
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 8, AUGUST 2021 1811

New Software-Based Readout Driver for the
ATLAS Experiment

Serguei Kolos , Gordon Crone, and William P. Vazquez

Abstract— To maintain sensitivity to new physics in the coming
years of Large Hadron Collider (LHC) operations, A Toroidal
LHC ApparatuS (ATLAS) collaboration has been working on
upgrading a portion of the front-end (FE) electronics and
replacing some parts of the detector with new devices that can
operate under the much harsher background conditions of future
LHC runs. The legacy FE of the ATLAS detector sent data
to the data acquisition (DAQ) system via the so-called Read
Out Drivers (RODs) custom-made VMEbus boards devoted to
data processing, configuration, and control. The data were then
received by the Read Out System (ROS), which was responsible
for buffering them during the High-Level Trigger (HLT) process-
ing. From Run 3 onward, all new trigger and detector systems will
be read out using new components, replacing the combination of
the ROD and the ROS. This new path will feature an application
called the Software Read Out Driver (SW ROD), which will run
on a commodity server receiving FE data via the Front-End
Link eXchange (FELIX) system. The SW ROD will perform
event fragment building and buffering as well as serving the
data on request to the HLT. The SW ROD application has been
designed as a highly customizable high-performance framework
providing support for detector-specific event building and data
processing algorithms. The implementation that will be used for
Run 3 of the LHC is capable of building event fragments at a rate
of 100 kHz from an input stream consisting of up to 120 MHz of
individual data packets. This document will cover the design and
the implementation of the SW ROD application and will present
the results of performance measurements executed on the server
models selected to host SW ROD applications during Run 3.

Index Terms— Data acquisition (DAQ), data collection, data
transfer, object-oriented programming.

I. INTRODUCTION

AS PART of the preparation for Large Hadron Col-
lider (LHC) Run 3, which will start early in 2022,

A Toroidal LHC ApparatuS (ATLAS) [1] collaboration has
upgraded some parts of the detector with new components,
able to operate under the much harsher background con-
ditions expected as the LHC reaches higher instantaneous
luminosity. The new detector and trigger systems will use
modern front-end (FE) electronics that require an updated
readout system. During the first two LHC runs, the trigger and

Manuscript received October 28, 2020; revised January 28, 2021 and
March 2, 2021; accepted May 23, 2021. Date of publication June 8, 2021;
date of current version August 16, 2021.

Serguei Kolos is with the Department of Physics and Astronomy, University
of California, Irvine, CA 92697 USA.

Gordon Crone is with the Department of Physics and Astronomy, University
College London, London WC1E 6BT, U.K.

William P. Vazquez is with Royal Holloway, University of London, London
TW20 0EX, U.K.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNS.2021.3083987.

Digital Object Identifier 10.1109/TNS.2021.3083987

data acquisition (TDAQ) system [2] received data from the
detector FE electronics via custom-made VMEbus boards
called Read Out Drivers (RODs) [3]. The data from RODs
were received by the Read Out System (ROS) [2], which was
responsible for buffering and serving them to the High-Level
Trigger (HLT) [2]. From Run 3 onward, the TDAQ sys-
tem will use a new facility called the Software Read Out
Driver (SW ROD) for all new trigger and detector compo-
nents. The SW ROD will receive FE data via the FE Link
eXchange (FELIX) system [4] and perform event fragment
building and buffering as well as serving data on request to
the HLT.

II. FELIX SYSTEM OVERVIEW

FELIX is a new generic detector readout system that can
receive data from detector FE electronics via (among oth-
ers) the versatile radiation hard optical link architecture [5]
developed at Conseil Européen pour la Recherche Nucléaire
(CERN). FELIX can be used to receive data via either Giga-
Bit Transceiver (GBT) [6] or the in-house designed FULL
mode protocol. FELIX uses a custom peripheral component
interconnect express (PCIe) card that receives data via optical
links and passes them to the memory of a commodity computer
via the PCIe bus. FELIX also provides a software application
that can forward these data to a number of subscribers via a
commercial network. To maximize performance, the software
uses RDMA-capable protocols. RDMA stands for Remote
Direct Memory Access, a technology that makes it possible to
put data directly into the main memory of another computer
without involving the CPU, network software stack, or oper-
ating system kernel of that computer. FELIX implements a
custom network communication layer called NetIO [7] on top
of the RDMA over Converged Ethernet (RoCE) protocol that
is supported by many modern network cards. NetIO provides
a C application programming interface (API) that can be used
by a software application to receive data from the FELIX
system. A FELIX card can be operated in two modes using
the respective protocols:

1) GBT Mode: With the GBT protocol, a physical input
link can be subdivided into a number of logical sublinks
(known as E-Links), which can pass information from
separate pieces of FE electronics. For Run 3, the max-
imum number of E-Links for a single FELIX card is
limited to 192, which in this case are equally spread
over 24 GBT links.

2) FULL mode: This mode has no logical subdivision of
links and uses an in-house designed protocol for higher

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5811-755X
https://orcid.org/0000-0003-2605-8940

1812 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 8, AUGUST 2021

Fig. 1. SW ROD deployment diagram. An SW ROD application is fully
flexible with respect to its location and connectivity. It can be freely moved
from one computer to another and can receive data from an arbitrary number
of FELIX applications.

bandwidth. For Run 3, this mode can be used to send
data either via 12 links at full occupancy with the
speed of 9.6 Gbps or via 24 links with 50% occupancy
(4.8 Gbps).

III. SW ROD SYSTEM ARCHITECTURE

The SW ROD facility is envisaged to be implemented as
software running on a set of commodity computers. Given that
a single computer can serve only a limited amount of input
data, and to scale to the size of the new ATLAS readout, that
for Run 3 will receive data from about a hundred FELIX input
cards, the software had to be designed in a way that allowed
it to be distributed over an arbitrary number of computers.
In the current design, this is achieved by splitting the input
data channels between a number of software processes, which
are referred to as SW ROD applications as shown in Fig. 1.

Each instance of the SW ROD application can run on a
separate computer, but it originates from the same binary
executable. This executable implements a highly customiz-
able high-performance framework, rendering support for
detector-specific event building and data processing algorithms
provided in the form of shared libraries (a.k.a. binary plugins).
This way different instances of the SW ROD application can
be specialized at run time by providing different configura-
tions, and each configuration defines a set of plugins to be
used as well as their configuration parameters.

IV. SW ROD APPLICATION FUNCTIONAL REQUIREMENTS

The RODs, used by the legacy readout system to receive and
process data from the ATLAS detector FE, were developed
independently by every subdetector. As such, they perform
subdetector-specific data processing and event building based
on the signals received from the ATLAS Central Trigger
Processor (CTP) [8]. As the FELIX system does not perform
any data processing or event aggregation, but merely provides
data routing between detector FE and the data acquisition
(DAQ) system, the task of data aggregation and processing has
to be fulfilled by the SW ROD application before transferring
data to the HLT farm. The SW ROD is expected to be
used not only for normal physics data taking but also for
various auxiliary subdetector-specific activities, such as com-
missioning, calibration, monitoring, and debugging. During

these activities, data will undergo specific processing and
may need to be transferred to a different destination than
the HLT farm. To meet such requirements, the SW ROD
application has been designed as a framework that supports
a high degree of customization by making it possible to
load subdetector-specific event building and data processing
algorithms at run time, which can be further configured by
subdetectors with respect to their specific needs.

V. SW ROD APPLICATION HIGH-LEVEL DESIGN

The SW ROD application is split internally into a number
of independent components. Each of them exposes a simple
interface that defines how other components can interact
with it. There are three main components defined by the SW
ROD application architecture that can be accessed via the
respective interfaces:

1) DataInput interface: It abstracts a source of input data
to shield other components of the SW ROD application
from any changes in the network input protocol. In addi-
tion, it also makes it possible to use another data source,
for example, internal data generators, for testing and
debugging.

