.3). The corresponding optimised results for a N = 5 · 109
σz = 5 µm beam from this study are summarised in table 4.2 together with relevant results
from chapter 3.

In deriving this parameter set, we did not consider optics constraints on the vertical beta
function. The vertical beta function from the 3TeV CLIC parameter set [27] represents
what is currently achievable, which is about one order of magnitude larger than our
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Figure 4.7: Contour plot of total luminosity L vs. beam length σz and vertical beta function
β∗
y , where the horizontal β∗

x for each pair of σz and β∗
y has been chosen such that L0.01/L ≈ 1/3.
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Figure 4.8: Contour plot of peak luminosity L0.01 vs. beam length σz and vertical beta
function β∗

y , where the horizontal beta function β∗
x for each pair of σz and β∗

y has been chosen
such that L0.01/L ≈ 1/3.

proposed values.

4.3.2 Background
In this background study, we will compare the GUINEA-PIG results for the derived pa-
rameter set against the background calculated using CLIC parameters. Note that in this
thesis the calculations in GUINEA-PIG were done with β∗

x,y that do not take non-linear
effects into account and thus differ from the values given in reference [27]. When referring
to 3TeV CLIC parameters in this thesis, we use β∗

x = 9.0mm and β∗
y = 0.147mm, which

are matched to the spot sizes and emittances given in reference [27] at 3TeV.
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Figure 4.9: Total luminosity L vs. rms beam length σz for several vertical beta functions β∗
y

along with corresponding theoretical 1/√σz fits. The red solid line is covered by the green solid
line.

Parameter Symbol Unit Value
Plasma density n0 1016 cm−3 2.0
Particle number N 109 5
rms beam length σz µm 5
Horizontal beta function at IP β∗

x mm 5
Vertical beta function at IP β∗

y µm 5
Normalised horizontal emittance γεx mmmrad 0.887
Normalised vertical emittance γεy mmmrad 0.02
Relative rms energy spread σE/〈E〉 % 1.1
Normalised amplification factor Λ/Λ0 6.2
Drive beam to main beam efficiency η % 37.5
Beam power/beam Pb/(frNb) kWs 1.2
Beamstrahlung photons/e− nγ 2.3
Total luminosity/beam crossing L 1035 m−2 bx−1 4.3
Peak 1% luminosity/beam crossing L0.01 1035 m−2 bx−1 1.4

Table 4.2: Parameters for a 3TeV PWFA linear e+e− collider.

Contour plots of the polar angle-energy distribution for the spent beams are shown in
figure 4.10. The spent beams in derived parameter set are expected to be more deflected
due to a larger N and smaller σ∗

x,y compared to the CLIC beams. Furthermore, we find
very good agreement with the nominal disruption angle predicted by the equation (4.22)
for both parameter sets.

The total number of coherent, trident and incoherent e+e− pairs produced per beam
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(a) Derived parameter set.
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(b) CLIC parameter set.

Figure 4.10: Polar angle-energy distribution of a spent beam for the derived parameter set
given in table 4.2 and the CLIC parameter set. Black solid lines show the nominal disruption
angle predicted by equation (4.22).

crossing are listed in table 4.3 along with the number of hadronic events per beam crossing
with a centre of mass energy above 5GeV. These are denoted Ncoh, Ntri, Ninc and NH,
respectively. The total energies for these background particles are also listed. More
background particles are produced with the derived parameter set compared to the CLIC
parameter set, which is expected due to the larger beam particle density and more intense
fields associated with the derived parameter set.

Parameter Unit Derived parameter set CLIC parameter set
Ncoh 108 41.45 7.33
Ecoh 1011GeV 7.36 2.24
Ntri 107 21.62 0.68
Etri 109GeV 12.08 1.29
Ninc 105 19.29 3.68
Einc 107GeV 16.08 2.76
NH 20.23 3.65

Table 4.3: Number of background particles and total energies per beam crossing.

The θ–p⊥ distribution for various background particle types are shown in figure 4.11 and
4.12 for the derived and CLIC parameter sets, respectively. In both cases, there are
a significant amount of incoherent pairs distributed at θ > 0.1 rad. Using the detector
parameters in table 4.1, we found that only coherent and incoherent pair particles will
reach the vertex detector. 50000 coherent and 205818 incoherent particles reached the
vertex detector in the PWFA collider, while only 10121 incoherent particles reached the
detector for the CLIC parameter set.

Depending on the size of the detector exit aperture, some background particles will not
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(a) Spent beam particles. (b) Coherent e+e− pairs.
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(c) Trident e+e− pairs.

10
-5

10
-4

10
-3

10
-2

10
-1 1

10

20

50

100

200

500

1

3

10

30

100

300

10
3

(d) Incoherent e+e− pairs.

Figure 4.11: Polar angle-transverse momentum distribution of various particle types for the
derived parameter set given in table 4.2. Note that different colour scales have been used.

pass through the opening and deposit their energy at the walls. The integrated energy
deposited at the detector exit (located at L = 3m downstream of the IP) for background
particles (spent beam particles, coherent pairs and trident pairs) associated with the two
colliding beams and energy deposited by the incoherent pairs are plotted as a function of
detector opening radius in figure 4.13 for the two parameter sets.

Due to the stronger background associated with the derived parameter set, larger exit
apertures are required to avoid the background particles compared to the background
of the CLIC parameter set. In order to avoid all the spent beam particles, coherent
pairs and trident pairs, a minimum opening radius of ∼ 180mm is required, while an
even larger ∼ 210mm opening radius is required to avoid all the incoherent pairs for the
derived parameter set. For the CLIC parameter set, minimum opening radii of ∼ 20mm
and ∼ 70mm are required depending on the particle type.
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(a) Spent beam particles.
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(b) Coherent e+e− pairs.
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(c) Trident e+e− pairs.
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(d) Incoherent e+e− pairs.

Figure 4.12: Transverse momentum-angle distribution of various particle types for CLIC
parameters. Note that different colour scales have been used.

4.4 Impact of reduced positron beam charge

4.4.1 Luminosity performance at 3 and 14 TeV
In the blow-out regime of PWFA, an electron beam will be focused by the positive ion
background, while a positron beam will be defocused. Different approaches such as hollow
channel plasma [49] and the quasi-linear [90] regime have been studied, but positron
acceleration remains one of the main challenges in PWFA, as there are currently no self-
consistent scheme for positron acceleration in plasma that can simultaneously provide
high efficiency, low preserved emittance and mitigation of transverse instabilities.

We therefore consider scenarios in which fewer positrons than electrons are accelerated,
and examine the effects of asymmetric e+e− collisions on luminosity at two energy levels,
where the number of particles Ne+ in the e+ beam is only a fraction of the number
of particles Ne− in the e− beam. Other beam parameters such as σz, β∗

x,y and εNx,y are
identical for the e+e− beams, and can be found in table 4.2. The results for three scenarios
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(a) Derived parameter set.
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(b) CLIC parameter set.

Figure 4.13: Integrated energy deposited at the detector exit for spent beam particles, coherent
pairs and trident pairs associated with the two colliding beams in addition to energy deposited
by the incoherent pairs vs. detector opening radius. The detector exit is located at L = 3m
downstream of the IP.

are summarised in table 4.4 together with CLIC parameters [27].

Parameter Unit Ne+ = Ne− Ne+ = 0.5Ne− Ne+ = 0.1Ne− CLIC

N 109 5/5 2.5/5 0.5/5 3.72/3.72
Pb/(frNb) kWs 1.2 1.2 1.2 0.89
Eb TeV 1.5 1.5 1.5 1.5
L 1035m−2 bx−1 4.26 1.89 0.32 0.38
L0.01 1035m−2 bx−1 1.41 0.80 0.17 0.13

Table 4.4: Parameter comparison at 3TeV collision energy.

As a result of the reduced Ne+ , the total luminosity is reduced by approximately the
same factor compared to cases where Ne+ = Ne− . However, by reducing Ne+ , the beam-
strahlung from the electron beam is also reduced, which results in a narrower luminosity
spectrum. Alternatively, this can also be exploited to further reduce the horizontal beam
size without increasing nγ.

Even in the Ne+ = 0.1Ne− scenario, a PWFA linear collider using the parameter set in
table 4.2 can still provide a comparable luminosity level per beam crossing compared
to CLIC. Furthermore, the Ne+ = 0.1Ne− scenario shown in table 4.4 has a luminosity
spread that is significantly better than our defined tolerance of L/L0.01 ≈ 1/3, which
indicates that the horizontal beam size can likely be reduced even further to increase the
total luminosity.

