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Abstract

This paper presents the conceptual project of a 2 x 250 GeV photon collider at
TESLA. The main idea of the proposal is to use the beam of the linear collider to
generate FEL radiation. At an intermediate phase of acceleration (£ = 10 GeV) the
electron beam passes the undulator of the FEL amplifier and amplifies the optical
radiation of the master oscillator (A = 1.053 1 m, peak power 100 MW). An output
radiation of 350 GW peak power is produced at the amplifier exit. After that the
electron and optical bunches are separated. The electron bunch is accelerated up to
the final energy of 250 GeV and the optical bunch is transported to the conversion
point via an open optical waveguide which has the form of a diaphragm focusing
line and is placed in parallel with the main accelerator. At the conversion point
the optical beam is focused on the electron beam and after the conversion point
the gamma quanta follow the initial electron trajectory and meet at the interaction
point with the other gamma-beam produced by another part of the collider. The
integral luminosity of the colliding y-beams is L., ~ 1.5 x 103 cm™?s™".

The feasibility of the proposal is confirmed by the results of numerical simulations.

Preprint submitted to Elsevier Science 22 December 1994



1 Introduction

It is evident nowadays that traditional circular e*e™ colliders exhausted their
capabilities to attain a center-of-mass energy higher than 200 GeV. So, this
energy region could be exploited only with the future generation of linear
colliders. It is assumed that the first linear colliders will operate in the center-
of-mass energy of about 500 GeV [1]. In addition to providing electron-positron
colliding beams, linear colliders can reveal an unique opportunity to study the
structure of matter by means of colliding photon-photon or photon-electron
(positron) beams. For instance, topponium C = +1 states could be studied in
two-photon reactions. The Higgs bosons could also be produced using photon
colliding beams via the branch vy — H. Even in the case when the Higgs
boson will be found at ete™ linear colliders, its properties may be studied in
detail only with photon linear colliders [2].

The idea to construct a photon linear collider (PLC) is based on a peculiar
feature of the linear collider, namely that electron (positron) beams are used
only once during the duty cycle of the collider and are dumped after interac-
tion. It was proposed in the early 80’s to convert the energy of electrons into
high energy v-quanta and to organize collision of the high energy y-beams
[3,4]. From technical point of view the construction of the photon linear col-
lider seems to be more simple. First, there is no need for positrons for the PLC
operation, so the injection system of the collider can be simplified significantly.
For instance, the damping ring can be removed and the injection system could
be built on the basis of the photoinjector technique. Secondly, the problems
connected with beam-beam interaction are not so severe as in the case of the
colliding electron-positron beams, so there is no need to prepare flat beams
and round beams can be used. On the other hand, a novel problem arises,
namely that of an effective conversion of electrons into high energy v-quanta.

It is accepted now that the use of Compton backscattering of laser light on
the electrons of the collider is the optimal way to solve this problem. It is
likely that the laser light wavelength should be tunable as there exists an
optimal value of the laser light wavelength which depends on the energy of
the electrons £ as A (um) ~ 4 x £ (TeV) !. For instance, if the energy of
the electrons is equal to 250 GeV, the laser light wavelength should be of
about 1 um. To provide high conversion efficiency, the peak power of the laser
must be rather high. For instance, to achieve 70 % conversion efliciency, the
peak power of the laser should be about 300 GW (this value corresponds
to a laser with an ideal, i.e. diffraction dispersion, otherwise the peak power

' At a shorter wavelength, the process of ete™ pair production begins to play a sig-
nificant role, thus increasing the background. At a longer wavelength, the maximal
energy of y-quanta is decreased [5].



must be higher). The laser pulse format must follow the pulse format of the
electron bunches of the linear collider. It means, that the laser should have
the capability of precise synchronization with the electron bunches (with the

jitter of about 1 ps) and should provide a high repetition rate. To provide

a wider range of physical experiments, there should be a possibility to steer
the polarization of the colliding gamma quanta which assumes a possibility to
steer the polarization of the laser light.

An analysis of existing quantum lasers shows that all these requirements can
not be fulfilled simultaneously. As for the peak radiation power, they are capa-
ble to generate peak output power ~ 1 TW with the required pulse duration.
As for the repetition rate, it can not be achieved due to the low efficiency of
quantum lasers and the problem to cool the active medium.

On the other hand, the free electron laser (FEL) technique provides a possi-
bility to construct the laser system which meets all the requirements for the
PLC. Indeed, the FEL can provide a high efficiency, it is tunable and capable
to generate powerful coherent radiation which always has minimal (i.e. diffrac-
tion) dispersion. With a sufficient quality of the driving electron beam, the
FEL peak output power is defined by the peak power of this driving beam.
At an electron beam energy of £ ~ 1 GeV and a peak beam current of / ~
1 kA, this power reaches the TW level. The problem of synchronization can
be solved naturally as it is based totally on the accelerator-technology. The
FEL output radiation is totally polarized: circularly or linearly for the case
of helical or planar undulator, respectively. This feature of the FEL radiation
reveals wide possibilities to steer the helicity and energy spectrum of colliding
gamma quanta (see Appendix A).

The idea to use the FEL in the PLC scheme was proposed in ref. [4]. Later this
approach has been developed in refs. [6,7] where different aspects of the FEL
based photon linear colliders have been discussed. In ref. [6] we have studied
the possibility of constructing a high-luminosity 2 x 5 GeV photon collider
at SLC. It was shown that construction of such a collider with luminosity up
to 10%cm™2s7! is quite possible with a minor upgrade of the existent SLC
facility. In ref. [7] we have considered conceptual projects of the FEL based
PLC in the TeV energy range and we have shown that FEL systems for PLC
application can be constructed at the present level of accelerator technology.

In the present paper we study the possibility to construct the PLC on the
basis of the superconducting collider TESLA [1]. The general parameters of
the TESLA collider are presented in Table 1 [1]. The repetition rate of the
collider is 10 Hz and 800 bunches of 6 ps pulse duration are accelerated within
each macropulse. To construct a photon linear collider on the basis of TESLA,
one needs to construct a laser with a wavelength of about 1 pm and a peak
power of about 300 GW which possesses the capability to provide the necessary



Table 1
Main parameters for the ete™ version of the TESLA project at 2 X 250 GeV

Beam energy, GeV 250
Gradient, MV /m 25
Two-linac active length, kin 20
RF frequency., GHz 1.3

Number of particles per bunch 5.14 x 10'°
Number of bunches per pulse 800

Bunch separation, ;;s 1
Repetition frequency, Hz 10

R.M.S. bunch length o,, em 0.1

Luminosity, cm~2s~! 2.6 x 1023

time diagram of operation.

Our investigation has shown that the project parameters of TESLA allow one
to use the electron beam of the main accelerator at an intermediate stage of
acceleration (10 GeV) as the driving beam for the FEL amplifier. Such an
FEL amplifier is capable to produce the photon beam characteristics which
meet the requirements for the PLC applications. It was shown also that the
TESLA Test Facility could be used as a test basis for a photon linear collider
design.

2 Conceptual project of the PLC

In this section we present the conceptual project of a 2 x 250 GeV photon
collider at TESLA. A scheme of this collider is presented in Figs.1 and 2 and
its parameters are summarized in Table 2. The main idea of the proposal is to
use the beam of the linear collider to generate radiation. At the intermediate
phase of acceleration (£ = 10 GeV) the electron beam passes the undulator of
the FEL amplifier and amplifies the optical radiation from the master oscillator
tA = 1.053 g m. peak power 100 MW). An output radiation of 350 GW peak
power is produced at the amplifier exit. Then the electron and optical bunches
are separated. The electron bunch is accelerated up to the final energy of
250 GeV and the optical bunch is transported to the conversion point via
an open optical waveguide which has the form of a diaphragm focusing line
and which is placed in parallel with the main accelerator. To provide optimal
focusing conditions at the conversion point, the optical bunch should advance



the electron bunch by several tens of centimeters. This is provided by an optical
delay line with the delay time equal to the time interval between bunches. In
this case the radiation generated by one bunch is focused on the following
one. After the conversion point the gamma quanta follow the initial electron
trajectories and meet in the interaction point with the other gamma-beam
produced by the opposite part of the collider. The integral luminosity of the
colliding v-beams is L., ~ 1.5 x 10 cm™2%s7!.

N=—"_— — - .=
Laser beam I T T I |
Diaphragm focusing line

Fig. 1. Conceptual scheme of the photon linear collider at TESLA

Master
laser

Undulator
NS SN NN N
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Diaphragm focusing line

Fig. 2. Conceptual scheme of an FEL amplifier for the photon linear collider at
TESLA

Such an approach naturally provides the synchronization of the optical and
laser bunches and the generation of the laser beam with the required pulse
duration and repetition rate.



Table 2
Main parameters for a vy version of the TESLA project

Main linear accelerator

Electron beam energy, GeV 250
Number of electrbns per bunch 5.14 x 10'°
Number of bunches per pulse 800

Bunch separation, us 1
Repetition frequency, Hz 10
Electron bunch length o,, cm 0.1
Normalized emittance, cmXxrad T x 1073
Beta function at IP, cm 0.1

Diaphragm line

Diaphragm separation, cm 100
Hole radius. cm 5

Power losses per one diaphragm 2 x 10~
Length, km 10

Optical system

Laser power at GP, GW 300
Laser light wavelength, pm 1.06
Laser beam spot size at the mirror, cm 5
Focus distance of the mirror, cm 75

Conversion & Interaction regions

Maximal energy of y-quantums, GeV 206

Conversion efficiency 7., 0.7
Distance between CP and IP, cm 3
Luminosity L., cm~2%s™! 1.5 x 10%

2.1 Injection system

Since there is no need for positrons for the photon collider operation, the in-
jection system could be simplified significantly. We assume that such a system
can be constructed using a photoinjector technique. To provide the required
parameters of the electron beam, it is sufficient to use the laser driven rf-gun
with normalized brightness B, ~ 5 x 107 A cm™?*rad™? (B, = I/¢2, where [

n?



is the beam current).

