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Summary

The impact of the detuning impedance on the stability of a particle beam is a relatively less studied
phenomenon compared to the usual case of considering only the driving impedance. This report
tries to explore the area of the detuning impedance with a specific focus on the SPS. Different
studies were carried to examine the effect and some key findings were made. The analytical model
for two macroparticles (developed for the case of zero chromaticity) was confirmed with simulations.
The dependence of the stabilising or destabilising effect of detuning on the second harmonic voltage
was observed implying that the effect depends on the actual particle distribution. A Vlasov solver
was used to verify the results of particle tracking simulations. The effect of non-linearities and
higher order chromaticities was also studied. It was found that these effects have a significant
impact on the TMCI threshold along with the detuning impedance. Finally, an analytical model
was developed for observing the bunch by bunch tunes with multiple rigid bunches in presence of
wakes and the results were compared with similar simulations.
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1 Introduction

As a particle beam propagates through a particle accelerator, it interacts electromagnetically
with the surrounding accelerator components. This leads to the creation of electromagnetic
fields that are generated by the beam itself. Beam instabilities can emerge from strong
enough self-generated fields. The strength of such interactions between the beam particles
and their surroundings is characterised by the impedances (in the frequency domain) and
the corresponding time domain representation called wake fields, of the accelerator compon-
ents. The study of the effects of these impedances is crucial to the study of coherent beam
instabilities. [1]

Such interactions act differently in the transverse plane or longitudinal plane. The effect
of impedances in the longitudinal plane is outside the scope of this report. The impedances in
the transverse plane are further classified into driving (also referred to as dipolar) impedance
and detuning (also referred to as quadrupolar) impedance. While the driving impedance is
a well-studied phenomenon, the effect of the detuning impedance is relatively less known.
As machine performance is pushed higher, it becomes necessary to study the effects of all
phenomena and their interplay with each other [2, 3].

The effects of the detuning impedance was recently reviewed in Ref. [4], for the case of
a single bunch with zero chromaticity, where four approaches were compared. The simplest
case of the two particle model is taken as the starting point for the studies detailed in
this report. It is also worth mentioning that the effect of the detuning impedance on a
coasting-beam was also recently studied, revealing a new kind of instability [5]. Thus, a
two particle model is taken as the starting point for the studies detailed in this report.
This report is divided into 5 following sections. First an explanation of the tools used for
conducting the study as well as the naming conventions used is provided. This includes
details of the impedances used. The next section covers the results obtained from particle
tracking simulations. The third section consists of a comparison and benchmarking of the
particle tracking approach with the results from a Vlasov solver based method. The fourth
section describes the effect of other parameters such as the higher order chromaticities and
non-linearities among others on the TMCI threshold. The fifth section contains an analytical
approach for gauging the effect on multi-bunch beams, particularly the tune shift, followed
by some concluding remarks.

2 Tools Used

For the macroparticle tracking simulations, PyHEADTAIL [6] was used. PyHEADTAIL is
a Python based simulation tool developed in house at CERN and available at the link in
Ref. [7]. It also provides different classes of impedances. Three of the available classes
were used for the study. The impedances used were: a thick resistive wall, a broadband
resonator and impedance generated from wake data in a pre-defined table representing the
SPS impedance model. The wake table for the SPS was generated from scripts available
at the CERN impedance repository [8]. The impedance classes take certain parameters as
the input along with Yokoya factors to define the wake fields. Particle tracking being time
domain, the impedances are defined in terms of wakes. The exact parameters used for these
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classes are given in Appendix A. In all the simulations, the machine defined is the SPS with
Q-20 optics. In case results with different optics are presented, the specific optics under
consideration will be mentioned.

For the resistive wall and broadband resonator impedances, a parameter ρ is used. This
parameter is defined as ρ =

kQ
kD

where kQ ≡ quadrupolar or detuning wake and kD ≡ dipolar
or driving wake. In all the studies changing value of ρ always implies change in kQ. In
the case of impedance from the real SPS model, 2 scenarios are considered. One is with
only driving wake from the SPS wake table and the other is with both driving and detuning
wakes.

EDELPHI, a Vlasov solver approach by G. Iadarola at CERN [9] has also been used
for verifying the results obtained from PyHEADTAIL. Vlasov solvers are an alternative to
particle tracking simulations. They are based on the Vlasov equation and use perturbation
theory to solve the equation in mode domain [10].

For data analysis and plotting of graphs, MATLAB R2019 has been used. An exponential
fit is obtained from MATLAB by fitting linearly, the log of the section wise fft of the turn by
turn data as suggested by [11]. A direct exponential fit is also used and the results obtained
from the best of both the fits are displayed.

The analytical model has been completely developed in python and uses a multi-turn
wake file instead of single turn wakes. Scipy is used extensively in the generation of the
matrices required by the model. The tunes are obtained from Harpy, a harmonic analysis
tool also developed at CERN using python and available at the link in Ref. [12].