The muon collider submission to the European Particle Physics Strategy [91] demon-
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strated that a 14TeV muon collider can provide a similar effective discovery potential
as the 100TeV FCC. For comparison, the same parameters for 14TeV collision energy
are shown in table 4.5. At 14TeV, a common luminosity goal for linear colliders is
40 · 1034 cm−2 s−1, which corresponds to frNb = 1.7 · 103 s−1, 4 · 103 s−1 and 25 · 103 s−1

for the Ne+ = Ne− , Ne+ = 0.5Ne− and Ne+ = 0.1Ne− cases, respectively. This implies
that in order to achieve the target luminosity of 40 · 1034 cm−2 s−1, total beam powers
of 20MW, 449MW and 281MW are required for the Ne+ = Ne− , Ne+ = 0.5Ne− and
Ne+ = 0.1Ne− scenarios, respectively. For comparison, the CLIC parameter set requires
a total beam power of 90MW to achieve this luminosity. However, note that none of
the parameter sets in table 4.5 have been optimised for 14TeV, which can be seen in the
large luminosity spread. Furthermore, we also made the optimistic assumption that the
same emittance levels and beta functions can be maintained for the two energy levels.

Parameter Unit Ne+ = Ne− Ne+ = 0.5Ne− Ne+ = 0.1Ne− CLIC

N 109 5/5 2.5/5 0.5/5 3.72/3.72
Pb/(frNb) kWs 5.61 5.61 5.61 4.17
Eb TeV 7.0 7.0 7.0 7.0
L 1035m−2 bx−1 23.49 9.95 1.58 3.71
L0.01 1035m−2 bx−1 5.99 3.44 0.77 0.57

Table 4.5: Parameter comparison at 14TeV collision energy.

4.4.2 Background
Key figures for the background of the Ne+ = 0.5Ne− and Ne+ = 0.1Ne− cases at 3TeV
are summarised in table 4.6. The number 1 in the subscripts indicates that the back-
ground particles originated from the electron beam, while 2 indicates that the particles
originated from the positron beam. The difference in number of beam particles creates
an asymmetric background, where the background of the positron beam dominates. This
asymmetry is likely linked to the stronger fields of the electron beam, which has a larger
probability of converting photons from the positron beam into coherent and trident e+e−
pairs.

Only the incoherent pairs are able to reach the detector. For the 3TeV Ne+ = 0.5Ne− case,
there are 82425 hits on the vertex detector, and 9391 hits for the 3TeV Ne+ = 0.1Ne−

case.

When the number of primary positrons are reduced, the number of background particles
are also reduced. However, as the electron beam effectively acts as a lens with a smaller
focal length compared to the reduced positron beams, the particles from the positron
beam are deflected at larger angles, and this deflection becomes more asymmetric with
decreasing Ne+/Ne− ratio. This is demonstrated in figure 4.13 and 4.14 for the 3TeV
cases, where the integrated energy deposited at the detector exits for the electron beam
(beam 1) background is significantly more concentrated at small opening radius for small
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Parameter Unit Ne+ = 0.5Ne− Ne+ = 0.1Ne−

Ncoh1 108 5.86 0.20
Ncoh2 108 9.27 1.60
Ecoh1 1011 GeV 1.40 0.07
Ecoh2 1011 GeV 1.72 0.30
Ntri1 107 3.88 0.18
Ntri2 107 5.04 0.88
Etri1 109 GeV 3.36 0.40
Etri2 109 GeV 3.00 0.56
Ninc 105 8.00 1.16
Einc 107 GeV 6.80 0.88
NH 7.47 0.85

Table 4.6: Background comparison at 3TeV collision energy.

Ne+/Ne− . When Ne− is fixed, the deflection for the positron beam (beam 2) background
particles remain unchanged, which allows these particles to reach a maximum exit radius
of ∼ 200mm for the Ne+ = Ne− , Ne+ = 0.5Ne− and Ne+ = 0.1Ne− cases.
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(a) The Ne+ = 0.5Ne− case.
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(b) The Ne+ = 0.1Ne− case.

Figure 4.14: Integrated energy deposited at the detector exit for spent beam particles, coherent
pairs and trident pairs associated with the two colliding beams in addition to energy deposited
by the incoherent pairs vs. detector opening radius. The detector exit is located 3m downstream
of the IP.

√
s = 3TeV.

The same patterns are also found in the 14TeV cases, which are evident from table 4.7
and figure 4.15. As in the 3TeV cases, the positron beams with reduced beam charges
produce a higher amount of coherent and trident pairs than the electron beams that are
deflected significantly more than the background particles from the electron beams.

Comparing the 14TeV cases to their 3TeV counterparts, the total number of secondary
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Parameter Unit Ne+ = Ne− Ne+ = 0.5Ne− Ne+ = 0.1Ne− CLIC

Ncoh1 108 66.48 18.91 1.24 42.60
Ncoh2 108 66.50 25.99 4.26 43.05
Ecoh1 1011GeV 26.22 11.51 1.29 27.86
Ecoh2 1011GeV 26.35 11.37 2.02 27.91
Ntri1 107 73.59 30.49 3.23 10.51
Ntri2 107 73.64 30.56 5.41 10.83
Etri1 109GeV 49.80 36.45 10.70 24.45
Etri2 109GeV 49.88 24.67 4.63 24.36
Ninc 105 92.52 37.81 5.49 22.12
Einc 107GeV 322.47 143.46 19.17 64.15
NH 175.84 62.10 7.07 44.63

Table 4.7: Background comparison at 14TeV collision energy.

pairs, their total energies and the number of hadronic events are also about one order of
magnitude higher compared to the same cases at 3TeV. This leads to a larger number
of hits in the vertex detector, which is summarised for all the eight scenarios in table 4.8.
At 3TeV, the PWFA parameter sets can lead to the total number of hits in the vertex
detector being more than 10 times larger than the CLIC parameter set. This difference
is even more significant at 14TeV, where the Ne+ = Ne− case has more than a hundred
times more hits than the CLIC case.

Parameter set Unit Beam Coh. Tri. Incoh.
3TeV
Ne+ = Ne− 104 0 5.0 0 20.6
Ne+ = 0.5Ne− 104 0 0 0 8.2
Ne+ = 0.1Ne− 104 0 0 0 0.9
CLIC 104 0 0 0 1.0

14TeV
Ne+ = Ne− 104 0 1165.0 200.0 90.0
Ne+ = 0.5Ne− 104 0 55.0 15.0 35.0
Ne+ = 0.1Ne− 104 0 4.5 2.5 4.2
CLIC 104 0 3.7 0 5.9

Table 4.8: Total number of hits in the vertex detector from the spent beam (Beam), coherent
pairs (Coh.), trident pairs (Tri.) and incoherent pairs (Incoh.) for the eight scenarios.

Overall, even though the derived PWFA parameter sets offer interesting improvements
over the CLIC parameter set in terms of luminosity and beam power requirements, the
PWFA parameter sets also lead to stronger backgrounds than the CLIC parameters
both in terms of the total number of background particles and particle deflection. The
deflection may result in more hits in the vertex detector, and also affect the requirement
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(a) The Ne+ = Ne− case.
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(b) The Ne+ = 0.5Ne− case.
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(c) The Ne+ = 0.1Ne− case.
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(d) The CLIC case.

Figure 4.15: Integrated energy deposited at the detector exit for spent beam particles, coherent
pairs and trident pairs associated with the two colliding beams in addition to energy deposited
by the incoherent pairs vs. detector opening radius. The detector exit is located 3m downstream
of the IP.

√
s = 14TeV.

for exit aperture design. In particular, collisions with asymmetric beam charges produce
asymmetric backgrounds that need to be taken into account in the detector design.

4.5 Oide effect
In addition, the proposed parameter set has a vertical beta function that is an order of
magnitude smaller than what is achievable with current BDS design [27]. Further studies
on reducing beam sizes are thus required in order to achieve the luminosity goals. One
major obstacle in achieving such a small vertical beta function is the Oide effect [92],
which originates from synchrotron radition emitted by electrons traversing a quadrupole
magnet in the final focusing system. This changes the energy of the particles and disrupts
the focusing effect of the quadrupole magnet, which causes beam size growth. The beam
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size growth contribution σOide due to the Oide effect is added quadratically to the optical
beam size σ =

√
εβ∗:

σ2
tot = σ2 + σ2

Oide. (4.34)

For a quadrupole magnet with focusing gradient k, thickness L and focus located at a
distance l∗ from the front end, the Oide effect beam size contribution is [92]

σ2
Oide =

110

3
√
6π
λ̄ereγ

5F (
√
kL,

√
kl∗)

(
ε

β∗

)5/2

(4.35)

and

F (
√
kL,

√
kl∗) =

√
kLˆ

0

| sinµ+
√
kl∗ cosµ|3

 µˆ

0

(sinµ′ +
√
kl∗ cosµ′)2 dµ′

2

dµ. (4.36)

The total beam size is minimum when β∗ is chosen as

β∗ =

[
275

3
√
6π
λ̄ereγ

5F (
√
kL,

√
kl∗)

]2/7
γε

3/7
N , (4.37)

which gives

σmin
tot =

√
7

5

[
275

3
√
6π
λ̄ereF (

√
kL,

√
kl∗)

]1/7
ε
5/7
N , (4.38)

where εN is the normalised emittance.