2.2 FEL amplifier

The source of the primary photons is the FEL amplifier designed by the MOPA
(master oscillator - power amplifier) scheme. The radiation of the master os-
cillator (Nd:YLF laser, A = 1.053 pm, peak power W ~ 100 MW and average
power ~ 10 W) is amplified in the FEL amplifier up to the power 350 GW.
The master laser has parameters close to those used in the photoinjector laser
svstems [13].

Table 3

FEL amplifier parameters for the PLC

Electron beam

Electron energy, GeV 10
Beam current. A 500
Energy spread, keV 500
Normalized emittance, cm xrad T x 1073
Undulator )
Undulator period, cm 40

Undulator field, kGs (enter./exit) 12/ 10.8
Length of untapered section, m 73
Total undulator length, m 330

Diaphragm line

Diaphragm separation, cm 1
Hole radius, cm 0.3
Power losses per one diaphragm 1.1 x 1075
Radiation
Radiation wavelength, pm 1.06
Input power, MW 100
Output power. GW 350
Efficiency, % 7 -

The main parameters of the FEL amplifier are presented in Table 3. The
electron beam of the main accelerator (£ = 10 GeV, Ipeax = 500 A) is used
as a driving beam. The undulator of the FEL amplifier is a helical one with



a period A, = 40 cm and a magnetic field at the axis H, ~ 12 kGs. It
seems to be reasonable to construct the undulator using iron yokes and poles
and water-cooled windings. Three dipoles, rotated by an angle of 120° with
respect to each other, constitute a period of such an undulator (see Fig.3)
[12]. The number of amper-turns should be equal to NI ~ 8000 Axturns for
cach winding at the pole gap of 1 cm. The main advantage of such a design is
simplicity of manufacturing, the possibility of simple control of the undulator
field, high reliability and relatively low cost.

Fig. 3. Scheme of undulator design

An initial section of the undulator of 73 m length is untapered and provides
exponential amplification of the radiation field of the master oscillator. To
attain the required level of the output power, the final section of the undulator
of 257 m length should be tapered. At the amplifier exit, the FEL efficiency
is equal to 7 %.

Due to the relatively low value of the peak current, there is no possibility to
use the conventional FEL amplifier scheme in which radiation is confined due
to the “optical guiding” effect [9,10]. To overcome this problem, we use the
scheme of the FEL amplifier with an open optical waveguide in the form of a
diaphragm line [11].

2.8 Transporting thannel for radiation

Having passed the FEL undulator, the electron beam is accelerated up to the
final energy 250 GeV. Since the powerful optical bunch is produced at the very
beginning of the accelerator, the next problem is to find a transport channel
capable to transport the powerful radiation beam along a long distance with-
out significant losses. This problem may be solved with a diaphragm focusing
line which has the form of periodically spaced screens with round holes (see
Appendix B). The diaphragm focusing line is placed in parallel to the main
accelerator (see Fig.2). At large Fresnel number, the eigenmodes of such a
waveguide have low diffraction losses. For instance, with a hole radius of 5 cm,
a distance between the screens of 1 m and a radiation wavelength A ~ 1 pm,
the relative radiation power losses per one diaphragm are of about 2 x 107° for
the TEMgo ground mode. In the case under study, the total radiation power



losses along the transport channel are equal to 2%.

2.4/ Conversion and interaction region

After passing their ways along the accelerator, electron and optical bunches
should meet at the conversion point (see Fig.1). To provide optimal focusing
conditions at the conversion point, the optical bunch should advance the elec-
tron bunch by several tens of centimeters. It is natural to use an optical delay
line which provides the delay time equal to the time interval between bunches.
In this case the radiation generated by one bunch is focused on the following
one. The total radiation power losses in the diaphragm and the optical delay
line are equal to 15 %. As a result, 300 GW of peak radiation power are trans-
ported to the conversion point. At optimal conditions of laser beam focusing
on the electron beam (see Appendix A and Table 2), the conversion efficiency
is about 0.7. Then high energy v-quanta follow the initial electron trajectories
and meet at the interaction point with the other y-quantum beam produced
by the opposite part of the collider. The integral luminosity of the colliding
v-beams is Ly, ~ 1.5 x 10 cm™?%s71.

3 Calculations of the FEL amplifier

In the case under study the “optical guiding” effect can not provide efficient
confinement of the radiation which leads to a significant degradation of the
FEL amplifier parameters. To solve this problem, we propose to use an FEL
amplifier with a diaphragm line. Such an FEL amplifier scheme has been
proposed in ref. [11] and can be used in FEL amplifier schemes for inertial
confinement fusion. In this scheme a periodic diaphragm line is used for fo-
cusing and confinement of the radiation in the amplifier. It has the form of a
sequence of totallv absorbing screens with holes. At large values of the Fresnel
number, the eigenmodes of the diaphragm line have rather small diffraction
losses. At a relatively small gain of the radiation field amplitude along the
undulator axis, the electron beam does not affect significantly the transverse
distribution of the radiation field and the latter is defined mainly by the di-
aphragm line. The transverse field distribution of the TEMgo ground mode of
the diaphragm line is of the form:

l E ‘OC Jo(l/my'/R),

where 7 is transverse coordinate, R is the radius of the diaphragm line holes,
J, is the Bessel function and vg, is the first root of the Bessel function of zero



order. When the transverse size of the electron beam is much less than the
aperture of the diaphragm line, the radiation field change across the electron
beam can be neglected which reveals the possibility to use the one-dimensional
approximation. In this case an “effective” beam current density can be sub-
stituted into the equations of the one-dimensional FEL amplifier theory:

jo=1[mR*J}vey) ] ~3.71/(xR%).

where [ is the total beam current. In addition, the difference between the
phase velocity of the TEMgy mode and the velocity of light ¢ should be taken
into account in the FEL resonance condition. In the case under study such an
approach provides a correct description of the processes in the FEL amplifier
with a diaphragm line. Thus, the calculation of the FEL amplifier can be
performed in the framework of the one-dimensional model [14].

3.1 Working equations

Let us consider the electron beam moving along the z axis in the field of a
helical undulator:

Hy 4+ 1Hy, = Hy exp{—tkwz}, (1)

where k,, = 27/, is the undulator wavenumber. We neglect the transverse
variation of the undulator magnetic field and assume that the electrons move
along the constrained helical trajectories parallel to the z axis. The electron
rotation angle 0, is considered to be small and the longitudinal electron velocity
v, is close to the velocity of light ¢ (v, >~ ¢).

The electric field of the amplified wave is presented in the complex form:

Ex+iE, = E(z,y,z)exp[iw(z/vpn — t)] . (2)
where w is the frequency of the amplified wave and vy, is the phase velocity
of the TEMg ground mode of the diaphragm line.

The equations of motion of the electron can be written in the form [14]:

d€/dz = cos(vp + o),
dip [dz = ry — &(v," — Vi), (3)



where v,(&, z) is the longitudinal velocity of the electron, u and )y are, respec-
tively, the amplitude and the phase of the effective potential of the particle-
wave interaction which are connected by the complex field amplitude E(0,0, 2)
at the undulator axis as follows (we assume here © > 0 ):

(u/2) exp(ivg) = 2 Hy 2k €., (4)

and —e is the charge of the electron. Evolution of the amplitude and the phase
of the effective potential is described by the following equations:

dufdz =[me’H? k% E%c] 5y cos(vo — 1),
dipo/dz = — [7we*H2 |2 E%c] (j1/u) sin(o — 1), (5)

where j; and 1 are, respectively, the amplitude and the phase of the first
harmonic of the beam current density j,:

2T
. L.
)| COS¢1=“/JzCOS Y,
T
0

2
.. 1 .
jsingy = —— / josinpdip. (6)
7I-0

Equations (3) and (5) constitute the self-consistent system of the one-dimensional

model of the FEL amplifier.

At small deviations of the energy of the electrons from the nominal value &y,
equations (3) and (5) can be simplified by using an expansion in the small
parameter P = (£ — &)/&. It is convenient for the further considerations to
use the reduced variables:

2=0MAoz, C=Clho, P =wP/(cy?Ao), (7a)

o= wu/cylEAL, 71 = ji/do. (7b)

The detuning parameter C and the gain parameter Ag are defined as

J1/3
C = ky — w;292c — V2 c/2Rw, Ao = [71']'0952(.‘)/737],4] / , (7¢)

where T4 = mc®ie ~ 1T kA, v = &/met, 4,2 = v 2 4+ 62,0, = Q/y =
¢ Hy /kwmc?y is the rotation angle of electron in the undulator and m is the
mass of the electron. As a result, equations (3) and (5) take the form:

10



dP/dz =1t cos(y + ¥1),
dy/di=P + C, (8)

divfdz = jy cos(wo — 1),
dipy/dz = —(jl/ﬁ) sin(yo — 1) (9)

3.2  Numerical simulation algorithm

.

We simulate the electron beam with N macroparticles per interval (0, 27) over
phase 1. The beam current density j, = 7,/jo is calculated as

2

2|

jz:_

S8 - v) (10)

where ;) are phases of the particles and & (% — 1(;) ) is the delta function.
It follows from eq. (10) that J, has the following normalization:

27
/ S = —2r.
0

The amplitude 71 and phase v, of the first harmonic of the beam current
density are given by the expressions:

A

2T
. 17, 2 &
jreostpy == [ jycos i =~ 3 cos .
T Nj:l

2
- 17 2 &
N smz/)I:———/stmd)dz/) = —Zsmd)(j).
4 Nj:l

The equations of motion (8) for the N particles together with the field equa-
tions (9) compose the system of 2N + 2 equations describing the amplification
process in the FEL amplifier.

We consider the initial conditions when the electron beam is neither modu-
lated in velocity nor in density and the amplitude of the TEMgg mode of the

11



electromagnetic wave at the undulator axis is equal to E.,,. Then we have the
following initial conditions at the undulator entrance at z =0 (j = 1,..., N):

Piy(0) =0,  51(0)=0,  @(0) = itex = Euxe/ Fo,

where Ey = (cv2EAL) [/ (ewby).
3.3  Calculations of the FEL with untapered undulator

First, we consider the case that space charge fields and energy spread do
not influence the FEL amplifier operation and that diffraction losses in the
diaphragm line can be neglected.