3 Macroparticle Tracking Simulations

Macroparticle tracking is a well known way to observe the beam parameters turn by turn.
The parameters associated with each macroparticle were stored for each turn and the mean
of the particles was observed. An example of a plot of the raw data obtained can be seen in
Fig. 1. The plot in Fig. 1a is for zero chromaticity and shows a stable beam as expected for
operation in the Head-Tail regime. At non-zero chromaticities, an exponentially increasing
beam is expected as seen in Fig. 1b.

For observing the effect of the detuning impedance at non-zero chromaticities, the growth
rate with different values of detuning wake was plotted against chromaticity, the results of
which are displayed in Fig. 2 for two macroparticles. The plot for operation in the head-tail
regime can be seen in Fig. 2a and it reveals only a minor effect of the detuning imped-
ance. The general shape of the curve matches the predictions of [13] where an analytical
approach including both the detuning impedance and chromaticity in the two particle model
is proposed to study the effect of the damper for suppression of transverse instabilities. As
Ref. [13] did not focus on the effect of the detuning impedance, it makes a direct comparison
difficult.

However, when either the beam intensity or the driving impedance is increased to reach
the TMCI regime, the effect of the detuning impedance is no longer subtle. Particularly
for zero chromaticity, the effect is strongly dependent on the value of ρ as is apparent from
Fig. 2b which shows the growth rate for a larger range of chromaticity. To put it in words,
for |ρ| ≥ 1, the beam is always stable at zero chromaticity while for |ρ| ≤ 1, the beam is
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(a) Stable beam at zero chromaticity (b) Unstable beam at non-zero chromaticity

Figure 1: Plot of mean of particle positions against number of turns.

more stable than in absence of the detuning impedance. This confirms Ref. [4]. Even for
low non-zero chromaticities, the detuning impedance has a strong stabilising effect. Only
for higher chromaticities it is observed that the growth rate is higher for some high values
of ρ than for ρ = 0. An example of this can be seen for |ρ| = 1.5 for a chromaticity of ±1.

After observing the effect on an academic two particle model, the tracking simulations
were repeated by considering a more realsitic beam with 5 × 105 macroparticles. The plot
of the growth rate in 1/turns can be seen in Fig. 3 for different values of ρ with linear
and non-linear synchrotron motion considered in the head-tail regime. From Fig. 3a, which
considers linear synchrotron motion, it can be seen that the detuning impedance is always
stabilising. But when non-linear synchrotron motion is considered, the effect is strongly
dependent on the sign of ρ, as seen in Fig. 3b. For negative chromaticity, a mild stabilising
effect is always observed. However the stabilisation is too low to be observed practicaly and
the growth rate can be estimated only using the driving impedance as already predicted in
[14]. For a chromaticity in the range of 0 to 0.6, it can be said that for ρ < 0, there is a
destabilising effect while for ρ > 0 there is a stabilising effect. On the other hand, no clear
trend is observed for chromaticities higher than 0.6.

A more illustrative example of such an effect can be seen when considering a flat chamber
as seen in Fig. 4. The behaviour seen is as expected from Fig. 3. A chromaticity sweep from
-1 to 1 is plotted in Fig. 4a for both the X and Y planes. For a flat chamber, the X plane
has ρ = −1 and the Y plane has ρ = 0.5 with the factor ρ referred to the value of the driving
impedance in the respective planes. The value of the detuning impedance itself is equal and
opposite in the two planes. Accordingly, a stabilising effect should be seen in the Y plane
and a destabilising effect in the X plane. It should be noted that normally, in absence of the
detuning impedance, the X plane is more stable than the Y plane. But due to this particular
effect on mode 1, a situation where the Y plane is more stable than the X plane is obtained.
This can be seen more clearly in Fig. 4b where a plot of only positive chromaticity is shown.

This effect however, is strongly seen only in the absence of the second harmonic RF
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(a) Head-tail regime.

(b) TMCI regime.

Figure 2: Growth rate in 1/turns against chromaticity for different values of ρ for two
macroparticles.

6



(a) Linear synchrotron motion.

(b) Non-linear synchrotron motion with a single harmonic.

Figure 3: Growth rate in 1/turns against chromaticity for 5×105 macroparticles for different
values of ρ.
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(a) Full chromaticity sweep from -1 to 1.

(b) Positive chromaticity sweep from 0 to 1.

Figure 4: Growth rate in 1/turns against chromaticity for a flat chamber with 5e5 macro-
particles.
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Figure 5: Growth rate in 1/turns against chromaticity for 5e5 macroparticles for two values
of second harmonic. The variable factor represents the factor by which the first harmonic is
multiplied to obtain the second harmonic.

voltage. When the second harmonic RF voltage is gradually increased as a percentage of
the first harmonic, the destabilising effect reduces and eventually vanishes completely to
result in a stabilising effect irrespective of the sign of ρ. A plot of the growth rate versus
chromaticity for two different values of second harmonic can be seen in Fig. 5. The figure
shows two curves each (with ρ = 0 and ρ = −1) for two values of the second harmonic. The
parameter factor represents the factor by which the first harmonic is multiplied to obtain
the second harmonic. The circles represent no second harmonic while the triangles represent
a second harmonic RF voltage which is 20% of the first harmonic voltage. It can be clearly
seen in mode 1 that for factor = 0.20, there is a stabilising effect while for factor = 0, a
destabilising effect is observed.