With CLIC final quadrupole parameters k = 0.115m−2, L = 2.73m, l∗ = 3.5m [27], equa-
tion (4.38) gives σy,tot = 1.0 nm. Thus, even using properly chosen β∗

y , σmin
tot is still about

one order of magnitude larger than the optical beam sizes σy = 0.18 nm for the 3TeV
case and σy = 0.083 nm for the 14TeV case.

Possible mitigation methods for the Oide effect include reducing the vertical normalised
beam emittance, or using weakly focusing thick lenses with large l∗. For the case where
k is set to cancel the vertical optical function αy just at the quadrupole opposite face
to the IP, Blanco et al. have performed studies to minimise the Oide effect beam size
contribution for CLIC 3TeV design parameters. The parameters required for the small
relative beam size increase is however out of reach for realistic final doublet designs [93].
Octupole magnets have also been proposed, where a simple scheme consisting of placing
an octupole in front of the strong focusing quadrupole was able to reduce the Oide beam
size contribution with 6% [93].
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CHAPTER 5

PWFA Linear Photon Collider
Parameter Study

Due to the challenges of accelerating positrons using PWFA, a γγ collider, where laser
photons are scattered off ultra-relativistic electron beams accelerated by PWFA, has been
proposed as an alternative to a PWFA e+e− linear collider. A γγ collider has the potential
to provide a higher luminosity than an e+e− collider due to the absence of beamstrahlung
in γγ collisions, while also offering an attractive discovery potential [56].

This chapter will first give a brief outline of γγ collider principles, before the results of the
beam-beam study for a multi-TeV γγ collider are presented. This beam-beam study again
used the electron main beam parameter set in table 3.3 as a basis to optimise parameters
at the IP using GUINEA-PIG. Part of the results can also be found in reference [94].

5.1 γγ collider principles

The principles of a γγ collider are outlined in reference [95, 96]. We will here give a brief
summary of the basic concepts.

Inverse Compton scattering of laser photons on relativistic electrons is considered the
most efficient method to produce the required high-energy photons. A short distance
before the IP, a high-energy electron beam collides with a laser beam in the conversion
region. After the Compton scattering process, the back-scattered photons have acquired
a large fraction of the incident electrons’ energy, and follow the direction of the incident
electrons to be collided in the IP with photons that have been back-scattered against the
opposite electron beam. An outline of this process is shown in figure 5.1.
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Polarised electron
beam

Spent electron
beam

Conversion region

IP

Polarised laser
photons

Figure 5.1: Outline of the production of the high-energy photons required for a γγ collider
through inverse Compton scattering with a polarised electron beam. The conversion takes
place in the conversion regions before the interaction point, and the back-scattered high-energy
photons collide at the IP. The spent electron beams can either be deflected using a magnetic
field or collided at the IP.

5.1.1 Inverse Compton scattering kinematics
Let the four-momentum of two colliding particles with mass m1 and m2 be denoted by pµ1
and pµ2 . The total four-momentum before collision is P µ = pµ1 + pµ2 , and the inner product
is

P µPµ = pµ1p1µ + pµ2p2µ + 2pµ1p2µ = m2
1c

2 +m2
2c

2 + 2

(
E1E2

c2
− p1 · p2

)
, (5.1)

where Ei and pi are the energy and momentum of particle i, and we have used the metric
tensor ηµν = diag(1,−1,−1,−1).

In the conversion region, laser photons are scattered off ultra-relativistic electrons at
small collision angles θL as shown in figure 5.2. Before scattering, the electron has energy
E0 and momentum p0 ≈ E0/c, while that of the photon are ~ω0 and ~k0. Equation (5.1)
can be written as

P µPµ = m2
ec

2 + 2

(
E0~ω0

c2
− p0~k0 cos(π − θL)

)
(5.2)

≈ m2
ec

2 +
4E0~ω0

c2
cos2

θL
2
. (5.3)

We define the dimensionless invariant energy parameter

x =
4E0~ω0

(mec2)2
cos2

θL
2

(5.4)

that can be used as a measure for the energy of the electron-photon system. Since the
Mandelstam variable s is defined as s = (pµ1 + pµ2)

2c2 = E2
CM, x is related to the centre of

mass energy by
s = m2

ec
4(1 + x). (5.5)
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E0 θL

θγ

~ω0

~ω

Figure 5.2: Inverse Compton scattering. A photon with energy ~ω0 scatters off an ultra-
relativistic electron with energy E0. The photon’s energy after scattering is ~ω.

After collision, the majority of the back-scattered photons move in directions given by
small angles θγ relative to the trajectory of the incoming electron. The frequency of the
back-scattered photon is given by

ω =
ωm

1 + (θγ/ϑ0)2
, (5.6)

where
ϑ0 =

mec
2

E0

√
x+ 1 (5.7)

and
ωm =

x

x+ 1

E0

~
(5.8)

is the maximum photon frequency, which corresponds to the photon being scattered in
the same direction as the incoming electron.

5.1.2 Photon energy spectrum
Let y = ~ω/E0. The energy spectrum of the back-scattered photons is determined by
the quantity (1/σc)(dσc/dy), where σc is the total cross section of the Inverse scattering
process. The differential cross section for the inverse Compton scattering process is given
by [95]

dσc
dy

=
2πr2e
x

[
1

1− y
+ 1− y − 4y

x(1− y)

(
1− y

x(1− y)

)
+
2heΩy

1− y

(
1− 2y

x(1− y)

)
(2− y)

]
,

(5.9)

where he is the helicity of the electron and Ω is the polarisation of the initial photon.
The total cross section can be written as

σc =
2πr2e
x

[(
1− 4

x
− 8

x2

)
ln(x+ 1) +

1

2
+

8

x
− 1

2(x+ 1)2

]
+

4πr2eheΩ

x

[(
1 +

2

x

)
ln(x+ 1)− 5

2
+

1

x+ 1
− 1

2(x+ 1)2

]
.

(5.10)
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The sharpness of the photon energy spectrum strongly depends on the value of 2heΩ,
which should ideally be −1. In practice, 2heΩ ≈ −0.8 is a more realistic value, which we
adopt in this study.

The energy of the back-scattered photons increases with increasing laser photon energy.
However, the back-scattered photons and laser photons may scatter, and if their en-
ergy exceeds the threshold for e+e− pair creation, high-energy photons will be lost,
and unwanted e+e− pairs will be created. The energy of the laser photons is thus
restricted by e+e− pair creation. The total four-momentum before the collision be-
tween a back-scattered photon with energy ~ωm and a laser photon with energy ~ω0 is
P µ = ~(ωm/c+ ω0/c,km + k0). At the threshold energy for the process γ + γ → e+ + e−,
the total four-momentum after the collision is P ′µ = (2mec,0). It follows that

m2
ec

4 = ~2ωmω0. (5.11)

Substituting for ωm from equation (5.8) and using x ≈ 4E0~ω0/(mec
2)2, we can find the

upper limit for x:

xym > 4 =⇒ x < 2 + 2
√
2 ≈ 4.8. (5.12)

This gives ym ≈ 0.83.

The energy spectrum for the back-scattered photons with x = 4.8 and various initial
electron helicity and photon polarisation is shown in figure 5.3. From figure 5.3, it is
evident that polarised laser and electron beams enhance the monochromaticity of the
back-scattered photon beam, resulting in a sharper spectrum.

0 0.2 0.4 0.6 0.8

1

2

3

4

5

Figure 5.3: Normalised energy spectrum of back-scattered photons with x = 4.8 for various
values of 2heΩ.
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5.1.3 Conversion efficiency
The spectrum shown in figure 5.3 corresponds to a small conversion efficiency ηγ, which
gives the average number of high-energy (back-scattered) photons Nγ per electron

ηγ =
Nγ

Ne

, (5.13)

where Ne is the total number of electrons in the incoming beam.

For ηγ � 1, the conversion efficiency for a scattering between an ultra-relativistic electron
beam with density ne and a laser beam with density nL can be written as

ηγ =
2cσc
Ne

ˆ
nenL d

3rdt. (5.14)

Here 2c ≈ |ve − vγ| is the speed that the electrons and photons are approaching each
other with.