In the linear high gain limit, when @ < 1 and @/ #ex > 1, the field amplitude
grows exponentially with the undulator length:

#(2) = const x exp(ReA?), (11)

where Re A is the real part of the eigenvalue and in the case of exact resonance
(C =0) is equal to:

ReA = v/3/2. (12)

The field stops growing in the saturation regime when the beam is overmodu-
lated and a significant fraction of the electrons fall into the accelerating phase
of the effective potential. The maximal value of the reduced field amplitude
at C =01s

timax =| E lmax / Fo = 2.34. (13)

-

The coordinate of the saturation can be found using the following relation
(3 = 0 corresponds to the undulator entrance) [14]:

2
Smax = 3.1 + —= In(azl). (14)

V3

In the high gain limit the FEL efficiency n can be defined as the ratio of the
electromagnetic radiation power flux at the amplifier exit to the electron beam
power flux at the undulator entrance. Taking into account eqgs. (8) and (9) we
can write:

12



R
n=eccl| £(0,0,2)|? /27(7‘,]3(1/011"/R)d7“/471'50] =
0

ec| E1? Jan&ejo = B0 /4. (15)

where

B = cyAo/w. . (16)

The saturation parameter 3 is inversely proportional to the number of undula-
tor periods and is always small. It is also useful to define the reduced efficiency
n=mn/B =14%/4. At C = 0 the maximal reduced FEL efficiency at saturation
is

fear = 2. /4 = 1.37. (17)

All the considerations presented above have been performed without taking
into account the field attenuation in the diaphragm line. Such an approach is
valid when the field attenuation is small at the gain length I, ~ Ag'. Using
eq. (B.7), we obtain the following relation for the relative field decrease per
one diaphragm:

K = 0.15(AL)*%/ R®. (18)

Thus, the losses in the focusing diaphragm line do not influence significantly
the FEL amplifier operation when

Kl /L ~015)32 LV AR < 1. (19)

In order to calculate the parameters of the FEL amplifier we should define
the value of the beam current /. Assuming the longitudinal distribution of
the beam current to be Gaussian with o, = 1 mm, we find from Table 2 the
peak value of the beam current, I., ~ 1 kA. We will use the model of a
homogeneous electron beam with a current I = 0.5 X Ijpax =~ 0.5 kA and an
effective length 2(27)'/20, ~ 5 mm. We will prove below the validity of such
a model. Substituting this value of the beam current into egs. (7), (16) and
118), we obtain:

Ap=47%x10"em™, K =55x%x10"°,
B=15x10"2 de = 0.23. (20)

13



We see, that the field attenuation in the diaphragm line is small and is about
1.2 % at the gain length and can be neglected. The FEL amplifier with un-
tapered undulator saturates at [, = 103 m and provides maximal efficiency
Nsat = 0.2 % which is much less than the required value of 7 %.

3.4 Calculations of the FEL with tapered undulator

A reliable method to increase the FEL amplifier efficiency is the adiabatic
change of the undulator parameters along the undulator axis (i.e. undulator
tapering).

When the FEL efficiency increased significantly with respect to untapered
case, but still remains small, 7 < 1, the system of equations (8) and (9) can
be used for calculations. The only distinction with the previous section is that
in the case of undulator tapering the detuning

C = ky —w/2e72 = Ky — (1 + Q%) /2¢7?, (21)

depends on the longitudinal coordinate and is a function of the undulator
period Ay and undulator parameter @ . Here we consider a specific method of
tapering, namely the change of the undulator field at fixed undulator period.
The detuning is fixed at the initial section of the undulator and, starting from
some distance %;, changes as a quadratic polynomial:

C(2) = ko + k(2 — &) + ka2 — 5)% (22)

The choice of the quadratic law of the tapering can be easily understood with
a simple model situation. Let us consider the case of a completely bunched
electron beam. It follows from the first equation of (9) that the field ampli-
tude is growing proportionally to the undulator length. Then, it follows form
the first equation of (8) that the change of the particle energy is proportional
to the squared length of the undulator. Finally, from the second equation of
svstem (8) we find, that the resonance condition takes place when the detun-
ing parameter C is changed quadratically, too. This qualitative consideration
allows one to find an asymptotic behaviour of the detuning C(2). So, in order
to obtain optimal conditions of the tapering, the values of the four coefficients
ko, k1, k; and 3; should be defined. We have performed a set of calculation to
maximize the output amplitude at (2 — ;) > 1 and we obtained the following
optimal values of the tapering parameters [14]:

14



The optimal length of the untapered undulator section can be found from the
relation:

9
4= 174+ —=In(azl). (24)

V3

Comparison of relations (14) and (24) shows that the undulator tapering must
start at a distance of A2 = 1.4 before the saturation point of the untapered
undulator. Phase analysis shows that at optimal parameters of the tapering
(23). 65 % of the particles are trapped in the regime of coherent deceleration.
The field amplitude at (2 — 3,) > 3 can be calculated with the following
approximate formula:

U~z —

In(azL). (25)

Using relations (14) and (24), we can calculate the total undulator length 2
of the FEL amplifier with efficiency 7:

2
5,0 200+ —=In(azl). (26)

V3

In the case under study the efficiency n = 7 % is achieved at the total undulator
length 330 m (£; ~ 15.4). The length of untapered section is equal to z; >~ 73 m
(3 = 3.4).

In Fig.4 we present a plot of the dependence of the reduced field amplitude 4(2)
on the reduced undulator length. In this case tex; = 0.23 which corresponds
to a power of the TEMg, mode at the undulator entrance to be equal to
Wexe = 100 MW, Undulator tapering starts at z; = 3.4 and detuning changes

as

-

C = 1.44(5 —3.4) +0.36(2 — 3.4)% (27)

At the same figure we present the dependence of #(2) on 2 for untapered undu-
lator. Fig.5 presents the phase distributions of the macroparticles at different
coordinates of the tapered section.

It follows from the definition of the detuning C that in order to preserve the
synchronism at the tapering with the fixed undulator period A, the undulator
field H,, must be decreased as

= ()q(z - Zi) + CYQ(Z — Zi)2. (28)
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Fig. 4. Dependence of the reduced field amplitude versus the reduced undulator
length. Curve (1) — untapered undulator, curve (2) - tapered undulator

The coefficients a; and «, are related to the coefficients k; and k» as:

Q o Q
by = 2 k= iy 29
T8RS T T4 QBAR (29)

Using relations (27) - (29) we find that the undulator field amplitude at the
undulator exit is Hy(zf) = 10.8 kGs .

3.5 Validity of low effictency approzimation

-

The simulations of the nonlinear regime of the FEL amplifier operation pre-
sented above, have been performed with equations (8) and (9) which has been
derived from the initial equations (3) and (5) by an expansion in the small
parameter P = (£ — &)/&. While this approach is valid in the low efficiency
case, its validity should be carefully checked in the case under study when the
tinal FEL efficiency is of about 7 %.

We normalize eqgs. (3) and (5) in the same manner as was done in section
3.2 with the onlv refinement that all the normalization factors,  and 3 =

2Ag/w, are calculated using the initial values of the beam and undulator
parameters:
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dé—(1+.3P)2{P(1+2>+T(Z)<1 2Q)? e )>} (30)

ﬂT(é)) % cos( + o),
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d3 Q?

dipg 1 14 Q? ) 2 X sin(y) + o)

~ = 1 T(z -~ ~

E u( o T NJZ:; L+ P, (31)

Taking into account expression (28), the function 7'(2) is written in the form:

T(3) =ko + k1(2 — &) + k(2 — &), (32)

where coefficients k; and «; are connected with eqs. (29).

At a sufficiently short undulator length the energy losses of the trapped par-
ticle are small, AE/& = AP < 1 and the system of equations (30) and (31)
reduces to the system of equations (8) and (9). In this case the detuning pa-
rameter C(2) is equal to T(2) and the growing of the field amplitude i(z, 8)
is the same as for @(2) (see Fig.4). In this initial section the average energy of
the trapped particles decreases quadratically with the undulator length, com-
pensating for the quadratic increase of the parameter T'(2) in the equation
dv/ds = P + T(3) of the system (30). The average change of the phase of
the trapped particles is zero, < dip/d2 >= 0, and their motion corresponds to
phase oscillations about the equilibrium decelerating phase . + o = const
(according to the second equation of the system (31), at @ > 1 the change
of the phase of the effective potential 1y can be neglected). As the length
of the undulator is increased, the difference between the approximate system
of equations (8) and (9) and the original system (30) and (31) begins to be-
come significant and in the general case the latter system should be used for
simulations.

A thorough analvsis presented in ref. [14] has shown that simulations based on
the low efficiency approximation are valid in two cases. First, they are valid
at a large value of the undulator parameter @ > 1 and can even be used
when the FEL efficiency is close to unity. Secondly, in the case when @ is of
the order of unitv and the saturation parameter 8 < 0.3, the low efficiency
approximation provides sufficient accuracy of the calculations when the FEL
efficiency is less than 10 %. In the case under study we have ¢ = 45 and
n = 7 %, so this FEL amplifier can be calculated using the low efliciency
approximation.
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3.6  Noise of the FEL amplifier

The power of the master oscillator W,y should be much higher than the in-
trinsic noise of the FEL amplifier < W, >. Let us estimate the value of the
FEL amplifier noise. Assuming that the number of electrons emitted from the
cathode fluctuates randomly in time, we can write the expression for the rms
value of the beam current fluctuations in the frequency band Aw:

< (AD)? >~ elAw/T. (33)

Then we should remember that the frequency bandwidth of the FEL amplifier
operating in a linear regime is

Aw/fwy ~ \o/Kw- (34)

These fluctuations of the beam current (or, in other words, the fluctuations of
the beam density) play the role of an external signal. The “effective power” of
such a signal can be estimated as the value of the radiation power emitted by
the electron beam with initial modulation given by eq. (33) at one gain length

Agl:

< W >>< (AI)? > 02/cA R (35)

Taking into account eqgs. (33) and (34) we finally obtain:

< Wiy, > eI0%4% Ao R2. (36)

Here we should emphasize that the effective power of the shot noise in the
FEL amplifier with diaphragm line is defined by the value of the total beam
current. This is connected with the fact that in such an FEL the transverse
size of the optical beam is defined by the focusing diaphragm line and is much
wider than the transverse size of the electron beam. As a result, the process
of the amplification is defined by the value of the total beam current.