2) ROBFragmentBuilder interface: It abstracts implemen-
tations of data aggregation algorithms, which may be
needed to facilitate the implementation of different
data-handling strategies as required by subdetectors and
should be able to support different FELIX operation
modes. This approach scales well with a number of
data aggregation algorithms, as adding a new algorithm
does not require modification of the existing ones. It also
offers the possibility to support auxiliary data aggrega-
tion strategies to be used for calibration or monitoring
without affecting the basic procedures used for normal
physics data taking. An implementation of this interface
is responsible for aggregating data chunks from indi-
vidual E-Links received via the DataInput interface into
event fragments according to the given configuration.
Such a configuration defines the set of event fragments
to be produced as well as a list of input links for each
fragment.

3) ROBFragmentConsumer interface: It abstracts any kind
of processing that can be applied to fully aggregated
event fragments. Multiple implementations of this inter-
face can be used simultaneously in the same SW ROD
application, in which case they will be organized into a
singly linked list. Each consumer in this list will have to
forward event fragments to the next one after finishing
its specific processing step. For example, as shown
in Fig. 2, one implementation of this interface can apply
a custom subdetector-specific processing procedure to
the event fragments before passing them to another
consumer that is used to transfer these fragments to the
HLT farm.

With such a design, data-handling is done by the imple-
mentations of the SW ROD application interfaces, while the
application itself merely loads and instantiates the corre-
sponding implementation classes in accordance with a given

KOLOS et al.: NEW SOFTWARE-BASED READOUT DRIVER 1813

Fig. 2. Typical interactions between SW ROD application components for
a normal data-taking activity. The DataInput component subscribes to FELIX
and passes received data to the ROBFragmentBuilder, which aggregates data
into event fragments and transfers them to the first ROBFragmentConsumer
in the chain. This chain can contain an arbitrary number of consumers, which
pass event fragments from one another along the chain.

Fig. 3. Default SW ROD interface implementations, which are provided by
the TDAQ software release. A new custom implementation of any SW ROD
interface can be added to the SW ROD application dynamically as a plug-in.

configuration and links the instantiated objects in the order
defined by this configuration.

VI. SW ROD DEFAULT COMPONENT IMPLEMENTATIONS

A shared library that contains default implementations for
all three interfaces is supplied along with the SW ROD
application. This library contains all classes shown in Fig. 3.

A. DataInput Interface Implementations

1) The NetioInput class is responsible for receiving data
from the FELIX system using the NetIO Socket interface
for a given set of E-Links and passing these data to the
fragment builder via the ROBFragmentBuilder interface.

2) The InternalDataGenerator can generate FELIX-like
data chunks of a given size for a configurable number of
E-Links. This class is used for debugging and for unit
test implementation.

B. ROBFragmentBuilder Interface Implementations

The library provides two implementations of the ROBFrag-
mentBuilder interface, which can be used to receive data
from the FELIX system in either GBT or FULL mode. The
algorithms implement a specific data aggregation strategy in a
generic way that is independent of the format of the incoming
data chunks. As this format is detector-specific, this feature
was implemented by allowing detectors to supply two custom
procedures as parameters for these algorithms:

1) Trigger Information Extraction procedure: This is a
function that extracts the Level 1 Trigger identifiers from
a given data chunk. These identifiers are used to assign
data chunks to a particular event fragment and to align
data with the Trigger information received from the CTP.

2) Data Integrity Checking procedure: This function is
intended to be used if there is a suspicion that input data
chunks could be corrupted or a sequence of data packets
for a particular input link is broken. This function is
assumed to know the location of the checksum value in
a given data packet format and the Cyclic Redundancy
Check CRC) algorithm that was used to calculate that
value.

In most cases, detector developers have to define only these
functions and reuse the data aggregation strategies provided
by the carefully optimized and extensively tested default
ROBFragmentBuilder interface implementations. On the other
hand, if another event fragment aggregation strategy is
required for a particular subdetector, a new algorithm can
be implemented and plugged in to the SW ROD application
as is done for default implementations. This does not affect
the existing components of the SW ROD application and is
completely transparent for the application itself.