In the course of this work, it was noted that for some value of the detuning impedance, an
instability is observed at zero chromaticity. Hence studies were also carried out to find the
effect of the detuning impedance on the TMCI threshold. The plots for this study can be seen
in Fig. 6 for three different types of impedances. In the Fig. 6a, a resistive wall impedance
is considered. It can be seen that for high negative values of the detuning impedance, the
threshold vanishes and there is a steady rise in the growth rate. For low negative values, the
threshold is increased. For positive values of the detuning impedance, the threshold increases
till ρ = 1, and decreases thereafter. The most striking effect of the detuning impedance is
seen with a broadband resonator as in Fig. 6b. There is a clear increase in the threshold with
negative values of ρ and a decrease in the threshold for positive values. The same sweep is
then run on a realistic SPS impedance model. Only the case in presence and absence of the
detuning impedance is considered for a faithful comparison and to keep the analysis realistic.
While the absolute threshold is increased for both the horizontal and vertical planes due to
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the detuning impedance, from Fig. 6c it can be noticed that at certain lower intensities the
beam is more unstable in presence of the detuning impedance than in its absence.

4 Vlasov Solver Based Simulations

In this section, the results from Sec. 3 have been compared to the results obtained from the
EDELPHI solver [9]. This served the purpose of verifying the results and also benchmarking
the EDELPHI solver.

As a first step, chromaticity sweep for the resistive wall with flat chamber conditions
similar to that seen in Fig. 4 was repeated with EDELPHI. A direct comparison of the results
obtained from the two tools can be seen in Fig. 7 and is found to be in good agreement,
particularly for negative chromaticity. Some discrepancy in the growth rate values is observed
for positive chromaticty though the general shape of the curve is similar. An intensity sweep
with the SPS impedance model was also carried to find the TMCI threshold. The result
was expected to be similar to Fig. 6c. The result obtained from EDELPHI can be seen in
Fig. 8. While the two tools agree well up to a growth of 500 s−1, beyond that they begin to
diverge though the general shape of the plot is still similar. This disparity can be attributed
to the fact that at higher growth rates obtaining accurate values from PyHEADTAIL is
diffcult. The growth rate is obtained relatively directly from a Vlasov solver but it needs to
be obtained from PyHEADTAIL data by fitting an exponential curve as explained in Sec. 2.
This introduces a degree of uncertainty in the obtained fit for fast growing exponentials.

An advantage of using EDELPHI over PyHEADTAIL is the ability to obtain detailed
tune analysis. Obtaining the tunes from PyHEADTAIL data is limited up to an arbitrary
intensity close to where the first modes begin to couple. A plot of tunes obtained from
PyHEADTAIL and EDELPHI for the X plane can be seen in Fig. 9 and for the Y plane
in Fig. 10. From the figures the difference between the two tools is obvious and shows that
EDELPHI allows observing a clear picture of the tune shift of each mode well above the
intensity of the first mode coupling. It is also possible to observe the growth rates associated
with each mode.

5 Effect of Machine Parameters

It is also important to study the effect of other dynamic beam properties such as emittance,
linearity of synchrotron motion and machine properties such as higher order chromaticities
on the TMCI threshold. For that reason, dual parameter sweeps were carried out with one
parameter being the intensity. In this section, two studies will be detailed, one being a study
of the effect of the longitudinal emittance and the other dealing with chromaticity.

The effect of longitudinal emittance in presence and absence of the detuning impedance
for linear synchrotron motion can be seen in Fig. 11. The parameter varied during this study
is the bunch length and the emittance was obtained as a function of the bunch length. From
the plots it is clear that the detuning impedance has a greater effect at higher emittances,
that is for longer bunches. Particularly, in the horizontal plane, it can be seen that for the
intensity range considered, the threshold is not encountered, signifying that the detuning
impedance has increased the threshold considerably. As part of the study, higher order
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(a) Growth rate against intensity for resistive wall impedance.

(b) Growth rate against intensity for broadband resonator.
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(c) Growth rate against intensity for real SPS wake model.

Figure 6: Growth rate in 1/s against intensity for different impedances.

(a) Results from PyHEADTAIL. (b) Results from EDELPHI.

Figure 7: Growth rate in 1/s against chromaticity for a flat chamber using PyHEADTAIL
and EDELPHI.
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Figure 8: Growth rate in 1/s against intensity for the SPS impedance model obtained from
EDELPHI.

chromaticities are gradually introduced. First, only non-linear synchrotron motion with two
harmonics (the second harmonic being 15% of the first) and no higher order chromaticities
is considered. The plot for this case can be seen in Fig. 12. Next, second order chromaticity
effect is considered which can be seen in Fig. 13. As the last step, third order chromaticity
is also introduced. The plots for this model can be seen in Fig. 14.

Such a gradual introduction of higher order effects allows decoupling of the results accord-
ing to the conditions. From the figures, it is clear that while the detuning impedance always
increases the threshold, the higher order chromaticities prove to be the limiting factor for
the threshold. Of particular note, is the third order chromaticity which greatly destabilises
the X plane while proves to beneficial for the Y plane.