At the conversion region, the rms radius of a Gaussian laser beam at a distance z from
the focus is

σL = aL

√
1 +

(
z

zR

)2

, (5.15)

where aL is the focal spot radius and zR is the Rayleigh length of the laser.

For a Gaussian laser beam with laser pulse energy A, the density of laser photons is given
by

nL =
A

πσ2
L~ω0

e−r2/σ2
LFL(z + ct), (5.16)

with the linear density normalised by
´
FL(z) dz = 1.

Similarly, rms radius and density for a round electron beam are given by

σe = ae

√
1 +

(
d

βr

)2

(5.17)

ne =
Ne

πσ2
e

e−r2/σ2
eFe(z − ct), (5.18)

where d is the distance to the interaction point, βr is the beta function at the interaction
point,

´
Fe(z) dz = 1 and we also assumed that the lengths le and lL of the electron and

laser beams are small compared to d, so that σe ≈ const. in the conversion region.
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For a head-on collision with the centres of both beams passing through the focus simul-
taneously, integrating equation (5.14) over r gives [96]

ηγ =
A

A0

(5.19)

A0 =
π~ω0

J

σ2
e + a2L
σc

(5.20)

J = 2c

ˆ
Fe(z − ct)FL(z + ct)

1 + z2/z2R(1 + σ2
e/a

2
L)

dzdt. (5.21)

In order to achieve a high photon density at the laser focus during the collision with
the electron beam, the laser beam should have the length lL > le. In the limit lL �
le, 2zR

√
1 + σ2

e/a
2
L, equation (5.20) and (5.21) are reduced to

A0 =
~c

2σcFL(0)

√
1 +

(
σe
aL

)2

≈ ~clL
2σc

(5.22)

J = 2πzRFL(0)

√
1 +

(
σe
aL

)2

. (5.23)

We have so far been considering a low collision probability for the electrons, which cor-
responds to A� A0. The conversion efficiency can also be interpreted as the number
of electrons that scatter at least once. For A & A0, the probability of no scattering is
exp(−A/A0). The conversion efficiency is thus given by

ηγ = 1− e−A/A0 . (5.24)

Large laser pulse energies implies a larger number of high-energy photons, but since
electrons have an increased chance of multiple scatterings, this will also lead to more low-
energy photons. This will enhance the low-energy part of the spectrum, which can be
seen from figure 5.4, where the low-energy part of the spectrum is significantly enhanced
for high laser pulse energies. This enhancement exceeds the values predicted by the cross
section alone, which corresponds to the case where all electrons will scatter only once.
Thus, there will be a trade-off between the total luminosity and the sharpness of the
luminosity spectrum.

5.1.4 Distance between conversion region and interaction point
The angle of a back-scattered photon with respect to the direction of the initial electron
is determined by the photon energy as [95]

θγ =
mec

2

E0

√
x− (x+ 1)y

y
= ϑ0

√
ym
y

− 1, (5.25)
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Figure 5.4: Energy spectrum (normalised to maximum) of back-scattered photons with x = 4.8
and 2heΩ = −1 for different values of A/A0 (marked on the solid curves). The dashed curve is
the spectrum corresponding to all electrons scattering only once. Figure is taken from [95].

which decreases with increasing photon energy.

Thus, the contribution to the luminosity from low-energy photons decreases faster over
distance compared to high-energy photons. The luminosity spectrum will depend on the
distance d between the conversion region and the interaction point. For large distances,
the luminosity spectrum will be sharply peaked at high energies, but the total luminosity
will decrease. Hence, this represents another trade-off between the total luminosity and
the sharpness of the luminosity spectrum.

The dimensionless parameter

% =
d

γσ∗
y

(5.26)

is often used to describe the distance between the conversion region and the IP.

5.2 Parameter study results

5.2.1 Luminosity optimisation
We initially performed a parameter scan in GUINEA-PIG for a photon collider us-
ing electron beam parameters from table 3.3. In particular, we used the parameters
N = 5 · 109, Eb = 1.5TeV, γεx = 0.887mmmrad, γεy = 0.020mmmrad, σz = 2 µm, 5 µm
and 10 µm and 1 µm ≤ β∗

x,y ≤ 10 µm to assess the σz-β∗
x,y-dependence of the luminosity.
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The other parameters used in this parameter scan are x = 4.8, 2heΩ = −0.8, A/A0 = 1.0
and % = 1.0.

Plots of the total luminosity L and the peak luminosity Lpeak per beam crossing (bx) are
shown in figure 5.5 and 5.6 respectively. The peak luminosity Lpeak is defined here as the
part of the luminosity corresponding to centre of mass energy

√
s > 0.80ym

√
s0, where√

s0 is the nominal centre of mass collision energy.
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(c) σz = 10 µm.

Figure 5.5: Contour plots of total luminosity L vs. horizontal and vertical beta function β∗
x

and β∗
y at the interaction point.
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(a) σz = 2 µm.

2000 4000 6000 8000 10000

2

4

6

8

10

1

1.5

2

2.5

3

3.5

10
36

(b) σz = 5 µm.
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(c) σz = 10 µm.

Figure 5.6: Contour plots of peak luminosity Lpeak vs. horizontal and vertical beta function
β∗
x and β∗

y at the interaction point.

These results indicate that the total luminosity L and the peak luminosity are inde-
pendent of σz for short beams in the examined interval 2 µm ≤ σz ≤ 10 µm i. For e+e−
collisions, a σz-dependence was introduced to the total luminosity through beamstrahlung
limitation requirements. This requirement does not apply for γγ collisions, so the inde-
pendence of σz is expected. Furthermore, both the luminosity and the sharpness of the
spectrum are increased with decreasing β∗

x and β∗
y

ii.

Thus, the total and peak luminosity can be maximised by minimising β∗
x and β∗

y . The
CLIC 3TeV parameter set uses β∗

x = 6.9mm and β∗
y = 68 µm, which represent the small-

iThe hourglass effect was avoided since β∗
y ≥ σz.

iiAt high energy and larger beam charges, conversion of high energy photons into coherent pairs in
the fields of the opposing electron beam can however restrict the horizontal spot size [56].
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est beta functions currently achievable. These values for β∗
x,y however take into account

non-linear effects and are not matched to the spot sizes and emittances given in reference
[27], so we instead choose to assess the matched values β∗

x = 9.0mm and β∗
y = 0.147mm

in this study. We performed additional GUINEA-PIG simulations for γγ collisions of
photons scattered at electron beams with N = 5 · 109 electrons, σz = 5 µm, β∗

x = 9.0mm
and β∗

y = 0.147mm to study the effect of A/A0 and % on the luminosity spectrum. The
luminosity spectra are plotted against χ =

√
s/
√
s0 in figure 5.7 and 5.8.
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Figure 5.7: Luminosity spectra for γγ collisions for a laser with several target thicknesses A/A0

and the distance % = 1 between the conversion region and interaction point. χ =
√
s/
√
s0.
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Figure 5.8: Luminosity spectra for γγ collisions for a laser with target thickness A/A0 = 1
and several distances % between the conversion region and interaction point. χ =

√
s/
√
s0.

As expected, large laser pulse energies lead to an enhancement of the low-energy part of
the luminosity spectrum due to increased chance of multiple scattering and an increased
number of low-energy photons. For A/A0 = 0.5, Lpeak/L = 0.25 while Lpeak/L = 0.085
for A/A0 = 1.5. Furthermore, larger values of % result in a decrease in the low-energy part
of the spectrum and smaller total luminosities. Large values of % however also enhance
the relative sharpness with Lpeak/L = 0.14 for % = 1.0 and Lpeak/L = 0.20 for % = 3.0.
Due to this dependence on %, for a fixed distance d between the conversion point and
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the IP, decreasing β∗
y would lead to an improvement of the sharpness of the luminosity

spectrum, but the increase in total luminosity would be less than the 1/
√
β∗
y -scaling.

5.2.2 Background
In this background study, we will consider the case where no beam separation scheme
for the e− beams are applied, and compare the results for two sets of β∗

x and β∗
y . Set 1

contains the previously used values β∗
x = 9.0mm and β∗

y = 0.147mm, while set 2 contains
the smallest values β∗

x = 1.0mm and β∗
y = 1.0 µm that were considered in this parameter

scan. In addition, we will also compare these results with outcomes obtained using
the CLIC parameter setiii. Other parameters such as N = 5 · 109 electrons, σz = 5 µm,
2heΩ = −0.8, A/A0 = 1.0, and % = 1.0 are kept identical for all parameter sets.

