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ABSTRACT

We show that differential calculus on discrete group Z, is equivalent to A.
Connes’ approach in the case of two discrete points. They are the same theory
in terms of different basis and the discrete group Z; is the permutation group
of two discrete points.
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1 Introduction

Since A. Connes introduced non-commutative geometry into particle physics(1],
a lot of efforts have been made along this direction [2-6]. Soon after, Sitarz
[7] proposed an attractive approach towards the construction of a pure gauge
theory on arbitrary discrete groups in which Higgs appear as gauge fields on
discrete groups. Though simple in its structure, it contains all the main results
in [1]. But Sitarz {7] could not reach the goal towards the realistic model build-
ing in particle physics, then its results were mathematical one. Fortunately,
this problem had been solved by the authors(9,10].

The main idea in these two approach is to regard Higgs field as a kind
of gauge field. The first approach is to take Higgs as gauge field on discrete
points and the second is on discrete group. After the physical model building,
we find that the results are the same whenever either method is used. This
made us think: what is the relationship between these two approaches?

In this paper, first of all, we summarize A. Connes’ differential calculus on
two discrete points (I) and Sitarz’ differential calculus on discrete group Z,
(I1). Then we show that these two approaches are equivalent to each other and

the Z, group in (II) is just the permutation group of two discrete points in (1).

2 Differential Calculation on two discrete points

In this section, we summarize A. Connes’ non-commutative differential calculus
on two discrete points. For detailed information, see [8].

Algebra A is complex number D valued functions on two points space X =
{a,b}. An element f € A is given by two complex numbers f(a), f(b) € D.

We let *(A) be the universal differential graded algebra over A. The degree



of A is 0 and elements of differential one form are generated by da, a € A with

the following properties:
d(ab) = d(a)b+adb, Va,be A
(da)* = —da” (1)
dl =0.

The higher order differential forms are defined by
d(a®da’ - - da™) = da®da’ - - - da®, Vol € A (2)

and satisfy

dw=0, VYwe(A
3

d(UJ]LUQ) = (dwl)u/g + (—l)aw‘u}]dh&, VLIJ]' € Q.(.A)

A O-dimensional K cycle (h, D,7) over an algebra A with involution *

)

is given by a representation of A in the Hilbert space h corresponding to a

decomposition of h as a direct sum h = h, & h, with the action of A given
S(a)
by fe A — ( and an unbounded selfadjoint operator D with
S

compact resolvant, such that [D,q] is bounded for any a € A. An involutive

representation 7 of the universal algebra Vw € Q* A4 in h is defined as follows:
m(a%da' - da™) = a°[D,a']-- - |D,a"], Vo’ € A (4)
The operator D may be represented in h as a 2 x 2 matrix in the following

Daa Dab
D= A (5)
Do D

We shall take D of the form

decomposition form

because the diagonal elements commute with the action of 4. Since D is a

selfadjoint operator, so we can introduce Dye = D%, = M, then D may be

M‘
M

In the following, we will discuss the simplest case n, = n,, where n, and

written as

ny are the dimension of Hilbert space h, and hs.
First we introduce the idempotent functional basis e;, e, € A | which satisfy
elfa) = ex(b) = 1,
ei(b) = ez(a) = 0,
e - ¢; = b€y,
€y +ep=1
Then a function on discrete points may be written as f = fye, + foeo and the

identity 1 = e; + ez and we have
de, + dey = 0. (9)
The space Q!(A) is a 2 dimensional space , which has the lollowing basis:

C]del ) ngeg. (10)

So that every element of Q!(A) is of the form Aeyde; + peades. The dilferential
d: A— Q'(A) is the finite difference:

df = (Af)eider — (Af)eades . Af = fla) - f(b). (11)
A gauge potential is given by a self adjoint element of 2!,

V= @Tcldel + deqdesy, (12)



then its curvature is

0=dV + V2= (& + d)de,de, — (®B)de,de,. (13)
. 0 -M*
Under the representation 7 one has #(de;) = M0 and m(de,de,) =
( AA/{) M —A/([)M‘ ) Therefore we can get the Yang-Mills action
L:YM =< 0,0 >= (|q) - 1|2 — 1)2 < deldel,deldel > (14)

The inner product on Q¥ is defined by
< Ty, Ty >=Tr(n(T)n(Ty)), VT e Q* (15)

then we have

< dey,de; >= Tr(n(de))r(de))) = 2TTr(MM*), < de,de,, de,de, >= 2Tr((MM*)?).

So we get the Lagrangian for the gauge field:
L=2(9 - 17~ 1)’ Tr((MM*)?). (16)

This is of Higgs potential type up to some coupling constants. To get the
entire Lagrangian of the Higgs, we need to consider the space-time part. For

detail it is discussed in [8].