An interesting study after observing these effects is to look at the variation in the
threshold with chromaticity for different machine optics. The results for this study have
been plotted in Figs. 15-17. From the results, it is clear that the detuning impedance does
affect the threshold even with high chromaticity and has a stronger impact impact in the ho-
rizontal plane. It is also worth noting from the Figs. 15-17 that different optics are affected
differently by chromaticity. At zero chromaticity, the TMCI threshold, both in presence
and absence of the detuning impedance, is the lowest in Q-26 optics, followed by a slightly
higher threshold in Q-22 optics and the highest among the three in Q-20 optics. At higher
chromaticities, however, this situation is reversed due to the difference in the chromatic fre-
quency shift for different optics with change in the chromaticity unit. The lowest threshold
is displayed in Q-20 optics followed by Q-22 followed by the highest threshold in Q-26. From
the same figures, it can be seen that the thresholds with different optics are approximately
equal around a chromaticity factor of 0.4 for the Y plane and between 0.1 and 0.2 for the X
plane.
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(a) Tunes against intensity without the detuning impedance from PyHEADTAIL.

(b) Tunes against intensity without the detuning impedance from EDELPHI.
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(c) Tunes against intensity with the detuning impedance from PyHEADTAIL.

(d) Tunes against intensity with the detuning impedance from EDELPHI.

Figure 9: Tunes against intensity for the X plane.
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(a) Tunes against intensity without the detuning impedance from PyHEADTAIL.

(b) Tunes against intensity without the detuning impedance from EDELPHI.
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(c) Tunes against intensity with the detuning impedance from PyHEADTAIL.

(d) Tunes against intensity with the detuning impedance from EDELPHI.

Figure 10: Tunes against intensity for the Y plane.
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(a) X plane without the detuning impedance. (b) X plane with the detuning impedance.

(c) Y plane without the detuning impedance. (d) Y plane with the detuning impedance.

Figure 11: Plot of emittance against intensity with the growth rate denoted in colour when
considering linear synchrotron motion.
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(a) X plane without the detuning impedance. (b) X plane with the detuning impedance.

(c) Y plane without the detuning impedance. (d) Y plane with the detuning impedance.

Figure 12: Plot of emittance against intensity with the growth rate denoted in colour when
considering non-linear synchrotron motion.
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(a) X plane without the detuning impedance. (b) X plane with the detuning impedance.

(c) Y plane without the detuning impedance. (d) Y plane with the detuning impedance.

Figure 13: Plot of emittance against intensity with the growth rate denoted in colour when
considering non-linear synchrotron motion and second order chromaticities.
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(a) X plane without the detuning impedance. (b) X plane with the detuning impedance.

(c) Y plane without the detuning impedance. (d) Y plane with the detuning impedance.

Figure 14: Plot of emittance against intensity with the growth rate denoted in colour when
considering non-linear synchrotron motion and up to third order chromaticities.
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(a) X plane without the detuning impedance. (b) X plane with the detuning impedance.

(c) Y plane without the detuning impedance. (d) Y plane with the detuning impedance.

Figure 15: Plot of chromaticity against intensity with the growth rate denoted in colour for
Q-20 optics.
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(a) X plane without the detuning impedance. (b) X plane with the detuning impedance.

(c) Y plane without the detuning impedance. (d) Y plane with the detuning impedance.

Figure 16: Plot of chromaticity against intensity with the growth rate denoted in colour for
Q-22 optics.
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(a) X plane without the detuning impedance. (b) X plane with the detuning impedance.

(c) Y plane without the detuning impedance. (d) Y plane with the detuning impedance.

Figure 17: Plot of chromaticity against intensity with the growth rate denoted in colour for
Q-26 optics.
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6 Analytical Model for Multi-Bunch Beam

This section describes an analytical model developed for rigid multi-bunch beam. Let M be
the 2x2 one-turn map in the horizontal plane which is assumed to be linear and uncoupled.
Then, (

x
x′

)
j

= M ∗
(
x
x′

)
j−1

(1)

where j ≡ turn number.
Throughout the analysis, only rigid bunches with one particle per bunch are considered

and the transverse planes are assumed to be decoupled. If we consider no longitudinal motion,
the longitudinal coordinates will be fixed. In that case we can assume z0 = 0 without loss of
generality. If we consider the positive Z axis in the direction opposite to direction of beam
propagation, the Z coordinates of the bunches will be positive. The wakes produce only a
kick and affect the momentum. If ∆x′i denotes the wake kick due to the impedance in x for
bunch i, the equation for the kick from [10] can be written as

∆x′i = C
∑
zk<zi

Wx(zi − zk, xk, xi) (2)

for the conditions described, where C = e2

E0β2γ
with β =

√
1− γ−2, E0 being the rest mass

of the elementary particles and e the elementary charge. The wake field Wx is given by

Wx(z, xk, xi) = W dip
x (z)xk +W quad

x (z)xi (3)

The wakes are assumed to be single turn, i.e particles from previous turns do not create any
wakes, and ultra-relativistic which gives W (z = 0) = 0. Substituting for the wake function
gives,