Table 5.1 summarises key figures such as the total number of different types of background
particles produced per beam crossing. Several types of luminosities and energies are also
listed. As expected, parameter set 2 results in the highest γγ luminosity Lγγ and also
has the sharpest γγ luminosity spectrum.

Lγγ of set 1 is larger than expected compared to the CLIC set, which should only have
been a factor ∼ 1.56 larger due to the N2/

√
εx scaling of luminosity. In order to examine

if this is caused by the difference in σz, we performed a separate simulation using set
1 parameters except replacing σz = 5 µm with σz = 44 µm. This separate simulation
resulted in Lγγ = 8.48 · 1035m−2bx−1 and Lpeak

γγ = 1.27 · 1035m−2bx−1, which agree well
with the N2/

√
εx-scaling and indicate a σz dependence for large σz.

Compared to Lγγ, both the γe− luminosity Lγe− and the e−e− luminosity Le−e− are 2–3
orders of magnitude lower for all three parameter sets.

The number of background particles for parameter set 2 is higher than the other sets,
which is expected due to more intense beam fields leading to the production of more
particles. The total energies of the background particles are also highest for parameter
set 2, so that it overall produces the strongest background.

In a γγ collider whose electron beams have not been separated after conversion, secondary
e+e− pairs can be created through all the processes described in subsection 4.2.2 and 4.2.3.
Production of secondary e+e− pairs are however suppressed due to the Compton back-
scattering, which leads to energy-depleted beams with reduced beam fields. Reduced
fields will suppress the production of both coherent and trident pairs, with the reduc-
tion in trident pairs being especially significant, as the trident cascade process requires
Υ � 1. The energy depleted beams also lead to smaller total scattering cross sections for
the Bethe-Heitler and Landau-Lifshitz processes, which suppresses the production of in-

iiiUsing β∗
x = 9.0mm and β∗

y = 0.147mm.
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Quantity Unit Set 1 Set 2 CLIC
N 109 5.0 5.0 3.72
σz µm 5.0 5.0 44.0
β∗
x mm 9.0 1.0 9.0
β∗
y µm 147 1.0 147
γεx mmmrad 0.887 0.887 0.66
γεy mmmrad 0.02 0.02 0.02
Lγγ 1035 m−2 bx−1 12.09 209.16 5.45
Lpeak

γγ 1035 m−2 bx−1 1.72 41.51 0.85
Lγe− 1035 m−2 bx−1 0.06 1.08 0.03
Le−e− 1035 m−2 bx−1 0.05 0.56 0.02
Ncoh 108 1.73 13.49 0.08
Ecoh 1011 GeV 0.33 1.66 0.03
Ntri 107 0.91 5.45 0.04
Etri 109 GeV 1.03 2.70 0.10
Ninc 105 0.26 3.46 0.12
Einc 107 GeV 0.12 2.12 0.06
NH 70.15 1291.33 33.17

Table 5.1: Luminosity and background comparison.

coherent pairs. This suppression becomes evident by comparing the results for the CLIC
parameter set in table 5.1 with the corresponding results in table 4.6.

The cross section for the direct scattering process γγ → qq̄ falls with energy, but the
cross section for resolved photon processes increases with the incident photon energies.
In a γγ collider, the incident photons are more energetic than in an e+e− collider, which
result in stronger hadronic backgrounds. Again comparing table 5.1 and 4.6, we see that
the number of hadronic events per beam crossing in a γγ collider is significantly higher
than in an e+e− collider.

The total numbers of hits per beam crossing in a vertex detector with basic detector
parameters as outlined in table 4.1 are listed in table 5.2. Comparing the results for
CLIC parameters to the number of hits found in table 4.8, we find a significantly lower
number of hits in the γγ case. Lastly, the integrated energies deposited at the detector
exit are plotted against exit opening radius in figure 5.2. Parameter set 2, which has the
highest number of background particles, also has the most severely deflected particles of
the three cases, with the incoherent pairs reaching exit aperture radius of ∼ 160mm.

In summary, the examined γγ collider parameter sets can deliver significantly larger total
luminosities than the examined e+e− collider parameter sets shown in table 4.4, while
also offering reduced background contribution from secondary e+e− pairs. However, the
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Parameter set Unit Beam Coh. Tri. Incoh.
Set 1 104 0 380.0 0 0.32
Set 2 104 0 2000.0 0 4.1
CLIC 0 0 0 61

Table 5.2: Total number of hits in the vertex detector from the spent beam (Beam), coherent
pairs (Coh.), trident pairs (Tri.) and incoherent pairs (Incoh.) for the three parameter sets.
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(a) Parameter set 1.
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(b) Parameter set 2.
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(c) CLIC parameter set.

Figure 5.9: Integrated energy deposited at the detector exit for spent beam particles, coherent
pairs and trident pairs associated with the two colliding beams in addition to energy deposited
by the incoherent pairs vs. detector opening radius. The detector exit is located 3m downstream
of the IP.

√
s = 3TeV.

luminosity spreads, and hadronic backgrounds are comparatively larger.
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CHAPTER 6

Conclusion

6.1 Summary

The objective of this thesis was to establish parameter sets for multi-TeV PWFA e+e−
and γγ colliders that take into account the constraint on efficiency imposed by transverse
instabilities induced by transverse wakefields.

Even though several conceptual parameter sets for a PWFA linear collider have been
proposed, no PWFA linear collider studies have so far considered the constraint of ef-
ficiency imposed by transverse instabilities. In this thesis, we described the transverse
instabilities in PWFA using the wakefield formalism used in CLIC parameter studies [27],
and benchmarked the results against QuickPIC simulation results in chapter 3. Using the
wakefield formalism, a simplified quasi-static model was developed, and was combined
with QuickPIC simulations in order to model the evolution of the transverse oscillations
of the main beam over a 1.5TeV PWFA electron accelerator.

We demonstrated that the Snowmass parameter set was unable to provide sufficiently
stable propagation for a main beam consisting of electrons, and we performed a parameter
scan over the main beam charge, rms beam length and beam separation distance using
the Snowmass parameter set as a basis. The energy spread is induced by beam loading
as a result of placing the main beam at different phases of the longitudinal wakefield.
By selecting an operating point with a reasonable compromise between stability, energy
spread and efficiency from the parameter scan results, we derived a new set of PWFA
electron accelerator parameters summarised in table 4.2. This parameter set improves the
Snowmass parameter set in terms of energy spread, stability and luminosity per power
and is the basis for collider parameter studies in chapter 4 and 5.
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In addition, chapter 3 also presented a second accelerator parameter scan where we
assumed that linear energy chirps of different longitudinal profiles can be introduced
to the main beam independently of other parameters such as beam charge and beam
separation distance. The results indicate that the required energy chirps are in good
agreement with the predictions of the BNS damping requirement.

Results in chapter 4 demonstrate that beamstrahlung can be suppressed with short
beams, which allows the horizontal beam size to be reduced appropriately in order to
increase luminosity without increasing beamstrahlung. This results in a 1/

√
σz-scaling

of the total luminosity, which is beneficial for PWFA, as short beams are preferred for
PWFA. Chapter 4 then derived a parameter set for a 3TeV e+e− PWFA linear collider
outlined in table 4.2 that shows a promising level of luminosity, while maintaining a rea-
sonable luminosity spread. Even for a scenario where the positron beam only contains
10% of the particles in the electron beam, the derived parameter set can still provide
luminosity per beam crossing comparable to that of CLIC at 3TeV. At 14TeV, the
derived collider parameter set is able to achieve the luminosity goal of 40 · 1034 cm−2 s−1

with a significantly lower beam power than the CLIC parameter set. These parameters
are however not optimised for this energy level, and thus give rise to a large luminosity
spread. The proposed parameter set furthermore has a vertical beta function that is an
order of magnitude smaller than what is currently achievable. The CLIC parameter set
has minimised the beam sizes by optimising the damping ring and the beam delivery
system. The Oide effect is a major obstacle in achieving such small beta functions, which
entails challenges for the final focusing system design. Thus, further studies in reducing
the beam sizes are required in order to achieve the luminosity goals. However, despite
the derived PWFA e+e− collider parameter sets being able to offer interesting improve-
ments over the CLIC parameter set, the stronger fields in the PWFA beams also lead
to significantly stronger backgrounds that result in more hits in the vertex detector and
require larger exit openings. Collisions with asymmetric beam charges will also produce
asymmetric backgrounds that should be considered in the detector design.

Due to the challenges of accelerating positrons in a plasma, and the possibility of achieving
a higher luminosity than e+e− collisions in collisions with high-energy photons due to the
absence of beamstrahlung, a γγ collider can be considered as an alternative to an e+e−
collider. The absence of beam-beam effects in γγ collisions allows for increasing the
total luminosity by minimising β∗

x,y of incoming electron beams used for back-scattering
photons, as shown in chapter 5.