C. ROBFragmentConsumer Interface Implementations

1) The FragmentProcessor class was developed to sim-
plify implementation of the common task, required by
many subdetectors, of applying custom detector-specific
postprocessing to all event fragments produced by the
given SW ROD application. This class provides a work-
bench to execute detector-specific code on every event
fragment that is passed to this consumer. This code
should perform the necessary modifications to the event
fragment payload but should keep the structure of the
fragment untouched. The code can be provided in the
form of a function, which has to be implemented by
the corresponding detector experts and be given to the
SW ROD application in the form of a shared library that
will be loaded at runtime.

2) The HLTRequestHandler class is responsible for buffer-
ing event fragments and serving them to the HLT farm
on request. It keeps the event fragments until informed
by the HLT that they are no longer needed. Event
fragments are indexed by their Level 1 Trigger identifier
and stored in an internal buffer until a clear request
has been received from the HLT. On receipt of a clear
request, all the event fragments with the identifiers
provided by this request will be removed from the index
and their allocated memory freed.

3) The FileWriter class implements a consumer that simply
writes all received event fragments to a file on disk. The
files created by the FileWriter will be in the standard
ATLAS data file format [9] with all event fragments
prepended by the ATLAS full event header, which
makes such files compatible with standard ATLAS event
processing and analysis applications. This functionality
is useful for testing, commissioning, calibration, and
other auxiliary activities which are performed by detec-
tors beyond normal data taking.

4) The EventSampler implements event selection for online
monitoring. An instance of this class can be optionally
added to the list of an SW ROD application consumers

1814 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 8, AUGUST 2021

TABLE I

FELIX CARD OUTPUT RATES FOR RUN 3

to select a subset of aggregated event fragments for the
purpose of online monitoring. This class passes selected
events to the TDAQ Event Monitoring service [10] that
transfers them to the applications responsible for data
quality assessment.

VII. SW ROD APPLICATION PERFORMANCE

REQUIREMENTS

In Run 3, the SW ROD has to be able to operate at an input
rate of 100 kHz, matching the ATLAS Level 1 Trigger accept
rate. The number of input links and the overall data rates are
defined by the output produced by the FELIX system. Table I
summarizes these numbers for a single FELIX card.

An important goal of the SW ROD is to handle as many
input data links as possible to reduce the total system price
by minimizing the number of computers to be used to run
SW ROD applications. While in FULL mode this number is
essentially defined by the input data rate requirements, and
in GBT mode the data rate produced by a single FELIX
card is much lower and the number of input links that can
be served by a single SW ROD computer is mostly driven
by the performance of the GBT data aggregation algorithm.
A dedicated study has been performed to estimate the maxi-
mum number of input links that can be handled by the GBT
event fragment aggregation algorithm executed on a single SW
ROD computer. The results of this study will be presented in
Section VIII.

VIII. GBT MODE EVENT FRAGMENT BUILDING

ALGORITHM OPTIMIZATION

Due to power consumption and heat dissipation issues,
the clock frequency of a modern CPU depends on the number
of cores, and the product of these parameters gives a similar
value for any CPU in the same price range. This value can be
used to make a rough estimate of the full computing power a
particular CPU can offer. It should be noted that a modern CPU
is capable of executing more than one operation per cycle, but
in practice this is difficult to achieve for complex code, and
normally a one-to-one ratio between cycles and operations is
considered satisfactory. Taking 2.5 GHz as an average CPU
frequency for a CPU that has 10 cores, one can assess the
total number of CPU operations per second provided by an
averagely priced CPU to be on the order of 2.5 · 1010.