∆x′i = C
∑
zk<zi

{
W dip
x (zi − zk)xk +W quad

x (zi − zk)xi
}

(4)

Initially, 2 bunches are considered. The leading bunch can be denoted by the subscript 0
and the trailing bunch by the subscript 1. The wake kick on the trailing particle can then
be written as,

∆x′1j = C{W dip
x (z1)x0j +W quad

x (z1)x1j} (5)

where the subscript j denotes the turn number. It should be noted that the wake kick
depends on the coordinates of the same turn. Because of the absence of multi-turn effect,
there is no kick felt by the leading particle. The wake kick is felt once during the turn and
causes a change in the momentum. Hence the wake kick should be added to the x′ term in
equation (1). The one-turn equation for turn 1 including the wake kick can be written as,(

x1
x′1

)
1

= M ∗
(
x1
x′1

)
0

+

(
0

∆x′1

)
= M ∗

(
x1
x′1

)
0

+

(
0

C{W dip
x (z1)x01 +W quad

x (z1)x11}

)
= M ∗

(
x1
x′1

)
0

+

(
0 0

CW dip
x (z1) CW quad

x (z1)

)(
x01
x11

) (6)
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For convenience, consider an intermediate coordinate vector for turn 1 resulting from the
transfer matrix. Then, (

x1
x′1

)
1,int

= M ∗
(
x1
x′1

)
0

(7)

The final coordinate vector for turn 1 can be obtained by applying the wake kick to the
intermediate coordinate vector for turn 1.(

x1
x′1

)
1

=

(
x1
x′1

)
1,int

+

(
0

CW dip
x (z1)x01,int

+ CW quad
x (z1)x11,int

)
(8)

It should be noted that equation (8) holds because the wake produces only a kick and does
not affect the bunch position. As the wake kick for bunch 0 is ∆x′0 = 0, the equation for
particle 0 can be written as, (

x0
x′0

)
1

= M ∗
(
x0
x′0

)
0

(9)

This can be generalised to include both bunches to give the equation,
x0
x′0
x1
x′1


1,int

= T ∗


x0
x′0
x1
x′1


0

(10)

where T ≡ transfer matrix =

(
M O
O M

)
, where M is the 2× 2 one-turn map and O is a 2x2

null matrix. Using equation (10), the final turn 1 coordinates are given by,
x0
x′0
x1
x′1


1

=


x0
x′0
x1
x′1


1,int

+


0 0 0 0
0 0 0 0
0 0 0 0

CW dip
x (z1) 0 CW quad

x (z1) 0



x0
x′0
x1
x′1


1,int

=

I +


0 0 0 0
0 0 0 0
0 0 0 0

CW dip
x (z1) 0 CW quad

x (z1) 0




x0
x′0
x1
x′1


1,int

=

I +


0 0 0 0
0 0 0 0
0 0 0 0

CW dip
x (z1) 0 CW quad

x (z1) 0


 {T}


x0
x′0
x1
x′1


0

(11)

with I being an identity matrix of appropriate dimensions.
The same model can be extended to include 3 bunches. The wake kick for bunch 2 in

turn j can be obtained from equation (4).

∆x′2j = C{W dip
x (z2)x0j +W dip

x (z2 − z1)x1j +
[
W quad
x (z2) +W quad

x (z2 − z1)
]
x2j} (12)
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x0
x′0
x1
x′1
x2
x′2


1

= {I +W} {T}


x0
x′0
x1
x′1
x2
x′2


0

= {T +WT}


x0
x′0
x1
x′1
x2
x′2


0

(13)

W =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

CW dip
x (z1) 0 CW quad

x (z1) 0 0 0
0 0 0 0 0 0

CW dip
x (z2) 0 CW dip

x (z2 − z1) 0 CW quad
x (z2) + CW quad

x (z2 − z1) 0


is the wake matrix, and T =

M O O
O M O
O O M

 is similar to that defined when considering two

bunches.
Extending to n bunches but still maintaining the same assumptions, the matrices can be

defined as,

Tn×n =


M O . . . O
O M . . . O
...

...
. . .

...
O O . . . M

 (14)

where every element is a 2x2 matrix, and

W2n×2n =



0 0 . . . 0 . . . 0
0 0 . . . 0 . . . 0
0 0 . . . 0 . . . 0

CW dip
x (z1) 0 CW quad

x (z1) 0 . . . 0

0 0
...

. . . . . . 0
...

...
CW dip

x (zn) 0 CW dip
x (zn − z1) . . . C

∑
zk<zn

W quad
x (zn − zk) 0


(15)

The 2x2 transfer matrix M is given by

M =

(
cosµ+ α sinµ β sinµ
−γ sinµ cosµ− α sinµ

)
(16)

detM = 1⇒ βγ − α2 = 1 (17)
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Assuming a smooth approximation, α = 0. The β is given by,

β =
R

Q
(18)

where R ≡ average machine radius and Q ≡ the tune.
For the SPS with R = 6911

2π
and assuming Q-20 optics, Q = 20.13 for the X axis, β = 54.64.