The combined parameter set consisting of the derived PWFA beam parameters and small-
est currently achievable β∗

x,y is able to provide a significantly higher total luminosity than
a γγ collider based on CLIC parameters, but also produces a larger background. The
examined γγ collider parameters in table 5.1 can also deliver significantly larger total
luminosities than the examined e+e− collider parameters in table 4.4 with a smaller back-
ground contribution from secondary e+e− pairs compared to a similar e+e− collider. This
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however comes at the expense of larger luminosity spreads and hadronic backgrounds.

6.2 Future outlooks
The parameter study in chapter 3 is not exhaustive, and did not consider the effects of
beam induced ion motion, which has been shown to mitigate hose instability [76, 77].
Recent studies also indicate that emittance growth arising from ion motion may not be
as severe as previously anticipated [97], so ion motion should be considered as another
mitigation mechanism for transverse instabilities in addition to damping using energy
spread. If these two mitigation mechanisms can be combined, the energy spread required
to achieve acceptable beam stability may be reduced and the constrain on the maximum
amount of beam particles that can be accelerated may also be relaxed. The additional
damping from ion motion may in certain cases even allow the main beam to be placed
further behind inside the plasma ion bubble to achieve a higher efficiency.

Technical constraints were rarely considered in this thesis, but in order to arrive at a con-
ceptual design report for a PWFA-based collider, design work carried out in parallel with
further technical development is required, as parameter optimisation will be affected by
technical choices. This will require test facilities capable of addressing challenges such as
emittance preservation at the mmmrad-level, energy spread minimisation through beam
loading and operation with beam trains in addition to the challenges mentioned above.
There are currently less than ten facilities in the world that are capable of delivering par-
ticle beams suitable for PWFA experiments, i.e. nC particle beams with sub-ps length
and GeV energy focused to sub-mm transverse sizes [43]. In the ALEGRO input for the
2020 update of the European Strategy for Particle Physics [43, 44], it was stated that the
major goal of the collaboration is to construct dedicated advanced and novel accelerator
facilities that can reliably deliver high-quality, multi-GeV electron beams from a small
number of stages in the coming decade.

Even though PWFA experiments have already successfully demonstrated important mile-
stones such as two-beam acceleration [35], acceleration of electrons at high gradient
(∼ 50GV/m) over a metre-scale plasma [36] and energy transfer efficiency from the drive
to the main beam of 30% [37], important elements such as staging of multi-GeV accel-
eration stages, reliable acceleration of positrons and acceleration of collider-grade beams
remain to be demonstrated. On the modelling and simulation front, it is envisioned
that future exascale computing can drastically reduce computation time, while theory
and machine learning algorithms will be deployed to develop fast models that can guide
large-scale parameter scans.

Another proposed collider option that has recently seen an increased interest is the muon
collider, envisioned to collide muons and anti-muons at multi-TeV centre of mass energies.
Since muons are fundamental particles, they possess the potential to produce very high-
energy collisions that can transfer all energy into the production of new particles. In
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comparison, only a fraction of the energy carried by colliding partons is available for
the hard collisions. This potential is highlighted in the Muon Collider Working Group’s
input to the European Strategy for Particle Physics, where the report emphasised that a
14TeV muon collider can provide an effective energy reach similar to that of a 100TeV
FCC proton-proton collider [91].

However, the mean lifetime of muons at rest is 2.2 µs, which constitute major challenges
for achieving high luminosities. In order to minimise the loss of muons through decay,
muon beams must be cooled to low emittances and accelerated to collision energies on
short timescales. Plasma acceleration with their high gradients may thus be a suitable
accelerator choice for a muon collider.

From the ancient atomists of Greece to the dreams of future high-energy colliders, human-
ity’s quest for knowledge has seen remarkable triumphs and uncovered profound wonders
motivated by fundamental human curiosity, often independently of immediate practical
applications. Nevertheless, era-defining technological revolutions that have transformed
our civilisation can often be traced back to discoveries in fundamental physics that seemed
of little relevance to the everyday life of their time. It is thus of paramount importance
that fundamental research continues independently of immediate potentials for applica-
tions. After all, there are few ideas that are more detrimental to a civilisation’s continued
prosperity than the arrogant delusion that our knowledge is sufficient, that there are no
worthwhile frontiers to be conquered and that there are no wonders of value left to be
discovered.

Considering the many remaining enigmas in fundamental physics, it is only to be expected
that the most profound discoveries are yet ahead of us, hidden beyond our current horizon.
It has been a true pleasure and honour to give my contribution in expanding this horizon
in the form of this thesis – however humble it might be.

106



Bibliography

[1] G. Aad, T. Abajyan, B. Abbott, J. Abdallah, et al., “Measurements of Higgs boson
production and couplings in diboson final states with the ATLAS detector at the
LHC,” Phys. Lett. B, vol. 726, 2013.

[2] S. Chatrchyan, V. Khachatryan, A. Sirunyan, A. Tumasyan, et al., “Combination
of standard model Higgs boson searches and measurements of the properties of the
new boson with a mass near 125 GeV,” tech. rep., Apr 2013.

[3] F. Englert and R. Brout, “Broken symmetry and the mass of gauge vector mesons,”
Phys. Rev. Lett., vol. 13, Aug 1964.

[4] P. W. Higgs, “Broken symmetries and the masses of gauge bosons,” Phys. Rev. Lett.,
vol. 13, Oct 1964.

[5] P. W. Higgs, “Broken symmetries, massless particles and gauge fields,” Phys. Lett.,
vol. 12, no. 2, 1964.

[6] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global conservation laws and
massless particles,” Phys. Rev. Lett., vol. 13, Nov 1964.

[7] O. Chamberlain, E. Segrè, C. Wiegand, and T. Ypsilantis, “Observation of antipro-
tons,” Phys. Rev., vol. 100, Nov 1955.

[8] G. Danby, J. Gaillard, K. A. Goulianos, L. Lederman, et al., “Observation of high-
energy neutrino reactions and the existence of two kinds of neutrinos,” Phys. Rev.
Lett., vol. 9, 1962.

[9] J. J. Aubert, U. Becker, P. J. Biggs, J. Burger, et al., “Experimental observation of
a heavy particle J ,” Phys. Rev. Lett., vol. 33, Dec 1974.

[10] J. E. Augustin, A. M. Boyarski, M. Breidenbach, F. Bulos, et al., “Discovery of a
narrow resonance in e+e− annihilation,” Phys. Rev. Lett., vol. 33, Dec 1974.

[11] R. Brandelik et al., “Evidence for planar events in e+ e− annihilation at high-

107



108 BIBLIOGRAPHY

energies,” Phys. Lett. B, vol. 86, 1979.

[12] C. Berger, H. Genzel, R. Grigull, W. Lackas, et al., “Evidence for gluon
bremsstrahlung in e+e− annihilations at high energies,” Phys. Lett. B, vol. 86, no. 3,
1979.

[13] G. Arnison, A. Astbury, B. Aubert, C. Bacci, et al., “Experimental observation of
isolated large transverse energy electrons with associated missing energy at

√
s =

540 GeV,” Phys. Lett. B, vol. 122, no. 1, 1983.

[14] P. Bagnaia, M. Banner, R. Battiston, P. Bloch, et al., “Evidence for Z0 → e+e− at
the CERN pp collider,” Phys. Lett. B, vol. 129, no. 1, 1983.

[15] G. Aad, T. Abajyan, B. Abbott, J. Abdallah, et al., “Observation of a new particle
in the search for the Standard Model Higgs boson with the ATLAS detector at the
LHC,” Phys. Lett. B, vol. 716, no. 1, 2012.

[16] S. Chatrchyan, V. Khachatryan, A. Sirunyan, A. Tumasyan, et al., “Observation of
a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Phys.
Lett. B, vol. 716, no. 1, 2012.

[17] P. Spentzouris, J. Cary, L. McInnes, W. Mori, et al., “Community petascale project
for accelerator science and simulation: Advancing computational science for future
accelerators and accelerator technologies,” J. Phys. Conf. Ser., vol. 125, Aug 2008.

[18] P. Chen, G. Horton-Smith, T. Ohgaki, A. Weidemann, et al., “CAIN: Conglomérat
d’abel et d’interactions non-linéaires,” Nucl. Instr. Meth. Phys. Res. Sec. A, vol. 355,
no. 1, 1995.

[19] D. Schulte, Study of Electromagnetic and Hadronic Background in the Interaction
Region of the TESLA Collider. PhD thesis, Hamburg U., 1997.