Given that the rate of data chunks from a single FELIX
card in GBT mode is about 20 MHz, a simple division shows
that such a CPU can provide 1250 operations for a single data
chunk, which corresponds to about 0.5 ms. If one wants to
maximize the number of FELIX cards that can be handled by
the same SW ROD computer, this budget has to be divided
further accordingly. It should be taken into account that every

chunk has to be aligned, by means of the Level 1 Trigger
identifier that this chunk contains, with the other ones for
the purpose of event fragment aggregation. This requires the
extraction of L1ID from each data chunk and finding an
appropriate event buffer to which to copy the chunk. Given
the size of GBT data packets, this is more efficient than
using a zero-copy memory management technique. Moreover,
the computational resources are spread over all cores of the
given CPU, which means that to use them in an efficient
way the software has to be designed to use multiple threads
with a high degree of parallelism. This essentially precludes
the use of high-level design patterns, like producer-consumer,
to pass data between threads as this would incur too much
performance overhead for thread synchronization.

The solution that was implemented for the GBT event
fragment aggregation algorithm to minimize the rate of inter-
actions between threads was to combine both data reading and
event fragment aggregation into the same thread. To achieve
that the total number of input E-Links is split among a
configurable number of worker threads, with each thread
reading data chunks from the given subset of E-Links and
aggregating them into a subfragment of a given event. When
a subfragment is ready, the worker thread passes it to the final
fragment building stage via the tbb::concurrent_map
container [11], which uses L1ID as key. This approach makes
it possible to split the algorithm into two stages:

1) The processing of individual data chunks is done in
parallel by multiple concurrent threads at the O(10) MHz
rate.

2) The final event fragment assembly that requires synchro-
nization between threads is done at the rate of 100 kHz
only.

The degree of parallelism provided by this algorithm can be
estimated using a formula that is based on Amdahl’s law [12]

S(n) = 1

(1 − P) + P
n

. (1)

Equation (1) defines how the speedup S(n) of an algorithm
executed by a given number of threads n depends on the
parallel fraction of this algorithm P . Given that we know the
processing rates of the parallel and nonparallel fractions of the
GBT event fragment aggregation algorithm, we can express P
as (2)

P = 1 − CFA × 105

107
= 1 − 0.01 × CFA. (2)

Here, CFA is the relative cost of the final subfragment
assembly operation with respect to the cost to handle a single
data chunk. This equation shows that if the relative cost
of the final assembly operation is less than 100, then the
algorithm should give some performance gain, but to scale
well this number should be less than 50. Using this, (1) can
be transformed to

S(n) = n

0.01 × CFA(n − 1) + 1
. (3)

This equation defines how the speedup of the GBT algo-
rithm depends on the relative cost of the final assembly

KOLOS et al.: NEW SOFTWARE-BASED READOUT DRIVER 1815

operation. Finally, inverting (3) yields (4), which will be used
in the next chapter to assess CFA for the current algorithm
implementation using the empirical values for S(n) obtained
from performance measurements

CFA =
(

n
S(n)

− 1
)

0.01 × (n − 1)
. (4)

IX. PERFORMANCE MEASUREMENTS

A. Testbed Configuration

Event building algorithm performance measurements were
performed on a testbed that replicates the same hardware
configuration that will be used by the readout system during
Run 3:

1) SW ROD application running on a computer with a
dual-socket motherboard with 2 Intel(R) Xeon(R) Gold
5218 CPUs and 96 GB of DDR4-2667 RAM. Each CPU
has 16 physical cores with a base frequency of 2.3 GHz.

2) Input data for the tests generated by a FELIX card soft-
ware emulation application running on another computer
with an Intel Xeon E5-1660 v4 CPU with 3.2 GHz base
frequency and equipped with 32 GB DDR4 2667 MHz
memory.

3) Both computers were equipped with Mellanox
ConnectX-5 100 GbE network adapters, which were
connected via Juniper QFX5200-32C switch. Data were
sent to the SW ROD application via the FELIX NetIO
protocol.

B. Network Throughput Test

To assess the overhead of the RoCE protocol, the network
throughput was measured using a simple bandwidth test
utility from the Mellanox OFED-4.7 software package with a
default packet size of 65K bytes and maximum transmission
unit (MTU) value of 1500 bytes. The receiving application
was started on the SW ROD computer with the following
command:
ib_send_bw -F -n 100000
The client (sending) application was started on FELIX

computer with the Internet Protocol (IP) address of the SW
ROD host:
ib_send_bw -F -n 100000 192.168.100.1
Both applications reported an average rate of 91.3 Gb/s

that stayed almost constant throughout the test, with marginal
variations of less than a fraction of 1 Gb/s.