3 Differential calculus on discrete group 7,

In this section, we will outline the notion of differential calculus theory on
discrete groups Z, = {e,r}. For details, it is referred to [7].
Let A be the algebra of the all complex valued functions on Z,. The right

action of Z, group on A read as

(Ref)(9) = fl9), (Ref)g)=f(g0Or), g€ 2o, Y[ A, (17)
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where © denotes the group multiplication. The derivative is defined as
Oof = - Ref, g€ 2. (18)
It is easy to see O.f = 0 and the only nontrivial derivative is 9,, which satisfies
0,0, =20,. (19)

The first order differential calculus (Q',d) may be given by the definition

of its dual space, one dimensional vector space on A with basis 8, as follows:

x(8r) =1, (20)

where x is the basis of differential one form.

The definition for higher order forms is natural and we take 9" to be the
tensor product of n copies of Q', Q" = (2')*" and Q° = 4. To complete
the construction of the differential algebra Q* = EBQ", we need to define the

exterior derivative d, d: Q" — Q**! whose action on A is defined by

df =8.fx. (21)

It is easy to prove the following lemma [7]:
There exists exactly one linear exterior derative operator d such that it
salisfies
i =0,
() d(fg)=df g+ (-1)*[ -dg, V[ ge,
provided that x satisfy the following two conditions

xf= ULf)x, [eA
(22)
dx = -2xx.



The involution on the differential algebra agrees with the complex conjuga-
tion on A and (graded) commutes with d, i.e. d(w*) = (—=1)%9¢ (dw)*. Again,
it is sufficient to calculate it if we set the involution to x, the basis of one-forms,
)" = -x

The Haar integral on discrete group Zs is introduced as a complex valued

linear functional on A that remains invariant under the action of H,

[ 7 =3uE@+ 1), (29)

which is normalized such that [, 1= 1.

Let us consider the case that there are Lie group transformations among
the elements of the function space and those transformations also depend on
the elements of the discrete group. Then the derivatives introduced above are
no longer covariant. In order to get meaningful differential calculus in this case,

the connection one form is necded to define the covariant exterior differential:
D=dg+ A, (24)

where the connection one form A is a scll adjoint clement in Q' and may be

written as
A=¢x. (25)
Then the generalized curvature two form is
F=dA+ A= (—¢ - R0+ 0R.0)xx. (26)
The sclf adjoint character of A requires that ¢T = R,¢, then we have
F=(-¢-0 +6Nxx (27)

After introducing the metric, we can get the Lagrangian for the theory.

In the Z, case,-we can define the metric as
<XX>=T <XBXX®X>=1, (28)
where 7 is a positive number. Therefore
L=<F,F>=272(®-1*-1)2 (29)

This is the same type of Higgs potential as we get in A. Connes’ approach.
The entire Lagrangian of the Higgs may be introduced also if we consider the
space-time part. For detail it is referred to {9, 10].

It is easy to see that these two approaches are similar whatever the struc-
tures or results. Then a stimulating question may be raised as to whether we
can build a bridge between these two approaches? In next section, we will find

that the answer is yes.

4 Equivalence of Two Approaches

To illustrate the equivalence between these two approaches, we start from A.
Connes’ derivative on two discrete points. Let f = fiey + f¢z be a function

on two discrete point space X, then

df = (/i = fo){erder — cadea). (30)

We know that the permutation group of two points is a Z; group. Then
we can define the Z; action on the two points according to permutation as
follows:

Re.e; = e, ey = €2, Rres =e;. (31)
We find that the derivative (30) may be written as

df = (f = R.[)(erdes + exde). (32)
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If we introduce

G,f = f — f{ff, X = (61d€| + Ezdez), (33)

we have
if =6.f x (34)

and every element of Q'(.4) may be in terms of X as,
V = deide; + peades, = f -

where f = Xe; + pe,.
To verify (34) is just the differential calculus in the case of Zy in Sitarz’
approach, we should check the relations (19) and (22). In doing so, it is useful

to write out some relations, which result from the equations (8)

)

d6162 = —e,dez, d6261 = —Bgdﬁl
d@](i] = f:‘gdcl, €1d61 = d€|€2 . (3:))
dCQCQ = (i[d(i;, €2d€2 = d€261

¢From direct caleulation, it is casy to show that:
ar - ()r = 201':Xf = [Z‘er7di = “QXX:

The involution on the algebra A is just the complex conjugation when it

valued on discrete points,

I (X) = (X)), (36)

then, we have €] = ¢, €3 = ep, [rom which we also have (de;)* = de,, (dey)* =

dey. Using these relations, we can get the cquation

(0" = ~x. (37)

So far, it is shown that d and ¥ satisfy all the relations in (19) and (22).
Hence, we conclude that A. Connes’ differential caleulus on two discrete points
is equivalent to Sitarz’ approach in the case of Z,.