α = 0⇒ γ =
1

β
= 0.0183

The parameter µ ≡ phase advance of each turn and is given by,

µ = 2πQ (19)

which for the SPS computes to µ = 126.48. Substituting the values we get,

M =

(
cos 126.48 54.55 sin 126.48

−0.0183 sin 126.48 cos 126.48

)
=

(
0.6845 39.8314
−0.0133 0.6845

)
(20)

αX 0 αY 0
βX 54.64 βY 54.50
γX 0.0183 γY 0.0183
µX 126.48 µY 126.79
QX 20.13 QY 20.18

Table 1: Parameter values for the SPS with Q20 optics

Let v1, v2, ..., v2n be the eigenvectors and λ1, λ2, ..., λ2n be the corresponding eigenval-
ues of {(I +W )T} where n is the number of rigid bunches. Assuming the matrix can be
diagonalised, any vector can be expressed as a linear combination of the eigenvectors. Hence,

x0
x′0
...

xn−1
x′n−1


0

= Av1 +Bv2 + ...+Nv2n (21)

for vector of positions and momenta corresponding to turn 0 and

{(I +W )T}m


x0
x′0
...

xn−1
x′n−1


0

= Aλm1 v1 +Bλm2 v2 + ...+Nλm2nv2n (22)
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for that of turn m. As {(I +W )T} ∈ R, the eigenvalues are complex conjugates. Hence the
pairs of eigenvalues for mode i can be represented by λi1,2 = rie

±jµi . From the properties of
eigenvalues and from our representation,

tr {(I +W )T} =
n∑
i=1

λi1 + λi2

= 2
n∑
i=1

ri cosµi

(23)

and

det {(I +W )T} =
n∏
i=1

λi1λi2

=
n∏
i=1

r2i

(24)

It should be noted that in absence of wakes, the determinant is 1 and ri = 1 for all i. For
stability, λmi1,2 must not grow with m. Hence we get the condition |ri| ≤ 1 from equation

(22). Now if we consider the mode i = 1, with the eigenvalues λ11 = r1e
jµ1 and λ12 = r1e

−jµ1

we get,

λ11 + λ12 = 2r1 cosµ1

= 2
√
λ11λ12 cosµ1

⇒ µ1 = arccos
λ11 + λ12
2
√
λ11λ12

(25)

Equation (25) is useful for calculating the tune of each mode from the eigenvalues. A plot
of the tunes thus obtained can be seen in Fig. 18. The obtained tunes have been sorted
according to the imaginary part of the eigenvalues. The plots make it clear that in the
presence of both driving and detuning wakes, it is the detuning wake that dominates the
tune shift.

To include the effect of a damper, an additional term related to the damper gain needs
to be added to the matrix. An ideal damper can be seen as reducing the bunch positions by
a finite value by applying a negative kick without affecting the bunch momentum. As the
term due to the damper is independent of the wakes, the damper term can be added to the

transfer matrix. If we consider a single bunch with the coordinates

(
x0
x′0

)
with no wakes,

then the coordinates for turn j in terms of turn (j − 1) are given by(
x0
x′0

)
j

= M ∗
(
x0
x′0

)
j−1

(26)

where M ≡ transfer. Let the transfer matrix be given by

M =

(
a b
c d

)
(27)
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(a) X tune. (b) Y tune.

Figure 18: Plot of tunes obtained from equation (25) against modes. It should be noted that
the tunes obtained from the only detuning (in red) and the case of driving and detuning (in
green) overlap and hence only the red curve is visible.

We can write the bunch coordinates as,

x0j = ax0j−1
+ bx′0j−1

x′0j = cx0j−1
+ dx′0j−1

(28)

As the damper acts on and affects only the bunch position and not the momentum, after
introduction of the damper, the bunch position is given by,

x0j = ax0j−1
+ bx′0j−1

− gx0j−1

= (a− g)x0j−1
+ bx′0j−1

(29)

where g ≡ damper gain. The new transfer matrix is then given by,

Mdamper =

(
a− g b
c d

)
(30)

Turn by turn tracking was carried out with this analytical model using python for an
intensity of 1 × 1011 protons/bunch over 8192 turns. The bunch by bunch tune shift was
evaluated using HarPy. The code used for this is available in Ref. [15]. The obtained tune
shifts without considering a damper are seen in Fig. 19 and with a damper gain (defined
according to the equation 30) of 0.01 in Fig. 20.

From Fig. 20a, we can see that introducing a damper results in a flat tune with bunches
while without a damper jumps in the tune are observed. In an ideal case with all bunches
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(a) X tune. (b) Y tune.

Figure 19: Plot of bunch by bunch tunes without damper.

(a) X tune. (b) Y tune.

Figure 20: Plot of bunch by bunch tunes with a damper gain of 0.01.
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stable, in the horizontal plane, the driving and detuning wakes are equal and opposite and
are expected to cancel each other’s tune shifts giving a flat tune plot. However, this is not
observed in Fig. 19a. A closer look at the horizontal plane bunch positions revealed that
in absence of a damper some of the bunches were unstable and oscillating with a different
amplitude, while some were still stable. As a result, the bunches behind the bunches with
a larger amplitude experience a larger contribution to the kick as compared to the other
bunches due to its larger offset from the symmetry axis (from equation (4)). Such an effect
perturbs the oscillation causing the change in the tunes seen in Fig. 19a.