C. GBT Mode Tests

The aim of these tests was to study how the GBT event
fragment building algorithm scales with the number of input
E-Links and the number of threads used to handle input
data. To this end, three series of tests were performed
with the SW ROD application using one, two, and three
threads, respectively, to receive and aggregate data chunks
from every group of 192 input links, which corresponds
to the input from a single FELIX card. The software that
generated data for these tests simulated input from up to
6 FELIX cards, which represents 6% of the total num-
ber of FELIX cards for Run 3 and about 1% for Run 4.

Fig. 4. GBT event fragment aggregation algorithm performance test results.
The algorithm scales well with the number of worker threads used for
aggregating data from a FELIX card and with the number of cards. For the
given hardware configuration, the algorithm performance is limited by the
100 GbE input network bandwidth.

TABLE II

ESTIMATE OF THE PARALLEL FRACTION OF GBT ALGORITHM

The total number of E-Links for the tests increased gradually
from 192 to 1152. The size of the generated data chunks was
set to 40 bytes. The results of these tests are shown in Fig. 4.

These results show that the GBT event fragment aggregation
algorithm implementation scales well in both dimensions: with
the number of worker threads aggregating data from a given
number of E-Links and with the number of such aggregation
operations running concurrently in the scope of the same SW
ROD application.

The dotted line shows the maximum theoretical input rate
that can be obtained with the given hardware configuration,
which is limited by the available network bandwidth. This
line represents (5)

L = 91.3 × 109

192 × F × (40 × 8 + 12 × 8)
(5)

where L is the input rate, F is the number of simulated FELIX
cards, 40×8 is the size of the data chunk in bits, 12×8 is the
size of the NetIO protocol overhead per chunk in bits as well,
and 91.3 ·109 is the maximum bandwidth that can be achieved
with using the RoCE protocol in Gb/s. This line demonstrates
that the last three results of the tests with two reading threads
and all but the first two results for the test series with three
reading threads were limited by the network bandwidth. The
dashed line shows the maximum rate that could be achieved
if the NetIO protocol overhead was equal to zero. It indicates
that the input rate could potentially be improved by reducing
the NetIO overhead.

Using the results which were not limited by network band-
width, one can calculate the speedup S(n) and parallel fraction
P of the GBT event fragment assembly algorithm and then
use these numbers with (4) to compute an estimate of the
CFA coefficient. The results of these calculations are shown
in Table II.

1816 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 8, AUGUST 2021

Fig. 5. FULL mode data handling algorithm performance test results. The
algorithm scales well with the number of input data streams, except the
extreme case of using a single input stream only. In this case, the algorithm
performance is CPU-limited, but this is insignificant as in this case simulated
data rate exceeded by an order of magnitude a FULL mode link bandwidth.

D. FULL Mode Tests

In FULL mode, larger sized event fragments are sent to
FELIX over fewer (higher bandwidth) links, with no data
aggregation required in the SW ROD. The number of links
needing to be serviced at this increased bandwidth can vary
from 1 to 24 in the extreme case. In FULL mode, several links
can be grouped together to be used to send fragments corre-
sponding to different Level 1 trigger events in a round-robin
pattern from the same piece of detector FE electronics if more
bandwidth than a single link can provide is required.

Tests have been performed to study the behavior of the
SW ROD’s FULL mode data-handling algorithm relative to
the number of input link groups, which need to be serviced
independently. Each group of links was used to send an
independent stream of data and, inside a group, event frag-
ments were sent over the given links using the round-robin
pattern. For these tests, the size of the generated packets was
set to 5 kB, the maximum expected packet size for Run 3,
and the number of independent streams of data generated
by the FELIX software simulator varied from 1 to 24. For
each configuration, the average input rate per data stream was
measured. The results of these tests are shown in Fig. 5.