In the case under consideration (see Table 3), the effective power of the shot
noise is about 1 W.

3.7 Auzial nonuniformity of the beam current

In the considerations presented above we have approximated the axial distri-
bution of the beam current by a flat-top pulse of 500 A and 2v/270, ~ 5 mm
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length. In the real situation the beam current has a Gaussian distribution with
peak current equal to 1 kA and half-width o, = 1 mm. We should prove the
validity of such a model. It was shown in ref. [14] that the efficiency of the
FEL amplifier with the tapered undulator does not vary significantly when
the beam current increases significantly with respect to nominal value and
the output power grows proportionally to the beam current. On the other
hand, the FEL efficiency (and the output power) is decreased rapidly with the
beam current decrease. It is explained by the peculiar features of the regime
of coherent deceleration. In particular, the optimal value of the tapering co-
efficient ky is 0.36. The regime of coherent deceleration remains stable when
ks is decreased and becomes unstable in the opposite case. Remembering that
k, is inversely proportional to the beam current I, we can understand such a
dependency of the FEL amplifier efficiency on the beam current. So, in order
to provide effective conditions for the FEL operation, its optimization should
be performed not at the peak value of the beam current, but at a smaller value
of the beam current. Fig.6 presents the actual axial distribution of the beam
current and the corresponding distribution of the output power of the FEL
amplifier with optimized parameters. Using these plots we find that the inte-
grated energy in one pulse is about 5.7 J within the “effective” pulse duration
17 ps which corresponds to the average power 350 GW, just the same value
which is produced by the model electron bunch.
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I (kA), W(TW)

Fig. 6. Axial distribution of the beam current in the elctron beam (curve 1) and
axial distribution of the output power in the optical beam (curves 2 and 3). Curve
2 13) are calculated without (with) taking into account the slippage effect.
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3.8  Slippage effects

In the calculations performed until now we neglected the slippage effects. The
curve 3 in Fig.6 presents the results of more accurate calculations taking into
account slippage effects and axial distribution of the beam current. Comparing
this curve with curve 2 at the same figure, we conclude that slippage effects
do not influence significantly the FEL amplifier operation.

3.9 FEnergy spread and emittance effects

The energy spread of the beam has been included in the simulation algorithm
by dividing all the macroparticles in the phase interval 0 < ¢ < 27 for 2 =0
into a small even number N, of groups. The macroparticles in each group
have identical phases 1 for 2 = 0. The initial values of the reduced momenta
Pj of the particles in each group (¢ = 1,..., N,) are described by a Gaussian
distribution

~

F(P) = (2nA2) P exp [~ P?/(2A%) ] (37)

with rms deviation < (AP)? >= AZ. The phases of the groups of particles
for 2 = 0 were distributed in the interval from 0 to 27 in such a way that
the amplitude of the first harmonic of the macroparticle density was equal to
Zero.

Using equations (30) and (31) we have studied the influence of the energy
spread on the trapping efficiency of the FEL amplifier. When performing op-
timization, we changed the detuning by the following law:

\ Crm at 2 < 3,
o=y (38)
C = Cm—{—kl(é—f;’i)-}-kz(?:’—éi)? at z > éi,

where Cp, is the detuning corresponding to the maximal value of the incre-
ment in the linear mode of operation. The optimization procedure consisted
in finding optimal values of the tapering coefficients k;, k2 and Z; (as functions
of the energy spread) to maximize the field amplitude at 2 — 2 > 1. Fig.7
illustrates the dependence of the trapping factor as a function of the space
charge parameter.

Assuming the energy spread in the beam to be Gaussian with the rms disper-
sion o /& ~ 0.005 % (see Table 3), we calculate the energy spread parameter
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Fig. 7. Dependence of the trapping factor on the energy spread parameter.
AZ appearing in eq. (37): .

AL = 0?/B%E2 ~ 0.001. (39)

It is seen from the plot in Fig.7 that such a value of the energy spread does
not influence the FEL amplifier operation.

The finite value of the electron beam emittance results in the angular spread
of the electrons in the beam and in an additional spread of the longitudinal
electron velocities. The emittance effects can be taken into account as follows.
As a rule, the electron beam should be matched with the focusing system of
the undulator which results in the following values of the beam radius r and
angle spread (< {A#8)?>)!/? in the beam:

ro = (Bwea/~ )2 (<(A0)*5)V2 = (enfmByy)'/? (40)

where (3, = \ﬁ/\w/27r9w is the beta-function of the electron beam in the
undulator and ¢, is the normalized emittance of the beam.-The presence of
the angle spread in the beam results in an additional spread in the longitudinal
velocities which may be interpreted as an additional energy spread. So, the
inclusion of the emittance effects is performed by substituting the real energy
spread o = [<1AE/E)?>]Y/? in the energy spread parameter by “effective”
energy spread

op = [<(AE/E)> +4F <(A0)2>? /4]
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Using the parameters presented in Table 3 we obtain the following value of
the “effective” energy spread due to emittance:

~

(AL)eg ~ vH(< (A0) >)*/48% = 107°. (41)

and its contribution to the longitudinal velocity spread is negligibly small.
3.10 Restrictions on the energy deviation

Fig.8 presents the dependency of the FEL amplifier output power on the
reduced detuning C'. This plot enables one to find restrictions on the values of
systematical drifts: frequency of the master oscillator Awfw = 28-AC; energy
deviation AE/E = 3-AC; undulator field AH,,/H., = f(1+Q?)-AC/Q” (here
the reduced bandwidth of the amplifier AC is determined by the requirements
on the stability of the output power level). It is seen from the plot in Fig.8
that systematical drifts ~ 0.1 % of the above mentioned parameters do not
influence significantly the FEL amplifier output power.
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Fig. 8. Dependence of the output field amplitude at the amplifier exit on the de-
tuning parameter.

It should be noticed that the electron beam, produced by the RF accelerator,
has finite phase extent with respect to the accelerating RF wavelength. It
results in a drift of the mean energy of the particles along the beam. Using
Table 1, one can obtain that the half-width of this distribution is equal to
§E/E ~ (1/4)(m0,/A)? ~ 0.02 %. In accordance with the plot presented in
Fig.8, such value of energy drift does not influence on the FEL output power.
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3.11 Influence of synchrotron radiation on the FEL amplifier
operation

When electrons move in the undulator of the FEL amplifier they radiate in-
coherent synchrotron radiation, too. This results in the decrease of the mean
energy and increase of the energy spread in the electron beam due to the
quantum fluctuations of synchrotron radiation.

Energy losses of electron due to synchrotron radiation are given with the
expression:

d&/dz = 2r*y*H2(2)/3, :

where 7, = e?/mc’.

In the present example the total energy losses in the undulator are about
A& /& ~ 0.5 %. These energy losses do not interfere with the FEL amplifier
operation, because they may be compensated by an appropriate tuning of the
magnetic field of the undulator, thus providing the resonance condition.

A more harmful influence of synchrotron radiation may be caused by the
growth of the energy spread in the electron beam due to the quantum fluctu-
ations of synchrotron radiation. The rate of the energy diffusion is given by
the expression:

< d(6€)?[dz >= 55ehyir? HE [24+/3me.

The resulting energy spread is given by the expression:

(Ag)ﬂ >~ [(Ag)srhwsr]l/zv

where (AE),; are the total energy losses of the electron due to the synchrotron
radiation and Aw,, = 3ehy?H,/2mc is the characteristic energy of the syn-
chrotron radiation y-quanta. In the present example the increase in the en-
ergy spread is about (A&)g/E =~ 0.02 %. Numerical simulations have shown
that such an energy spread does not decrease significantly the FEL amplifier
etficiency.
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3.12  Applicability region of the single-mode approrimation

A peculiar feature of the FEL amplifier calculations presented above is the
use of the single-mode approximation. Namely, we assume tnat the amplified
wave corresponds to the TEMgo ground mode of the empty waveguide. On
the other hand, in the general case the eigenmode of an active waveguide 1s
the superposition of modes of the empty waveguide. With respect to this a
reasonable question arises on the validity region of such an approximation.

-

In Appendix C we present rigorous results of the linear theory of the FEL
amplifier with a diaphragm focusing line. In the linear high gain limit the
radiation of the electron beam in the undulator can be represented as a set of
modes. When amplification takes place, the mode configuration in the trans-
verse plane remains unchanged while the amplitude grows exponentially with
the undulator length. Each mode is characterized by the increment eigenvalue
and the field distribution eigenfunction in terms of transverse coordinates. In
the general case the eigenmode of an active waveguide is a superposition of
modes of the empty waveguide. The mode with the highest increment is dom-
inating all other modes. Following the gain process along the undulator axis
one finds that the field distribution is settled corresponding to the mode with
the maximum increment.
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Fig. 9. Dependence of the reduced increment on the detuning. The parameters of
the numerical example correspond to the parameters of the FEL amplifier from
Table 3. The solid curve is the result of a solution of the exact eigenvalue equation
(C.17) and the circles correspond to the one-dimensional approximation (C.32).

In Fig.9 we present the dependency of the maximal increment on the detun-
ing for axisymmetric modes. It is seen that this dependence has a character
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Fig. 10. Relative contribution of the modes of the empty waveguide into the power
of the beam radiation mode. Parameters of the numerical example correspond to
the parameters of the FEL amplifier from Table 3. Here C' = 0.8 {see Fig.9).

of maxima series. The physical nature of this phenomenon is illustrated with
the plots presented in Fig.10 where histogram of the relative contributions
of the passive waveguide modes into the power of the beam radiation mode,
are presented. One can find from these plots that each time when the reso-
nant condition of the beam with the corresponding passive waveguide mode
is fulfilled, the contribution of the latter to the beam radiation mode becomes
dominating. This case is rather well described by a single-mode approximation
and in the first maximum the eigenmode of the active waveguide is described
rather well with the TEMgo ground mode of the empty waveguide, of about
~ 80 % of total power corresponds to the contribution of this mode.