In the condition explained above without a damper, the behaviour of the tune shifts
versus the number of turns analysed is also worth investigating. For a low intensity, it will
take a larger number of turns for the instability to be appreciable and the opposite will be
true for a higher intensity. Figure 21 shows a plot of the maximum tune excursion against
the number of turns considered in the X and Y planes for two different intensities on a
logarithmic X scale. For the case with both driving and detuning wakes, an increase in the
tune is seen at a lower number of turns for a higher intensity (see Fig. 21a) since a certain
oscillation amplitude will be reached after a lower number of turns. No such increase is seen
in the vertical plane since the instability in the vertical plane is expected to be significantly
lower. Fig. 21 also shows that the tune shift with only the driving impedance tends to zero
when increasing the number of turns analysed while the tune shift with only the detuning
impedance converges very quickly.

To verify the converse, the maximum tune excursions for different number of turns were
plotted against the intensity and can be seen in Figs. 22-24. In Fig. 24a it can be seen that
even at higher intensities, for a lower number of turns, the amplitude of the instability is not
appreciable enough to cause an increase in the tune. But for a higher number of turns, there
is enough time for the instability to become appreciable and in such situations, the intensity
effect is clearly seen. A threshold phenomenon is observed where there is a sudden rise in
the tune shifts and the threshold intensity reduces with higher number of turns as can be
seen for 4096 and 8192 turns from Fig. 24a. No such effect is seen in the vertical plane since
the instability growth rate is not high enough to generate a perturbation with tune in the
explored intensity range over the number of turns analysed.

All the above analysis is has been performed considering single-turn wakes as the equa-
tion (4) holds only for single-turn wakes. Even though this is a reasonable approximation
for the SPS wake, in practice, wakes are often multi-turn as they decay over several turns
and not just a single turn. When considering wake memory, all the bunches need to be
considered over nwake turns. It is convenient to develop a model by separating the dipolar
and quadrupolar wake kicks. The new expressions for the kick experienced by bunch i in
turn j are given by,

∆dipxij = C

nwake−1∑
k=0

n−1∑
s=0

W dip
x (kS + (zi − zs))xsj−k

∆quadxij = C

nwake−1∑
k=0

n−1∑
s=0

W quad
x (kS + (zi − zs))xij

(31)

where ∆dipxij is the dipolar kick, ∆quadxij is the quadrupolar kick and S ≡ circumference of
the machine. It should be noted that because of the multi-turn effect, a particular bunch i
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(a) ∆Qx (b) ∆Qy

Figure 21: Plot of the tune shift against the number of turns for different intensities.

(a) ∆Qx (b) ∆Qy

Figure 22: Plot of the tune shift against intensity in the presence of only driving wakes for
different number of turns.
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(a) ∆Qx (b) ∆Qy

Figure 23: Plot of the tune shift against intensity in the presence of only detuning wakes for
different number of turns.

(a) ∆Qx (b) ∆Qy

Figure 24: Plot of the tune shift against intensity in the presence of both driving and detuning
wakes for different number of turns.

34



will be affected by the wakes of all other bunches and not just the ones ahead of it. From
equation (31), the wake matrix of equation (15) needs to be rewritten as a function of the
turn number k. As the dipolar wake kick depends on previous turn coordinates too, while
the quadrupolar wake kick depends only on the present turn, it is convenient to define two
different matrices, W dip

2n×2n(k) for the dipolar wakes and W quad
2n×2n(k) for the quadrupolar wakes

Wdip
2n×2n(k) =



0 0 . . . . . . . . . 0
CW dip

x (kS + 0) 0 CW dip
x (kS + (−z1)) . . . CW dip

x (kS + (−zn−1)) 0
0 0 . . . . . . . . . 0

CW dip
x (kS + z1) 0 CW dip

x (kS + 0) . . . CW dip
x (kS + (z1 − zn−1) 0

0 0
...

. . . . . . 0
...

...
CW dip

x (kS + zn−1) 0 CW dip
x (kS + (zn−1 − z1)) . . . CW dip

x (kS + 0) 0


(32)

Wquad
2n×2n(k) =



0 0 . . . . . . 0∑n−1
s=0 W

quad
x (kS + (−zs)) 0 . . . . . . 0

0 0 . . . . . . 0

0 0
∑n−1

s=0 W
quad
x (kS + (z1 − zs)) . . . 0

0 0
. . . . . . 0

...
...