The results demonstrate the excellent scalability of the
FULL mode data-handling algorithm with respect to the
number of input links. In all test series, except one input rate
was limited by the network bandwidth. The only exception is
the configuration with all 24 input links used for the same data
stream. In this test, the input rate went up to 1.76 MHz, which
saturated the CPU cores used by the SW ROD application’s
reading threads. No further study has yet been done for this
scenario as the rate that was achieved is far in excess of the
100-kHz input data rate requirement for Run 3.

E. Scalability Toward Run 4 Requirements

For Run 4, which is planned to start in 2027, the LHC will
undergo the High Luminosity Upgrade [13] that will signif-
icantly increase instantaneous luminosity and the number of
particle interactions per bunch crossing. The high luminosity

Fig. 6. SW ROD maximum input rate as a function of data chunk size
(a) and number of input E-Links (b). In both tests, the results are CPU-limited
and were improved by replacing the standard memory management new and
delete operations with a custom memory pool. (a) Difference between the
two implementations. (b) Results which were obtained using memory pool
modification with two different chunk sizes.

LHC (HL-LHC) baseline parameters with a peak luminosity
of 5 to 7 ×10−34 cm−2 s−1 and an average number of pp
interactions per bunch crossing 140 to 200 will bring new
challenging requirements for the ATLAS TDAQ system, which
will have to receive data from trigger and detector electronics
at an input rate of 1 MHz. As the readout system for Run
4 will be based on FELIX, it is useful to study the limits
of the current readout implementation, such that they can be
addressed in the new TDAQ architecture. For this reason,
a series of tests were performed with the GBT event fragment
aggregation algorithm to reveal the maximum number of input
E-Links and chunk size configurations at which 1 MHz input
can be sustained. For these tests, the SW ROD application
used the default GBT event fragment aggregation algorithm
that assembles data from all the given input E-Links to a single
fragment. Two rounds of tests were performed. In the first one,
the number of input E-Links varied from 24 to 192 and the
input data chunk sizes were set to 40 and 80 bytes for different
test series. For the second round of tests, the number of input
E-Links was fixed to be 48 and the data chunk size varied
from 40 to 240 bytes. The algorithm used six reading threads
for both rounds of tests.

KOLOS et al.: NEW SOFTWARE-BASED READOUT DRIVER 1817

Fig. 6(a) shows two data series which were obtained with
the same test configurations but using different versions of
the SW ROD application. The first test series revealed a
bottleneck in the SW ROD application that was caused by the
standard new and delete memory management operations. This
was not a problem for previous tests, where these operations
were taking place at a rate of about 100 kHz, but when the
input rate was increased to 1 MHz the memory management
overhead became prominent. A quick solution was put in
place by replacing the new and delete operations with a
custom memory pool implementation that preallocates a large
number of memory blocks and keeps a list of free blocks in
a tbb::concurrent_queue container [11], which made
the use of this memory pool by multiple concurrent threads
possible. This improved the input rate of the SW ROD
application by almost 50% and made it possible to reach
a rate above 1 MHz with some configurations. The same
implementation was used for the second round of tests, for
which the results are shown in Fig. 6(b).

X. CONCLUSION

A mixture of the legacy ROD-based and the new
FELIX-based readout will be used by the ATLAS TDAQ
system for LHC Run 3. The SW ROD is a new component of
the ATLAS DAQ system that was developed to receive data
from FELIX. The SW ROD implements a high-performance
customizable framework that supports custom input data for-
mats and different event fragment aggregation strategies as
required by the new ATLAS detector and trigger components.
The SW ROD fully satisfies the performance and functional
requirements which have been defined by ATLAS for Run 3.
The default GBT event fragment aggregation algorithm makes
it possible to handle data input from up to 6 FELIX cards at
the rate of about 150 kHz, giving enough safety margin to
reliably sustain 100-kHz rate for Run 3. A single SW ROD
server can also handle data coming from 12 FULL mode
links of a FELIX card at the rate of 190 kHz, which is almost

twice the Run 3 input rate requirement. Further optimization
could be achieved by reducing the overhead of the FELIX
communication protocol. A study of how the Run 4 perfor-
mance requirements can be met is ongoing and has already
revealed some very promising results.