So, we see that with the given parameters of the FEL amplifier (see Table
3). the calculations of the linear regime could be performed using the single-
mode approximation. It is evident that this approximation is applicable for
a calculation of the nonlinear regime of the FEL amplifier operation, too,
because in this case the rate of the field growth is much less than in the linear
regime and the field eigenmode is more close to the TEMgo ground mode of
the empty waveguide. -

4 Test facility

The basic idea of the proposal, namely the possibility to construct the FEL
amplifier with a diaphragm focusing line, requires experimental verification.

26




To perform such a verification, there is no need to build a full-scale facility. It
may be done at a scaled model of the FEL amplifier with parameters presented

in Table 4.

Table 4
Parameters of the FEL at the Tesla Test Facility

Electron beamn

Electron energy, GeV 0.5

Beam current, A 500

Energy spread, keV 500

Normalized emittance, emXrad T x 1073
Undulator .

Undulator period, ¢cm 20

Undulator field, kGs (enter./exit) 5.4 /4.8
Length of untapered section, m 9
Total undulator length, m 20

Diaphragm line

Diaphragm separation, cm 1
Hole radius, cm 0.3

Power losses per one diaphragm 3.4x10™*

Radiation
Radiation wavelength, pm 10.6
Input power. MW 10
Output power, GW 17.5
Efficiency, % 7

The parameters of the electron beam correspond to the parameters of the
electron beam from the accelerator which will be constructed at the TESLA
Test Facility at DESY [17]. It is assumed that the time diagram of the TESLA
Test Facility operation will correspond to that of the main TESLA project.
According to formulae (7) and (16), we obtain the following parameters of the

test FEL:

Ao = 4.3 x 1073em ™!, K =17x%x107%,
3=69x107", Uow, = 0.15. (42)
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The field attenuation in the diaphragm line is of about 3.6 % at the gain
length and is negligibly small with respect to the field gain at the same length.
Saturation efficiency and saturation length of the amplifier are ne. = 0.9 %
and I, = 12 m, respectively. When the undulator is tapered according to egs.
(28), (23) and (29), it will provide the efficiency n = 7 % at the total undulator
length equal to 20 m (2; = 8.6). The length of untapered section is equal to
S ~9m (3 =3.9)

The test FEL amplifier will play the role of a scaled model of the FEL amplifier
for the photon linear collider. The parameters of the test FEL are chosen in
such a way that from the physical point of view the process of amplification
is 1dentical to that of the full-scale FEL amplifier. In particular, in order to
provide such a scaling, the operating wavelength of the test FEL is chosen to
be equal to 10 gm. Using the formulae presented in section 3 and Appendix
(', one finds that the values of the reduced variables for the test and full-scale
FEL are close to each other. The field eigenmode of the test FEL is close to
that of the full-scale amplifier, too.

5 Discussion

In the present paper we have shown that application of the FEL technique
reveals a possibility to construct a photon linear collider at TESLA. We have
studied in detail the most economical FEL scheme where the electron beam
of the main accelerator serves as a driving beam for the FEL amplifier. Such
an approach naturally provides synchronization of the optical and the laser
bunches and the generation of the laser beam with the required pulse duration
and repetition rate.

In order to make the FEL amplifier operation more effective, we have proposed
to use the FEL amplifier with a diaphragm focusing line. In order to transport
the powerful laser radiation to the conversion point it was proposed to use an
open waveguide in the form of a diaphragm line wherein focusing of radiation
15 provided due to diffraction effects.

It was shown that the TESLA Test Facility can be used for a construction of
a scaled model of the FEL for future full-scale photon collider at the TESLA.

In the present paper we have limited our consideration to the study of the
specific photon collider scheme aiming to show the feasibility of the PLC con-
struction. There is a wide region for modification of this scheme. For instance,
taking into account the peculiar feature of the TESLA project, namely, multi-
bunch mode operation, a scheme with only one free electron laser can be used.
It operates as follows. The FEL is installed only in one branch of the linear
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collider. When the laser bunch passes the focus of the conversion region, it is
not dumped but is directed to the optical delay line which provides a delay
time equal to the time interval between the bunches (1 gs). Then it is focused
on the electron beam of the opposite branch of the linear collider. Of course,
this configuration provides colliding gamma-beams with the second micropulse
of the collider. Nevertheless, the number of microbunches is 800, so it will not
result in significant reduction of the integral luminosity. There may be also
an approach where the driving beam for the FEL is produced by a separate
linear accelerator.

In conclusion we should note that there is a significant problem in the e*e”
version of the TESLA project, namely that of positron production which is
not resolved till now. From this point of view it seems to be more feasible to
begin the TESLA construction with the 4+ version. From a technical point of
view the construction of the photon linear collider seems to be more simple.
First, there is no need for positrons for the PLC operation, so the injection
system of the collider can be simplified significantly. For instance, there is no
need for a damping ring and a flat electron beam and the injection system
could be built on the base of the photoinjector technique. The installation of
the free electron laser system (A = 1.053 pm, Wyeak ~ 300 GW) will enable
to achieve luminosity up to L., ~ 1.5 x 10% cm™?%s7".
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A Obtaining colliding vy beams

The most optimal way to produce high energy v - quanta is the Compton
backscattering of the laser photons by the high energy electrons [5]. The fre-
quencies of the incident and scattered photons, w and w,, are connected by
the relation (in the small-angle approximation):

Ex

= Ty i (A1)

~

where @ is the scattering angle, x = 4vhw/m.c*, m. and £ are the electron
mass and energy, respectively, and v = £/m.c? is relativistic factor.

Focusing of laser beam

To obtain an effective conversion of the primary laser photons into the high
energy photons, the laser beam should be focused on the electron beam. It
may be performed, for instance, by means of a metal focusing mirror (see
Fig.1). Electrons move along the z axis and pass through the mirror focus. To
calculate the conversion coefficient, it is necessary to find the distribution of
the optical field intensity in the focal spot. We assume the focus distance and
aperture of the focusing mirror to be F' and a, respectively. All the calculations
will be performed using paraxial approximation, i.e. it means that the angle
of incident laser beam o with respect to the mirror normal and 6yax >~ a/F
are much less than unity.

First we consider the case of infinitely long laser pulse. To be concrete, we
assume the laser radiation to be circularly polarized. Electric field of the laser
electromagnetic wave is presented in the following complex form:

Ex+1E, = E(z,y. z) expliv(z/c — t)].
In axisymmetric case, the expression for the optical field distribution on the
mirror surface may be written in the form:

E(z,y,2)|.=r =~ Eo(r),

where r = (2% + y?)Y/? (it is assumed that the coordinate system origin is
nlaced in the geometrical focus of the mirror). Thus, using Huygens-Fresnel
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integral, one can find distribution of the optical field in the focus vicinity [20]:

E =Bz )| = | [ Balp)o(vp) exp(iup*)pdpl. (A.2)
0

where v = wr/cF and u = wz/2cF*. Let us perform physical analysis of this
expression. When the optical field intensity on the mirror surface is uniform
one:

Eo(r) = A = const at 0<r<a, (A.3)

then intensity distribution in the focal plane I(0,7) is given with the expres-
sion:

1(0,r) = |E(0,r)|*/4mc = I, {Mr (A.4)

VT

where Iy = A%wa?/2 is the optical field intensity in the geometrical focal point
and v, = wa/cF. It is seen from expression (A.4) that the optical field intensity
takes the first zero value at v,r = 3.88, 1.e at

r = 3.88¢cF/wa. (A.5)

and more than 80% of the total optical power is passed inside the first diffrac-
tion maximum.

The distribution of the optical field intensity along z axis is given with expres-
sion:

1(z,0) = Iy[2sin(ua®/2)/ua®]?. (A.6)

The optical field intensity takes its first zero value at the distance

z = Fdncl? jwa® (A7)

from the geometrical focus of the mirror. So, simple physical estimations show
that characteristic dimensions of the region with strong optical field are od
the order of:

r < 4cF/wa. |z| < 4mcF?wa®. (A.8)
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When calculating the conversion efficiency, we assume transverse electron
heam size at the conversion point or to be small with respect to the laser
beam spot size :

o & (4eF Jwap)?. (A.9)

where ag is the characteristic size of laser beam on the focusing mirror. So,
when calculating the probability of the Compton scattering, it is sufficient to
take into account the variation of the optical field amplitude along the z axis
only. When the electron transverse motion in the field of incident electromag-
netic wave is nonrelativistic:

62

|EP*X* <1, (A.10)

204
mic

the probability P of the electron scattering by the incident optical beam is
given with the expression [4]:

P =1 — exp[—(20. /4 Fw) / |E(z,0)[2dz), (A.11)
where
1 8 + 4x 8 2+ x
.= 27r[=In(1 — In(1 — 4 A.12
o We[x n(l + x) N n( +X)+X2+2(1+X)2] (A.12)

is the total Compton cross section on unpolarized electrons and r, = e?/mec?.
Remembering that the field of the optical beam is decreased quickly with the
removal from the focus (it vanishes almost completely at |z| > drcF?[wal), we
calculate the integral in expression (A.11) the limits —oo < z < co. Substitut-
ing expression (A.2) into expression (A.11) and using integral representation
of the ¢ function:

o(y) = - / exp(tky)dk,
2W_Y
we obtain:
/ |E(z,0)|*dz = 27rw/p|E0(p)12dp = drwW/c?, (A.13)
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where W is the total power of the optical beam. Thus, expression (A.11) for
the probability of Compton scattering takes the form [4]:

P =1—exp(—d). 6 = 2Wa, [kt (A.14)

Let us point at the important feature of this result. Under the condition (A.9),
the expression for the probability of the Compton scattering (A.14) does not
depend on the details of the optical field distribution on the focusing mirror
and is defined by the total power of the laser beam. Applicability region of
this result (see relation (A.10)) imposes the following restriction on the peak
power of the laser radiation:

mzco F? 1

b (L4 X))

W<«

When deriving expression (A.14) we have assumed the laser pulse duration
to be infinitely long. Nevertheless, this expression is valid for the case of ap-
proximately equal lengths I, and [,, of electron and laser beams. Taking into
account expression (A.8) for axial dimension of the region with strong optical
field, we may conclude that it takes place when

lo > dmcF?|wal, b < ly. (A.15)

Spatial distribution of gamma quanta

All the above mentioned considerations are valid for an arbitrary value of
parameter ¥ = 4yhw/m.c?. From practical point of view two situations are
of interest: ¥ < 1 and x > 1. The first one describes classical limit of the
Compton scattering and has been studied in detail elsewhere [6]. Here we
consider the case of essentially quantum region of the Compton scattering,
v > 1, which is the most suitable to describe the PLC of TeV energy range.
So, in all the formulae we will assume that x > 1 and v > 1.