0 0 0
∑n−1

s=0 W
quad
x (kS + (zn−1 − zs)) 0


(33)

Let the vector of coordinates for turn j be defined by Xj where Xj =


x0
x′0
...

xn−1
x′n−1


j

. The

dipolar and quadrupolar kicks can then be written in matrix form as,

∆dipXj =

nwake−1∑
k=0

W dip
2n×2n(k)Xj−k (34)

∆quadXj =

nwake−1∑
k=0

W quad
2n×2n(k)Xj (35)

respectively. The intermediate coordinate vector defined similar to equation (7) after apply-
ing the transfer matrix is then given by,

Xj,int = TXj−1 (36)

The final coordinates for the jth turn are obtained by applying the kick,

Xj = Xj,int +

nwake−1∑
k=0

W quad
2n×2n(k)Xj,int +W dip

2n×2n(0)Xj,int +

nwake−1∑
k=1

W dip
2n×2n(k)Xj−k

=

{
I +

nwake−1∑
k=0

W quad
2n×2n(k) +W dip

2n×2n(0)

}
TXj−1 +

nwake−1∑
k=1

W dip
2n×2n(k)Xj−k

(37)

Of course, the equation (37) is valid only because the quadrupolar kick always depends on
the instantaneous position of the bunch and not on the positions in previous turns. Let
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Yj−1 =


Xj−1
Xj−2

...
Xj−(nwake−1)

 be defined as the vector of the coordinates of all previous

nwake − 1 turns. The equation (37) can then be written in a matrix form as,

Yj = {A+B}Yj−1 (38)

where

A =



{
I +

∑nwake−1
k=0 W quad

2n×2n(k) +W dip
2n×2n(0)

}
T O . . . O O

I O . . . O O
O I . . . O O
...

...
. . .

...
...

O O . . . I O


and

B =


W dip

2n×2n(1) W dip
2n×2n(2) . . . W dip

2n×2n(nwake − 1)
O O . . . O
...

...
. . .

...
O O . . . O


with I ≡ 2n× 2n identity matrix and O ≡ 2n× 2n null matrix.

7 Conclusion

An extensive study of the effects of the detuning impedance was carried out by considering
different factors. Particle tracking simulations of Sec. 3 with the two particle model confirmed
the predictions of [16], where the detuning impedance is expected to always stabilise for zero
chromaticity in the TMCI regime. With a large number of macroparticles, the effect of the
detuning impedance seems to depend on the second harmonic voltage. From this, it can
be inferred that the actual distribution of the particles plays an important role in how the
impedance affects the beam. For linear synchrotron motion, the detuning impedance always
stabilises while for non-linear synchrotron motion with a single harmonic RF voltage, mode
1 of intra bunch motion is destabilised. As the second harmonic voltage is increased as a
percentage of the first, the destabilising effect is reduced more and more till a stabilising
effect is observed beyond which the detuning impedance always stabilises. For negative
chromaticity, it can be inferred that the growth rate can be estimated from only the driving
impedance.

An effect is seen on the TMCI threshold as well. For a realistic SPS impedance model,
the effect on the threshold is seen to be highly favourable. It has been observed that at
higher longitudinal beam emittances, it is the higher order chromaticities that prove to be
limiting on the threshold as compared to the detuning impedance since these higher order
effects reduce the threshold. In absence of these higher order effects, there is a significant
increase in the threshold due to the detuning impedance. At high positive chromaticities
too, it is seen that the detuning impedance does not play a critical role in the vertical plane.
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In the horizontal plane, however, there is a significant increase in the threshold at higher
positive chromaticities in presence of the detuning impedance. A phenomenon of particular
note was observed with respect to the optics. An increasing value of the threshold is observed
with optics in the order Q-26, Q-22 and Q-20 while for higher positive chromaticities, this
order is reversed due to the higher chromatic frequency shift for the same chromaticity unit
in different optics.

The Vlasov solver based EDELPHI code is found to give results in good agreement with
the ones obtained from PyHEADTAIL. This exercise has served as a means of verifying the
results obtained from particle tracking and also increase confidence in the EDELPHI solver.
From this solver, the effect of the detuning impedance on the tune shifts and coupling of
transverse modes could be studied in a more detailed manner than possible with particle
tracking. Such a detailed tune analysis allowed finding exactly which modes couple to lead
to the TMCI.

An analytical model for the calculation of the bunch by bunch tune shift with both the
driving and the detuning impedances, and a damper has also been developed. The model
has been tested with the SPS wall wake to disentangle the effect of the driving and the
detuning impedance. It has also been used to study the behaviour of the tune shift over the
number of turns analysed.
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A Machine Parameters

In all the simulations the machine used was the SPS at injection. Different optics were
considered. The machine parameters are:

• Machine circumference = 6911 m

• Momentum compaction factor α = 0.00308

• Lorentz factor γ = 27.7

• Beta function βx = βy = 54.6

• X tune Qx = 20.13

• X tune Qy = 20.18

• Synchrotron tune Qs = 0.017

• Transverse emittances εx = εy = 2× 10−6 m rad

• Bunch length σz = 0.23 m

B Impedance parameters

Three types of impedances were used. The first, a thick resistive wall has parameters:

• Pipe radius = 3 cm

• Resistive wall length = machine circumference

• conductivity = 106 S/m

• dtmin = 10−3/c s

The parameters of the broadband resonator were selected close to that seen in the actual
SPS. They are:

• Rshunt = 7 MΩ

• frequency = 1 GHz

• Quality factor, Q = 1.

The wake table with single turn wakes was generated from the script available in the CERN
impedance repository and used in the particle tracking simulations. For the analytical model,
a 43 turn wake file from C. Zannini was used.
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