REFERENCES

[1] T. A. Collaboration et al., “The ATLAS experiment at the CERN large
hadron collider,” J. Instrum., vol. 3, no. 08, Aug. 2008, Art. no. S08003,
doi: 10.1088/1748-0221/3/08/S08003.

[2] ATLAS TDAQ Collaboration, “The ATLAS data acquisition and
high level trigger system,” J. Instrum., vol. 11, no. 6, Jun. 2016,
Art. no. P06008, doi: 10.1088/1748-0221/11/06/P06008.

[3] A. Gabrielli, “Commissioning of ROD boards for the entire ATLAS
pixel detector,” J. Instrum., vol. 13, no. 9, Sep. 2018, Art. no. T09009,
doi: 10.1088/1748-0221/13/09/t09009.

[4] S. Ryu, “FELIX: The new detector readout system for the ATLAS
experiment,” J. Phys., Conf. Ser., vol. 898, Oct. 2017, Art. no. 032057,
doi: 10.1088/1742-6596/898/3/032057.

[5] F. Vasey et al., “The versatile link common project: Feasibility report,”
J. Instrum., vol. 7, no. 1, Jan. 2012, Art. no. C01075, doi: 10.1088/1748-
0221/7/01/c01075.

[6] P. Moreira et al., “The GBT project,” in Proc. Topical Workshop
Electron. Phys., Sep. 2009, pp. 342–346. [Online]. Available: https://cds.
cern.ch/record/1235836

[7] J. Schumacher, C. Plessl, and W. Vandelli, “High-throughput and
low-latency network communication with NetIO,” J. Phys., Conf.
Ser., vol. 898, Oct. 2017, Art. no. 082003, doi: 10.1088/1742-
6596/898/8/082003.

[8] G. Anders et al., “The upgrade of the ATLAS level-1 central trigger
processor,” J. Instrum., vol. 8, no. 1, Jan. 2013, Art. no. C01049, doi:
10.1088/1748-0221/8/01/c01049.

[9] C. P. Bee et al., “The raw event format in the ATLAS trigger/DAQ,”
CERN, Geneva, Switzerland, Tech. Rep. ATL-DAQ-98-129, Feb. 2016.
[Online]. Available: https://cds.cern.ch/record/683741

[10] I. Scholtes, S. Kolos, and P. F. Zema, “The ATLAS event monitoring
service—Peer-to-peer data distribution in high-energy physics,” IEEE
Trans. Nucl. Sci., vol. 55, no. 3, pp. 1610–1620, Jun. 2008, doi:
10.1109/TNS.2008.924057.

[11] A. D. Robison, “Intel threading building blocks (TBB),” in Encyclopedia
of Parallel Computing, D. A. Padua, Ed. Boston, MA, USA: Springer,
2011, pp. 955–964.

[12] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proc. Spring Joint Comput. Conf.
AFIPS (Spring), vol. 30, Apr. 1967, pp. 483–485.

[13] C. Bernius, o. behalf of the ALICE, and C. Collaborations, “HL-LHC
prospects from ATLAS and CMS,” J. Phys., Conf. Ser., vol. 1271,
Jul. 2019, Art. no. 012004, doi: 10.1088/1742-6596/1271/1/012004.

http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://dx.doi.org/10.1088/1748-0221/11/06/P06008
http://dx.doi.org/10.1088/1748-0221/13/09/t09009
http://dx.doi.org/10.1088/1742-6596/898/3/032057
http://dx.doi.org/10.1088/1748-0221/7/01/c01075
http://dx.doi.org/10.1088/1748-0221/7/01/c01075
http://dx.doi.org/10.1088/1742-6596/898/8/082003
http://dx.doi.org/10.1088/1742-6596/898/8/082003
http://dx.doi.org/10.1088/1748-0221/8/01/c01049
http://dx.doi.org/10.1109/TNS.2008.924057
http://dx.doi.org/10.1088/1742-6596/1271/1/012004

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