To calculate the luminosity of the colliding v+ - beams, one should calculate
spatial and energy distributions of the secondary « - quanta p,(7,t). Differ-
ential cross-section of photon on unpolarized electron is of the form (y > 1)
15]:

do. 2mr? x?2 2(1 + v46%)

,72(192 - (1+Y+7202)2(1+7262) 1+X+7202 + 1+,.Y292
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When y > 1 and 726* < x), this expression is reduced to:
do, 2mr?

Y2d6" = (14 20%)

\When parameter x > 1, the electron energy after the first scattering is of
the order of £/x, so we can neglect the process of multiple scattering and the
spatial distribution of secondary gamma quanta may be written in the form:

do. dydo,

o do? T

AW = ey

where the conversion efficiency 7.y (i.e. the total number of v - quanta pro-
duced by the single electron) is equal to:

Ny~ P=1-— exp(—¥6). (A.16)
Interaction region

The main characteristic of the colliding beams is the luminosity L which is
defined as

[=2fNON® / SO(F, 1) (7, ) didt, (A.17)

where N9 p(12) are the densities of the colliding beams ([ pd7 = 1) and fis
the collision repetition rate. In the axisymmetric case, for the beams with the
Gaussian distribution of the beam density we have:

2 2
S0, 2,1) = (27 P explm g —

T o ], (A.18)

where
oa(z) = or(O0 1+ =5, or(0) = /ebo/, .

¢ is the electron beam emittance, o, is the width of the longitudinal dis-
tribution and fo is the beta-function at the interaction point. Substituting
expression (A.18) into expression (A.17) we obtain:

T2 F H
Lee = @Ayﬁf exp(H*)[1 — %O/exp(—ﬁ)dx], (A.19)

€0,
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where H = 0o/ 0,.

To obtain colliding gamma-quanta, one should convert high energy electrons
into high energy gamma quanta (see previous section). When the distance zo
between conversion point and interaction point is satisfied to the conditions:

o, & 2o, 20 << 4o (14 ), (A.20)

and the conditions of the optimal focusing (A.9) and (A.15) are fulfilled, then
+ - quantum beam density becomes proportional to the electron beam density:

‘N’Yp’v = Nen */Vepe(f:’ t),

and the luminosity of the colliding vy beams may be written in the form:

L, = 77;[465. (A.21)

-

Integral luminosity is not an exhaustive characteristic of the photon collider.
From the practical point of view, the spectral luminosity, i.e. the luminosity
calculated per unity frequency interval wy = |/wiw; of the colliding v - quanta,
is of a significant interest:

dL d 1) dp(@
o _ 4NN wo/ i /d A (A.22)
dwO )d ‘(72)
where wg = “M ), W' = wE/Wmer and W = Wpee = Ex/(1+ x). When the
distance zo between the conversion and interaction point is rather small:
(0) (0)
20 < O 17 o (A.23)

\/1 + XV Wnaz —

then the spectral density of secondary gamma quanta becomes proportional
to the electron density:

dp Nes doc

N.p.(71), (A.24)

dw-, o, dw,

where 0(w,) is given with expression (A.1). Substituting expression (A.24)
into expression { A.22), one can obtain [4]:

dL’Y’Y _ ,]2 2x ln[l + 2X(1 _ V)]
ey 2

“In?x 1+ x(1—v)

@Wo

(A.25)

du)o
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where v = wo/wmas- It 15 seen from this expression that spectral luminosity
has a sharp maximum in the vicinity of (1 —v) ~ 1/x which is achieved at
v~ 1—13/x

drL o
wo(—ﬂ> UL, (A.26)
maxr X

du.)()

An application of the FEL as a laser for PLC reveals wide possibilities to
steer the polarization of the colliding photon beams. In the FEL amplifier, the
polarization of the amplified wave is defined by the undulator magnetic field
configuration. For instance, in the case of the helical undulator, the output
FEL radiation is circularly polarized. As a result, one can easily steer the
polarization of the colliding v~ - beams.

Let us consider the practically important case when the FEL optical beam 1s
circularly polarized and electron beam is unpolarized. In essentially quantum
region, x > 1, the differential Compton cross section averaged over final
polarization states of electron is given with the expression [4]:

do. mrih Lt 1— 2hw,
dw- B x(€ - Fuor ) P x(€ — hw,) .

At the given helicity of the optical beam &qpi, the helicities of the backscattered
~ - quanta may take the values +1. As a result, the total luminosity may
be presented as a sum of partial luminosities corresponding to the different
helicity combinations of colliding 7y - quanta. In the essentially quantum region,
\ > 1, and at small distance between the conversion and interaction point (see
relation (A.23)), we obtain the following expression for spectral luminosity (4]:

dL Yy
d(.t)o

= 773« Lee

wo

2X 41, €0 ), (A.27)

In” x

where £¢1:2) = §§;;2’§g1»2) are the products of the helicities of incident and scat-

tered photons. Function Fv, €0 €@ is given with the following expressions:

. 1 1
f(l/,l, 1) = m{(?k + m) 1n(1 + 2]9) - 2]()},

. . 1 k 2k?
f(l/1,—1):f(1/,——1,1):m[1+kln(l+2k)+ :\’

142k

. 1 In(1 + 2k) 2k
1. -1V=————= |+ 7757 A.28
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where k = x(1 — ). It is seen from these expressions that the photon collider
mav be easily tuned on the required partial luminosity maximum by steering
of the FEL optical beam polarization.

Final remark

In conclusion of this section it should be noted that all the presented above
formulae refer to the case of the laser beam with ideal (i.e. diffraction limited)
dispersion. In other words, the phase volume of the laser beam was assumed
to be of the order of radiation wavelength A. In the case when the laser beam
phase volume exceeds significantly this value, the required laser power should
be increased significantly to achieve a desired value of the conversion efficiency.
In connection with this we should emphasize that the phase volume of radia-
tion of powerful lasers usually exceeds by several tens of magnitude the value
of A. The main effect which determines the growth of the radiation dispersion
is fluctuations of the active medium refractive index due to thermal effects.
Contrary to this, the radiation of the FEL amplifier has always minimal phase
volume because the process of the field amplification develops in vacuum.

B Diaphragm focusing line

As a rule, lens systems are used for transporting and focusing of optical ra-
diation. While this technique is appropriate at a relatively small radiation
power, it is completely unfit for focusing and transporting of powerful laser
beams with high the average and peak radiation power. Nevertheless, this
problem may be solved by using diaphragm focusing line which has a form of
periodically spaced screens with round holes.

Diaphragm focusing line operates as follows. Consider electromagnetic wave
passing along the sequence of diaphragm. When electromagnetic wave diffracts
at the first diaphragm, it produces diffraction pattern in the plane of the next
diaphragm. When the second diaphragm is placed in the main maximum of the
diffraction pattern, diffraction losses are minimal. Further, sideband maxima
of the diffraction pattern produced by the second diaphragm are less than that
of the first pattern, etc. When the wave passes a large number of diaphragms,
the field eigenmode is formed which has low diffraction losses. For the first
time eigenmodes of the diaphragm line have been calculated numerically by
Fox and Li [18] and later have been obtained analytically by Veinstein [16].

To get a deeper insight into the role of diffraction effects for forming the eigen-
mode in the diaphragm line, we, following by ref. [19], study the problem of
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Fig. B.1. Diffraction of plane wave at semi-infinite screens (see explanations in the
text).

the diffraction of the plane wave at periodical sequence of completely absorb-
ing semi-infinite screens (see Fig.C.1). Period of the structure is equal to L
and direction of the wave propagation forms a small angle o with the plane
perpendicular to the edges of the screens. We assume that

a? < M(xL),

where )\ is the wavelength.

The field of the wave, diffracted at the edge of totally absorbing screen, can
be presented as a sum of two waves: the wave which does not exist in the
region of geometrical shadow and is unperturbed outside it, and cylindrical
wave which is produced by a image source located at the edge of the screen
[20]. In the considered geometry, the field u;(z) of the wave, diffracted at the
first screen is given with the expressions:

n(z) = wo — (uo/w/*)F(£), z <0 (B.1)
(uo/w/2)F(£), z>0

where ug is the amplitude of incident plane wave, .

F(&) = /exp(i'r2)d'r
4

is Fresnel integral and § = (m/AL)Y?z. Substituting approximate expression
for Fresnel integral

F(e) = texpiie?) [2 e + Jir]|”
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into formula (B.1) for u;(z) we obtain the field distribution in the region of
geometrical shadow:

uy () ~ A(z) exp(ikz®/2L),

where k = 27 /) and A(z) is slowly changing function.

Fig. B.2. Diffraction of plane wave at semi-infinite screens (see explanations in the
text).

When unperturbed wave is diffracted at the second edge, it produces another
cylindrical wave with the image source located at the edge of the second screen.
Besides this wave, there exists also unperturbed plane wave which produces
another cylindrical wave at the third screen, etc. As a result, the field of
diffracted wave is presented in the region r < 0 by a superposition of cylin-
drical waves produced by image sources located at the edges of all the screens
and with amplitudes decreasing with the deflection of their propagation off
the direction of propagation of the initial wave (see Fig.C.2).