To discuss the Yang-Mills action, first we should study the metric. From

the definition of inner product on Q¥ we have

<X X >=Trr(x)? = 2Tr(MM"), <xx,xx >= Trr(x)* = 2Tr(MM*)2.
(38)

This metric appears a little different from (28) in Sitarz’ approach. Howcver
they may be consistent with each other if we redefine the definition of inner

product on Q¥ as
<N, Ty >=aoTr(n(T)n(Ty)), VT € O, (39)
where a = % Then we get
SXX>= 2, < XX XX >= 27, (40)
where 7 = % is a positive number. These results correspondence to the
formulas in (28) after integrating over discrete group Z,.

/ <X, X >= 27, / < XX, XX >= 21, (41
Zy . Za

In A. Connes’ approach, a gauge potential is given by a self adjoint clement

of Q! as

V = dleide; + deydes. (12)

In terms of x the gauge potential may be written as V = /- x, where [ =

(I’fel + ®e,. Using the formulas in Sitars’ approach, we obtain the curvature

0=dV+Vi=(-d— " 4+ dd")yy. (43)



Therefore, the Yang-Mills action is
L=<8,0>=27(®-17-1). (44)

It is casy to see that whenever either way is used, we get the same results.

If starting from differential calculus on discrete group Z,, we can get A.
Connes’s approach also. For this purpose, we should introduce the idempotent
basis €., e, € A, which satisfy

efe) =e(ry=1

ee(r) =er(c) =0

eg-en=0%n g heZ .

€e +er =1
Then a function on discrete group Z; may be written as f = f.e. + fre, and
the right action of the group may be introduced as R, - €. = e, R, - e, = €..
It is casy to show that (1. - f){(g) = f(g- 7). The more detailed calculation is
similar as the previous part of this section.

From a mathematical point of view, We have shown that A. Connes’ dif-
ferential calculus on two discrete points is cquivalent to Sitarz’ approach in
the case of Z,. The basis of differential one form in the second approach is
a recombination of the first one, and the discrete group is nothing but the
permutation group of the discrete points. In [11], we have shown that an-
other known non-commutative gecometry approach proposed by R. Coqureaux
ct.al.[3] is the matrix representation of the gauge theory on discrete group Zs.

Therefore, these three approaches of non-commutative geometry are consistent

with each other.

Acknowledgements

One of the authors (J.M.L.} would like to thank Professor Abdus Salam, the
International Atomic Energy Agency and UNESCO for hospitality at the In-
ternational Centre for Theoretical Physics, Trieste. He would also like to thank

Dr. Y.K. Lau for his helpful discussion.

11



10.

References

. A. Connes, in: The Interface of Mathematics and Particle Physics,
eds. D. Quillen, G. Segal and S. Tsou (Oxford U. P, Oxford 1990); A.
Connes and J. Lott, Nucl. Phys. (Proc. Suppl.) B18, 44 (1990); A.
Connes and Lott, Proceedings of 1991 Cargese Summer Conference;

- D. Kastler, Marseille, CPT preprint CPT-91/P.2610, CPT-91/P.2611.

. R. Coquereaux, G. Esposito-Farése and G Vaillant, Nucl Phys B353 689
(1991).

- A. H. Chamseddine, G Telder and J. Fréhlich, Phys. Lett. 296B
(1993) 109.

. B. S. Balakrishna, F Giirsey and K. C. Wali, Phys Lett B254, 430
(1991).

. N. A. Papadopoulos, J. Plass and F. Scheck, Phys Lett B324, 380
(1994).

. A. Sitarz, Non-commutative Geometry and Gauge Theory on Discrete
Groups, preprint TPJU-7/1992; A Sitarz, Phys. Lett 308B(1993) 311.

. A. Connes, Non-Commutative Geometry. THES/M/93/12.

. Haogang Ding, Hanying Guo, Jianming Li and Ke Wu, Commun. Theor.
Phys. 21 (1994) 85-94; J. Phys. A:Math.Gen. 27(1994) L75-L79; J.
Phys. A:Math.Gen. 27 (1994)1.231-1.236.

Hao-Gang Ding, Han-Ying Guo, Jian-Ming Li and Ke Wu, Higgs as
Gauge Fields On Discrete Groups and Standard Model For Electroweak
and Electroweak-Strong Interactions, preprint ASITP-93-23 CCAST-
93-5, To appear in Z. Physik C.

. Jianming Li, Matrix Realization of Gauge Theory on Discrete Group Z,,
ASITP-94-9, hep-th/9408157.

12