[20] K. Wille and J. McFall, The Physics of Particle Accelerators: An Introduction.
Oxford University Press, 2000.

[21] M. A. Thomson, “Model-independent measurement of the e+e− → HZ cross section
at a future e+e−-linear collider using hadronic Z decays,” Eur. Phys. J. C, vol. 76,
Feb 2016.

[22] H. Abramowicz, A. Abusleme, K. Afanaciev, N. Alipour Tehrani, et al., “Higgs
physics at the CLIC electron–positron linear collider,” Eur. Phys. J. C, vol. 77, Jul
2017.

[23] “2020 Update of the European Strategy for Particle Physics (Brochure),” Tech. Rep.
CERN-ESU-015, Geneva, 2020.

[24] R. K. Ellis, B. Heinemann, J. de Blas, M. Cepeda, et al., “Physics Briefing Book:

108



BIBLIOGRAPHY 109

Input for the European Strategy for Particle Physics Update 2020,” Tech. Rep.
arXiv:1910.11775, Geneva, Oct 2019.

[25] A.-M. Liénard, “L’eclairage electrique,” 1898.

[26] C. Adolphsen, M. Barone, B. Barish, K. Buesser, et al., “The International Linear
Collider Technical Design Report,” tech. rep., Geneva, Jun 2013.

[27] M. Aicheler, P. Burrows, M. Draper, T. Garvey, et al., A Multi-TeV Linear Collider
Based on CLIC Technology: CLIC Conceptual Design Report. CERN Yellow Reports:
Monographs, Geneva: CERN, 2012.

[28] M. Benedikt, A. Blondel, O. Brunner, M. Capeans Garrido, et al., “FCC-ee: The
Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2. Fu-
ture Circular Collider,” Tech. Rep. CERN-ACC-2018-0057. 2, CERN, Geneva, Dec
2018.

[29] M. Benedikt, M. Capeans Garrido, F. Cerutti, B. Goddard, et al., “FCC-hh: The
Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3.
Future Circular Collider,” Tech. Rep. CERN-ACC-2018-0058, CERN, Geneva, Dec
2018.

[30] The CEPC Study Group, “CEPC conceptual design report: Volume 1 - accelerator,”
2018, arXiV: 1809.00285.

[31] W. Wuensch, “CLIC Accelerating Structure Development,” Sep 2008.

[32] D. Schulte, “Application of advanced accelerator concepts for colliders,” Rev. of
Accel. Sci. and Tech., vol. 09, 2016.

[33] S. M. Hooker, R. Bartolini, S. P. D. Mangles, A. Tünnermann, et al., “Multi-pulse
laser wakefield acceleration: a new route to efficient, high-repetition-rate plasma
accelerators and high flux radiation sources,” J. Phys. B, vol. 47, Nov 2014.

[34] T. Tajima and J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett., vol. 43,
Jul 1979.

[35] J. B. Rosenzweig, D. B. Cline, B. Cole, H. Figueroa, et al., “Experimental observation
of plasma wake-field acceleration,” Phys. Rev. Lett., vol. 61, Jul 1988.

[36] I. Blumenfeld, C. Clayton, F.-J. Decker, M. Hogan, et al., “Energy doubling of
42 GeV electrons in a metre-scale plasma wakefield accelerator,” Nature, vol. 445,
Mar 2007.

[37] M. Litos et al., “High-efficiency acceleration of an electron beam in a plasma wake-
field accelerator,” Nature, vol. 515, no. 7525, 2014.

109



110 BIBLIOGRAPHY

[38] V. Lebedev, A. Burov, and S. Nagaitsev, “Luminosity limitations of linear colliders
based on plasma acceleration,” Rev. of Accel. Sci. and Tech., vol. 09, 2016.

[39] “Advanced accelerator development strategy report: DOE advanced accelerator con-
cepts research roadmap workshop,” tech. rep., Feb 2016.

[40] B. Cros and P. Muggli, “Towards a Proposal for an Advanced Linear Collider Re-
port on the Advanced and Novel Accelerators for High Energy Physics Roadmap
Workshop, CERN, Geneva, April 2017,” tech. rep., Dec 2017.

[41] E. Adli, J.-P. Delahaye, S. J. Gessner, M. J. Hogan, et al., “A Beam Driven Plasma-
Wakefield Linear Collider: From Higgs Factory to Multi-TeV,” in Community Sum-
mer Study 2013: Snowmass on the Mississippi, Aug 2013.

[42] E. Adli, “Plasma wakefield linear colliders–opportunities and challenges,” Phil.
Trans. R. Soc. A., vol. 377, 2019.

[43] B. Cros and P. Muggli, “ALEGRO input for the 2020 update of the European Strat-
egy,” Jan 2019.

[44] ALEGRO collaboration, “Towards an advanced linear international collider,” 2019,
arXiV: 1901.10370.

[45] E. Gschwendtner, E. Adli, L. Amorim, R. Apsimon, et al., “AWAKE, the advanced
proton driven plasma wakefield acceleration experiment at cern,” Nucl. Instr. Meth.
Phys. Res. Sec. A, vol. 829, Dec 2015.

[46] M. Litos, E. Adli, J. Allen, W. An, et al., “9 GeV energy gain in a beam-driven
plasma wakefield accelerator,” Plasma Physics and Controlled Fusion, vol. 58, Nov
2015.

[47] J. Vieira and J. T. Mendonça, “Nonlinear laser driven donut wakefields for positron
and electron acceleration,” Phys. Rev. Lett., vol. 112, May 2014.

[48] S. Gessner, Demonstration of the hollow channel wakefield accelerator. PhD thesis,
Stanford University, Sep 2016.

[49] S. Gessner, E. Adli, J. Allen, W. An, et al., “Demonstration of a positron beam-
driven hollow channel plasma wakefield accelerator,” Nature Communications, vol. 7,
Jun 2016.

[50] C. A. Lindstrøm, E. Adli, J. M. Allen, W. An, et al., “Measurement of transverse
wakefields induced by a misaligned positron bunch in a hollow channel plasma ac-
celerator,” Phys. Rev. Lett., vol. 120, Mar 2018.

[51] S. Diederichs, T. J. Mehrling, C. Benedetti, C. B. Schroeder, et al., “Positron trans-
port and acceleration in beam-driven plasma wakefield accelerators using plasma

110



BIBLIOGRAPHY 111

columns,” Phys. Rev. Accel. Beams, vol. 22, Aug 2019.

[52] S. Diederichs, C. Benedetti, E. Esarey, J. Osterhoff, et al., “High-quality positron
acceleration in beam-driven plasma accelerators,” Phys. Rev. Accel. Beams, vol. 23,
Dec 2020.

[53] I. F. Ginzburg, G. Kotkin, V. G. Serbo, and V. I. Telnov, “Production of high-energy
colliding γγ and γe beams with a high luminosity at VLEPP accelerators,” JETP
Lett., vol. 34, Nov 1981.

[54] C. Akerlof, “Using the SLC as a photon accelerator,” 1981.

[55] W. Chou, “γγ collider – a brief history and recent developments,” CERN Proc.,
vol. 1, 2018.

[56] V. I. Telnov, “Physics goals and parameters of photon colliders,” Int. J. Mod. Phys.
A, vol. 13, 1998.

[57] B. Badelek, C. Blöchinger, J. Blümlein, E. Boos, et al., “The photon collider at
TESLA,” Int. J. Mod. Phys. A, vol. 19, Dec 2004.

[58] M. J. Boland, U. Felzmann, P. J. Giansiracusa, T. G. Lucas, et al., Updated baseline
for a staged Compact Linear Collider. CERN Yellow Reports: Monographs, Geneva:
CERN, Aug 2016.

[59] A. W. Chao, Physics of Collective Beam Instabilities in High-Energy Accelerators.
New York: Wiley, 1993.

[60] K. Bane and K. LF, “Short-range dipole wakefields in accelerating structures for the
NLC,” Aug 2020.

[61] R. Keinigs and M. E. Jones, “Two‐dimensional dynamics of the plasma wakefield
accelerator,” The Physics of Fluids, vol. 30, no. 1, 1987.

[62] W. Lu, C. Huang, M. Zhou, W. Mori, et al., “Nonlinear theory for relativistic plasma
wakefields in the blowout regime,” Phys. Rev. Lett., vol. 96, May 2006.

[63] P. B. Wilson, “Introduction to Wake Fields and Wake Potentials,” in Physics of
particle accelerators Proc., Fermilab Summer School 1987, Cornell Summer School
1988, vol. 184, (Fermilab), American Institute of Physics, 1989.

[64] V. Lebedev, A. Burov, and S. Nagaitsev, “Efficiency versus instability in plasma
accelerators,” Phys. Rev. Accel. and Beams, vol. 20, Dec 2017.