Due to the interference of a large number of cylindrical waves, there exists a
series of discrete directions where amplitudes of these waves are summed. The
waves produced by edges of the adjacent screens are summed when

EL(6* —a®)/2 >~ 27n,

where n is integer number. At the intermediate directions, the field amplitude
takes zero value due to interference effects. At a® < A/(wL) the amplitude
of the “reflected” wave with n = 0 and 6, = « significantly exceeds the
amplitudes of another waves.
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So, when the incident angle of the wave is rather small, (a® « A/(wL)), the
radiation does not absorb and is dispersed due to diffraction effects and the
most fraction of the power is in the “reflected” wave.

Using analytical techniques, Veinstein has obtained coefficient of diffraction
reflection Rq of the plane wave from the sequence of semi-infinite periodical
screens [16]:

Ro = —exp[—o(1 —1)s], (B.2)

where s = a(kL)"/? and S = 0.824. When factor s is decreased, the absolute
value of Rp is approached to the unity. The phase multiplier in the right-hand
part of eq. (B.2) corresponds to the phase shift not equal to 7. As a result.
the process of reflection takes place as if a mirror should be placed slightly
farther then the plane of the screen edges.

Let us derive one important consequence of eq. (B.2). Resulting field of inci-
dent and reflected wave may be presented in the form:

E(z,z,t) =u(z)exp(tkz — wi) =
[Aexp(ikyz) + B exp(—ikx)] exp(ikz — iwt),

where ky/k, >~ a, k2 + k2 = 47*/\* and w = ome/ . At the plane of the screen
edges the ratio of reflected and incident waves B/A is equal to R, which
results in

u(z) = Alexp(iksz) + Roexp(—tkxz)].

One can obtain that the value of logarithmic derivation of u(z) at the plane
of the screen edges is equal to:

dn(u)/de]smo = (1/w)du/dzlemo = iky(1 — Ro)/(1 + Ro).

Assuming factor s to be small and replacing exp [—Bo(1 —i)s] by 1—Bo(1—1)s,
we obtaln

(1= Ro)/(1+ o) = [Bo(1 - De/ALIGEm)]|

and

dn(u)/dz]seo = — [50(1 +1) AL/(gw)]_1 . (B.3)
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Peculiar feature of the latter formula is that the term £y is completely excluded
from it. which allow one to use it as a universal boundary condition. Let us
consider. for instance, a periodical diaphragm line formed by a sequence of
slits in absorbing screens. Transverse dimension of the slits is equal to 2a and
coordinates of the screen edges are equal to x = Za. Eigenfunctions u;(z) of
such a diaphragm line are the solutions of the homogeneous equation:

d*u;/da?® + k?uj =0

and satisfy boundary conditions

[uj (1 + i)ﬂo.\/)\L/(Svr)duj/d:v]l 0.

r=*a

In the first approximation of a small parameter M = (87 Np)~'/2, where Np =
a*/(ML) is Fresnel number, functions u; are given with

ui(z) = c'os[7r]:(1 — A)z/(2a)], ] =1,3,... (B.4)
sin[rj(1 — A)z/(2a)], J=2,4,...

where A = (1 +4)B,M. Validity region of these results is that parameter j
must satisfy inequality
P M? < 1.

Substituting k, = 7j(1 — A)/(2a) into relation

k2 4 k2 = WP/ = 4n? /N

we obtain expression for k,:

kL >~ wLfc— 72 M?/2 + n* 52 M>(1 + 1) Bo.
For the j-th eigenmode, a fraction of the radiation power losses per passage
of one diaphragm is given with the relation:

2Im(k, L) = 27252 B M>.
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Azisymmetric diaphragm line

On the base of previous study we can calculate parameters of the axisymmetric
diaphragm line. We assume the radius of the hole to be rather large, R > A
Eigenfunctions @, (r, ) of the axisymmetric diaphragm line have the form:

D, = D,,;(r) exp(—imy), m=0,1,2,...

Functions ®,,; are the solutions of the homogeneous equation:

r2d2@mj/dr2 +rd®,,; /dr + (kznj —m?)®,,; =0 (B.5)

and satisfy boundary conditions:

[cpmj + (1 + D)Bor/AL/(87)d®p; /dr] _ =0 (B.6)

In the first order of a small parameter M = (87 Ng)™'/?, where Ny = R?*/(AL)
s Fresnel number. functions ®,,; have the form [16], [19], [21]:

D, = I (kmiT),
where km; = Vmj(1 — Do)/ R, Do = (1 +1)BoM, vm; is j-th root of the Bessel

function of the m-th order (i.e. Ju(ftm;) = 0). Substituting expressions for knm;
into relation

kf + kfnj = (.‘;2/c2

we obtain expression for k; :

k,L ~wL/c— 2;13an2 + 41/3an3(1 + ) Bo.
For the TEM,,; eigenmode, a fraction of the radiation power losses per passage
of one diaphragm is given with the relation:

2Im(k, L) = Q,ufanSﬁo. (B.7)

Imperfections of diaphragm line

Let us study the influence of imperfections in the diaphragm line on its prop-
erties (see. e.g. ref. [19]).

42



When one of the screens is shifted off the axis, it may cause distortion of the
amplitude and phase of the scattered wave. To estimate the change in the
amplitude, one should remember that the amplitude of the cylindrical wave,
produced by the edge of the screen, is proportional to the Fresnel integral
F(€) in the region of the next screen and is decreased by a factor of 2.5 at
| z |> (AL/7)"? = A;. So, the region of > Ay is the region of shadow. If
the screen is shifted off the axis by the value § > Ay, either this screen or the
next screen falls into the region of the shadow and does not produce diffracted
wave.

To estimate phase errors, we consider the drawing presented in Fig.C.2. One
can see that the shift of the screen by the value §z in the transverse direction
causes the phase shift of the wave, propagated by the angle ¢

kéz(sina + sin 0) ~ kéz (o + 0).

For the reflected wave, the change in the phase equal to 7 is achieved at
6z = Ay = A/(4a). At small angle approximation o® < A/(wL), it results in
the inequality A, > A; which means that the value of admissible shift of the
screen is defined mainly by aperture restrictions but not by phase distortions.

SO, requirements on the accurac of transverse adjustment of the screens 1s
y J
given with bz <K A] = (/\L/?()l/z.

As for the accuracy of the longitudinal adjustment of the screens, it is defined
mainly by the effect of the higher order modes production. A relative power
of this effect is given with the ratio of the error in the period 6L to the period
L. When the screens are adjusted with the accuracy about of 8L ~ 1072 cm,
an irregularity of the diaphragm focusing line does not result in the extra
diffraction losses.

In conclusion of this section it should be noticed that there is no need to use
completely absorbing screens in the diaphragm line. Moreover, it would be
preferable to use reflecting screens. At accepted limitations, reflecting screens
are almost identical to absorbing screens with respect to diffraction effects,

while the problems of the heat load on the edges of diaphragms are not so
severe.

C Rigorous results of the linear theory of FEL amplifier with fo-
cusing diaphragm line

When FEL driving beam has relatively low value of the peak beam current,
there is no possibility to use conventional FEL amplifier scheme in which
radiation is confined due to “optical guiding” effect [9,10]. To overcome this
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problem, an FEL amplifier with diaphragm focusing line could be used [L1].
Diaphragm focusing line has a form of periodically spaced screens with round
holes and confines the radiation in the vicinity of the electron beam (see

Appendix C).

The analyzed model of the FEL amplifier 1s based on the Maxwell wave equa-
tion taken in a paraxial approximate form and on the description of particle
motion by a kinetic equation expressed in “energy-phase” variables. It is an-
ticipated that electrons move (averaged over constrained motion) only along
trajectories parallel to the undulator axis.

In the linear high-gain limit the radiation of the electron beam in the undu-
lator can be represented as a set of modes. When amplification takes place,
the mode configuration in the transverse plane remains unchanged while the
amplitude grows with the undulator length exponentially. Each mode is char-
acterized with the increment eigenvalue and the field distribution eigenfunc-
tion in terms of transverse coordinates. The mode with the highest increment
has the advantage over all other modes. Following the gain process along the
undulator axis one can find that the field distribution is settled corresponding
to the mode with the maximal increment.

To find eigenvalues and eigenfunctions of the beam radiation modes we use
the following boundary conditions:

a) the continuity requirement of the eigenfunction and its derivative must be
fulfilled at the electron beam boundary. .

b) To take into account diffraction effects in the diaphragm line, the rigorous
impedance boundary conditions are applied at the edges of the diaphragms
iproposed by L.A Veinstein [16]).

As a result, it possible to reduce the problem of the open waveguide to the
closed one and we then get the equations which may be resolved analytically
by standard methods.

Such a model enables one to take into account diffraction effects and energy
spread of the particles in the beam. Despite its relative simplicity, it describes
rather well the FEL systems in which the transverse size of the electron beam
s much less than the transverse dimensions of the field eigenmode (it is just the

<ame situation which takes place for the FEL amplifier considered in section
3.



Basic equations

First, we consider electrodynamic problem. The electromagnetic field in the
FEL amplifier is subjected to the wave equation:

AVAE —9'EJ0t = N (Vo E) + 47 /01, (C.1)

which can be obtained from Maxwell’s equations. In the parax1al approxima-
tion, we can ignore the summand contribution CZV(V 0 E) on the right-hand
side of eq. (C.1). We consider the case when transverse motion of the elec-
trons is defined totally by the undulator field and the longitudinal velocity of
electrons is close to the velocity of light c, so the transverse component of the
beam current density can be written in the form:

—

71 = Oy [Excos(kyz) — €y sin(kyz)] (jle“p +C.C.), (C.2)

where j; is the complex amplitude of the first harmonic of the beam current.
We seek the solution for £ in the form of eq. (2) where we explicitly segregated
the strong dependence of E on the z coordinate. Substituting egs. (2) and (C.2)
into eq. (C.1) and neglecting fast oscillating terms, we obtain the equation for
slowly changing amplitudes j; and E:

(V2 4+ 2(w/e)d)dz] E = —47ib,w], (C.3)

where V2 is Laplace operator in transverse coordinates. In the paraxial ap-
proximation, the characteristic scale of the field amplitude £ change is much
more than the radiation wavelength, so in eq. (C.3) we have omitted the second
order derivative of £ over z.