[65] G. Stupakov, “Short-range wakefields generated in the blowout regime of plasma-
wakefield acceleration,” Phys. Rev. Accel. Beams, vol. 21, Apr 2018.

111



112 BIBLIOGRAPHY

[66] M. Kelliher and R. Beadle, “Pulse-shortening in electron linear accelerators,” Nature,
vol. 187, Sep 1960.

[67] W. Panofsky and M. Bander, “Asymptotic theory of beam breakup in linear accel-
erators,” Rev. Sci. Instrum., vol. 39, 1968.

[68] D. H. Whittum, W. M. Sharp, S. S. Yu, M. Lampe, et al., “Electron-hose instability
in the ion-focused regime,” Phys. Rev. Lett., vol. 67, Aug 1991.

[69] J. B. B. Chen, D. Schulte, and E. Adli, “Modeling and simulation of transverse
wakefields in PWFA,” J. Phys. Conf. Ser., vol. 1596, Jul 2020.

[70] C. Huang, V. Decyk, C. Ren, M. Zhou, et al., “QUICKPIC: A highly efficient
particle-in-cell code for modeling wakefield acceleration in plasmas,” J. Comp. Phys.,
vol. 217, no. 2, 2006.

[71] C. Huang, W. Lu, M. Zhou, C. E. Clayton, et al., “Hosing instability in the blow-out
regime for plasma-wakefield acceleration,” Phys. Rev. Lett., vol. 99, Dec 2007.

[72] T. J. Mehrling, R. A. Fonseca, A. Martinez de la Ossa, and J. Vieira, “Mitigation
of the hose instability in plasma-wakefield accelerators,” Phys. Rev. Lett., vol. 118,
Apr 2017.

[73] C. Joshi, E. Adli, W. An, C. E. Clayton, et al., “Plasma wakefield acceleration
experiments at FACET-II,” Plasma Physics and Controlled Fusion, vol. 60, Jan
2018.

[74] W. An, M. Zhou, N. Vafaei-Najafabadi, K. Marsh, et al., “Strategies for mitigat-
ing the ionization-induced beam head erosion problem in an electron-beam-driven
plasma wakefield accelerator,” Phys. Rev. ST Accel. Beams, vol. 16, Oct 2013.

[75] V. E. Balakin, A. V. Novokhatsky, and V. P. Smirnov, “VLEPP: Transverse Beam
Dynamics,” in Proc., 12th Int. Conf. on High-Energy Accelerators, HEACC 1983,
vol. C830811, (Batavia, IL), Fermilab, Fermilab, 1983.

[76] A. Burov, S. Nagaitsev, and V. Lebedev, “Beam breakup mitigation by ion mobility
in plasma acceleration,” 2018, arXiV: 1808.03860.

[77] T. J. Mehrling, R. A. Fonseca, A. Martinez de la Ossa, and J. Vieira, “Mitigation
of the hose instability in plasma-wakefield accelerators,” Phys. Rev. Lett., vol. 118,
Apr 2017.

[78] E. Adli, J.-P. Delahaye, S. J. Gessner, M. J. Hogan, et al., “A beam driven plasma-
wakefield linear collider: From Higgs factory to multi-TeV,” in Proc., 2013 Com-
munity Summer Study on the Future of U.S. Particle Physics: Snowmass on the
Mississippi (CSS2013), (Minneapolis, MN), 2013.

112



BIBLIOGRAPHY 113

[79] M. Tzoufras, W. Lu, F. Tsung, C. Huang, et al., “Beam loading by electrons in
nonlinear plasma wakes,” Physics of Plasmas, vol. 16, May 2009.

[80] R. D’Arcy, S. Wesch, A. Aschikhin, S. Bohlen, et al., “Tunable plasma-based energy
dechirper,” Phys. Rev. Lett., vol. 122, Jan 2019.

[81] J. B. B. Chen, D. Schulte, and E. Adli, “e+e− beam-beam parameter study for a
TeV-scale PWFA linear collider,” 2020, arXiV: 2009.13672.

[82] K. Yokoya and P. Chen, “Beam-beam phenomena in linear colliders,” Lect. Notes
Phys., vol. 400, Apr 1991.

[83] D. Schulte, “Beam-beam effects in linear colliders,” CERN Yellow Reports: School
Proceedings, vol. 3, 2017.

[84] A. Sokolov, I. Ternov, and C. Kilmister, Radiation from Relativistic Electrons. Amer-
ican Institute of Physics translation series, American Inst. of Physics, 1986.

[85] A. W. Chao, K. H. Mess, M. Tigner, and F. Zimmermann, Handbook of Accelerator
Physics and Engineering. World Scientific Publishing Company, 2013.

[86] P. Chen and V. I. Telnov, “Coherent pair creation in linear colliders,” Phys. Rev.
Lett., vol. 63, Oct 1989.

[87] P. Chen, T. Tauchi, and D. Schroeder, “Pair creation at large inherent angles,”
in 1990 DPF Summer Study on High-energy Physics: Research Directions for the
Decade (Snowmass 90), 1990.

[88] V. Baier, V. Fadin, V. Khoze, and E. Kuraev, “Inelastic processes in high energy
quantum electrodynamics,” Physics Reports, vol. 78, no. 3, 1981.

[89] M. Drees and R. M. Godbole, “Resolved photon processes,” J. Phys., vol. 21, 1995.

[90] A. Doche, C. Beekman, S. Corde, J. Allen, et al., “Acceleration of a trailing positron
bunch in a plasma wakefield accelerator,” Scientific Reports, vol. 7, Dec 2017.

[91] J. P. Delahaye, M. Diemoz, K. Long, B. Mansoulié, et al., “Muon colliders,” 2019,
arXiV: 1901.06150.

[92] K. Oide, “Synchrotron Radiation Limit on the Focusing of Electron Beams,” Phys.
Rev. Lett., vol. 61, 1988.

[93] O. Blanco, R. Tomás, and P. Bambade, “Beam focusing limitation from synchrotron
radiation in two dimensions,” Phys. Rev. Accel. Beams, vol. 19, no. 2, 2016.

[94] J. B. B. Chen, D. Schulte, and E. Adli, “γγ beam-beam parameter study for a 3 TeV
PWFA linear collider,” 2020, arXiV: 2010.00680.

113



114 BIBLIOGRAPHY

[95] V. Telnov, “Principles of photon colliders,” Nucl. Instr. Meth. Phys. Res. Sec. A,
vol. 355, no. 1, 1995.

[96] I. F. Ginzburg, G. L. Kotkin, V. G. Serbo, and V. I. Telnov, “Colliding ge and gg
beams based on the single-pass e±e− colliders (VLEPP type),” Nucl. Instr. Meth.
Phys. Res., vol. 205, no. 1, 1983.

[97] W. An, W. Lu, C. Huang, X. Xu, et al., “Ion motion induced emittance growth of
matched electron beams in plasma wakefields,” Phys. Rev. Lett., vol. 118, Jun 2017.

[98] A. V. Fedotov, R. L. Gluckstern, and M. Venturini, “Transverse impedance of a
periodic array of cavities,” Phys. Rev. ST Accel. Beams, vol. 2, Jun 1999.

114



APPENDIX A

Non-linear Regime Transverse Wake
Function

Using the identity
d
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drb
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)
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, (A.1)

Lu’s equation can be written as
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. (A.2)

Invoking equation (2.120), we obtain
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For a beam with a bi-Gaussian particle distribution
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the line distribution is given by
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normalised as
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2π
. (A.6)
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In order to obtain the wakefield immediately behind a driving particle placed at ξ′, we
add a perturbation to the line distribution of the form

δλ =
1

2π
δ(ξ′ − ξ) (A.7)

and integrate equation A.3, which yields

Wz(ξ
′−) = − e

πε0r2b(ξ
′)
. (A.8)

Next, we apply the short-range wake theorem [60, 64, 98] to obtain the transverse wake
function. Adapted to our definitions, this reads

Wr = − 2

er2b(ξ
′)

ξ′ˆ

ξ

Wz dz =
2

πε0

ξ′ − ξ

r4b(ξ
′)
Θ(ξ′ − ξ). (A.9)

The Heaviside step function Θ(ξ′ − ξ) has been added, since trailing particles are placed
at ξ < ξ′ in our convention.

Finally, by making the substitution rb(ξ
′) → rb(ξ

′) + αk−1
p , we recover the transverse

wake function given in chapter 2:

Wr(ξ
′ − ξ, α) =

2

πε0

ξ′ − ξ

(rb(ξ′) + αk−1
p )4

Θ(ξ′ − ξ). (A.10)
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