To obtain self-consistent approach, we should find the motion of the electrons
in the given electromagnetic field. We describe the motion of electrons using
the “energy — phase” variables £ and ¥ = kyz + w(z/vpn — t). Using the
approximation that electrons move only in the z direction, and writing down
the distribution function f(%,€&,z,7.) in the linear approximation:

f=fot+ fre + fre, (C.4)

we write the following equation for f; [10]:

0f1/0z+1 C+wP/(cv?)] fr — (0w E[2E)8 fo/OP = 0. (C.5)
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Complex amplitude j; is connected with fi as

31 ~ —€C/f‘1dp\

Using initial conditions

Filimo =0, folszo = no(FL)F(P), (C.6)

where the function F(P) describing the energy distribution is normalized to
the unity, we can obtain solution for 71 by integration of eq. (C.5). Substituting
the obtained result into right-hand side of eq. {C.3), we obtain the only integro-
differential equation for the field amplitude E:

.

2iw 9] - [, =
c? [Vi + —Zc—uié;] E(z,7) = QWiGOiwjo(FL)/dz'E(z',F_L) X

0

/dP%exp [i{C+ Z’Tg}(zu z)], (C.7)

where —jo(71) =~ —ecno(7L) is the longitudinal component of the beam current
density at the undulator entrance at z =0 .

Boundary conditions

First, the continuity requirement of the field and its derivative must be fulfilled
at the beam boundary. Second, diffraction effects at the edges of diaphragm
line should be taken into account. The first investigation of the diffraction
effects influence on the forming of the field eigenmodes in the diaphragm line
was carried out by Fox and Li using Huygens’ principle [18]. Here we use
more rigorous approach. In the diaphragm line the diffraction effects on the
edges can be taken into account using method by L.A. Veinstein [16]. He had
<hown that when the radiation wavelength is much less than all characteristic
dimensions of the diaphragm line, the following boundary condition can be
imposed at the edges of the diaphragm line:

E +0.824(1 + 1) [cL/4w]*0EO¢ = 0, (C.8)

where ( is the direction of the normal to the imaginary side surface of the
waveguide. At the accepted limitations this boundary condition is independent
of the polarization of the radiation.
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Therefore, the problem concerning the open waveguide excitation by means
of equivalent boundary conditions is reduced to a more usual classical formu-
lation of the problem of the closed waveguide excitation.

Solution of the eigenvalue problem

Let us consider the FEL amplifier with an axisymmetric homogeneous electron
beam of radius ro. In the high gain limit we solve eq. (C.7) by the separation
of variable method. Using polar coordinates (7, ¢, z) we seek the solution for
E in the form:

E(r,p,2) = y(r) exp(Az) (C.Os(”"o)) , (C.9)
sin(ng)

where n is integer, n > 0. Substituting expressions (C.9) into eq. (C.7), we
obtain the Bessel equations:

Fd2 0, [di? + Fd@/di + |2 — n?] =0, at <1, (C.l0a)
A2, /i + FdDs/di — [¢F? +n?] @a=0, at #>1, (C.10b)

~

where # = r/ro. C = C/T, ¢* = —2iBA, A = AJT,

pr=—-21D\—g¢* D= / M——df. (C.11)
The distribution function F(P) with

P = (& - &)/B&, (C.12)

is normalized to the unity, [ F(€)d¢ = 1, 8 = ¢y2T'/w. The gain parameter I
and diffraction parameter B are given with the expressions:

Jere2 12
r= = I'riw/e. .
{]AC:“£7] ’ B =Trw/e (C.13)
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When the energy spread is Gaussian, the function D is given with the expres-
sion:

b= i/{exp [~A%er/2 - (A +iC)e] de, (C.14)

where A2T = o%/3%E3 is the energy spread parameter.

Let us consider the region inside the beam. To avoid the singularity of the
solution at r = 0. the solution of eq. (C.10a) should be chosen in the form:

®, = CyJn(pr/m0) at 7 < rg. (C.15a)

Solution of eq. (C.10b) for ®, must be chosen in the form:

O, = Col,(gr/ro) + C3Knlgr/ro) at o <r < R. (C.15b)
Fulfillment of the boundary condition at the edge of the diaphragm line

[(I)n(r) +0.824(1 + 1) cL/4wd<I>n/dr] — 0, (C.16)

and continuity requirements of @, and d®,/dr at the beam boundary lead to
the system of three linear equations for three coefficients C;, C2 and Cs. To
obtain nontrivial solution, its determinant should be set equal to zero which
results in the eigenvalue equation for the FEL amplifier with’diaphragm line:

K ni1(9)Jnlp) — pInia (1) Knlg) +

(gTnt1(g)In(p) + 1 () In(9)] Kn(x)

¢
I.(x)

—0. (C.17)

The field eigenmode (field distribution over radius) has the form:
Region 1 (7 <1 ¥

Ou(F) = JnlpF) (C.18a)

Region 2 ( 1 <7 <4/Q/B):

o.(F) = Juti) [Knl(g?) = In(g#) Ka(X)/1n (X))
" Ko(g) — LK./ ()

(C.18b)
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where the following notations have been introduced:
v=g(1+AWQ/B, A=0824(1+i)M, M= /cL/4wR?, (C.19)

0 = I'R*w/c is the waveguide diffraction parameter. In the further considera-
tion we assume the Fresnel number of diaphragm line to be a large value, i.e
we assume that M < 1.

It should be noted that each mode is double degenerated at n > 0, because
for each value of azimuthal number n > 0 there are two linearly independent
tunctions:

O = &, (7) cos(ne) and ® = &, (7)sin(nyp). (C.20)

Let us present the expansion of the field eigenmode in a series of empty waveg-
uide eigenmodes. Eigenmodes of axisymmetric diaphragm line are the solu-
tions of homogeneous equation (B.5) and satisfy boundary condition (B.6).
Eigenfunctions ®,; are orthogonal in the sense that

/B
/ B, (F)Bn; (F)PdF =0 at  k#J. (C.21)
0

It should be noted that the condition of orthogonality is formulated without
complex conjugation. Eigenfunctions of empty waveguide ®,;(7) form a full
basis, so the eigenfunction of active waveguide ®,(#) can be expanded in a
series

D, (7) = Z Apj @i (). (C.22)

Using orthogonality, condition for @,,; and omitting inessential common factor,
we find the coefficients of expansion:

1 !
Anj = [K2r2 + ¢°] / B () (7). (C.23)
0
In the first order of small parameter M, functions ®,,; have the form:
(I)nj = Jn(knjr)/JnH (;Ln]‘), (0.24)

where k,; = v,;(1 — A)/R, v, is the jth root of the Bessel function of order
n. Using expressions (C.23) and (C.24), we find with the accuracy of an order
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of M the coefficients of expansion An; (n =10,1,2...):

An] _ N‘]ﬂ'*'l (N){n(l]c

i) = g () g ()
lg* + k2, 7

p = kij] Int1(Vns)

(C.25)

where k,; = kn;ro = vaj(l— A)y/B/S). The relative contribution of the power
of passive waveguide modes into the power of active waveguide mode can be
written as

W, W =] Ay [ [}: | Aw 1] . (C.26)

Let us define the increment of radiation mode as the real part of the eigenvalue.
When the undulator is long enough, the radiation mode with the highest incre-
ment has an advantage over all other modes. At small values of the waveguide
diffraction parameter 1, when { ~ 1, these dependencies have a character
of maxima series (see Fig.9). The physical nature of this phenomenon is 1l-
lustrated with the plot presented in Fig.10 where a histogram of the relative
contributions of the passive waveguide modes into the power of the beam ra-
diation mode, is presented. One can find from this plot that each time when
the resonant condition of the beam with the corresponding passive waveguide
mode is fulfilled, the contribution of the latter to the beam radiation mode
becomes dominating at small values of waveguide diffraction parameter (1. We
will show below that this case is rather well described by a single-mode ap-
proximation. At the higher values of the diffraction parameter { the width of
the resonances becomes comparable with the distance between them and sev-
eral waveguide modes begin at once to contribute to the radiation beam mode.
Finally, when aperture of the diaphragm line becomes to be rather large, i.e.
at 0> 1, the dependence of the increment on the detuning becomes smooth
and the open beam approximation becomes valid [10].

Let us now study in details the asymptote of dispersion equation (C.17) cor-
responding to the single-mode approximation and the open beam asymptote.

Open beam asymptote

This asymptote corresponds to the case when the diaphragm aperture is rather
large, i.e. we should let {8 — o0 in equation (C.17). Using asymptotic expan-
<ion of the Bessel functions at large values of argument (it is assumed that

Re(g) > 0):

I(¢) — (270" exp((),  Ka(Q) — (2¢/m) 7 exp(=C) (C.27)
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we find that

Kalx)/In(x) =0 at 2 — oo (C.28)

and finally obtain dispersion equation for the open axisymmetric beam [10]:

98nr1(9)n(p) = pdnsr (1) Kn(g) = 0. (C.29)

Single-mode approximation

This asymptote corresponds to the case when the gain parameter I' is rather
small, ' — 0. It could take place, for example, when the beam current [/
is rather small. i.e. at I — 0. So, we should let B — 0, {2/B = const and
A/T — oo. In zeroth approximation we obtain g = ig and equation (C.17)
transforms to:

J. (u(l 4 A)M) 0. (C.30)

For zeroth approxirhation of the eigenvalue we get:

A= —iv? i1 —2A)/20. (C.31)

Expressing A as A = —iv?2 (1 — 2A)/29 + Ay, where Ay is small, in the first
order of Ay and in the case of negligibly small energy spread we obtain the
eigenvalue equation of the single-mode approximation for TEM,x mode:

(A+iC) A+ i3 (1 —20)/20] =
PT(L = 208) /i1 (vk) ][ T2 (i) — Tt (k) Tngr (R 1(C-32)

Fig.9 illustrates an accuracy of the single-mode approximation at a small value
of the waveguide diffraction parameter 2.
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