
A
TL

-D
A

Q
-P

R
O

C
-2

02
0-

02
4

28
O

ct
ob

er
20

20
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020 1

New software based readout driver for the ATLAS
experiment

Serguei Kolos, on behalf of the ATLAS TDAQ Collaboration

Abstract—In order to maintain sensitivity to new physics in
the coming years of LHC operations, the ATLAS experiment has
been working on upgrading a portion of the front-end electronics
and replacing some parts of the detector with new devices that
can operate under the much harsher background conditions of
the future LHC. The legacy front-end of the ATLAS detector sent
data to the DAQ system via so called Read Out Drivers (ROD)
- custom made VMEbus boards devoted to data processing,
configuration and control. The data were then received by the
Read Out System (ROS), which was responsible for buffering
them during High-Level Trigger (HLT) processing. From Run 3
onward, all new trigger and detector systems will be read out
using new components, replacing the combination of the ROD
and the ROS. This new path will feature an application called
the Software Read Out Driver (SW ROD), which will run on a
commodity server receiving front-end data via the Front-End
Link eXchange (FELIX) system. The SW ROD will perform
event fragment building and buffering as well as serving the
data on request to the HLT. The SW ROD application has been
designed as a highly customizable high-performance framework
providing support for detector specific event building and data
processing algorithms. The implementation that will be used for
the Run 3 is capable of building event fragments at a rate of
100 kHz from an input stream consisting of up to 120 MHz
of individual data packets. This document will cover the design
and the implementation of the SW ROD application and will
present the results of performance measurements performed on
the server models selected to host SW ROD applications in Run
3.

Index Terms—Data acquisition, Data collection, Data transfer,
Object oriented programming

I. INTRODUCTION

As part of the preparation for LHC Run 3, which will begin
at the end of 2021, the ATLAS experiment [1] has upgraded
some parts of the detector with new components that can op-
erate under the much harsher background conditions expected
as the LHC reaches higher instantaneous luminosity. The new
detector and trigger systems will use modern Front-End (FE)
electronics that require an updated readout system. The legacy
FE of the ATLAS detector sent data to the TDAQ system
[2] via so-called Read Out Drivers (ROD) [3] - custom made
VMEbus boards devoted to data processing, configuration and
control. These data were then sent to the Read Out System
(ROS) [2], that was responsible for buffering and serving them
to the High-Level Trigger (HLT) [2]. From Run 3 onward,
all new trigger and detector systems will be read out using
new components, replacing the combination of the ROD and

S. Kolos, is with University of California, Irvine, CA 92697-4575, USA
(e-mail: serguei.kolos@uci.edu)

Copyright 2020 CERN for the benefit of the ATLAS Collaboration. CC-
BY-4.0 license

the ROS. This new path will feature a new facility called the
Software Read Out Driver (SW ROD), which will receive FE
data via the FE Link eXchange (FELIX) system [4], perform
event fragment building and buffering as well as serving data
on request to the HLT.

II. FELIX SYSTEM OVERVIEW

FELIX is a new generic detector readout system that can
receive data from detector FE electronics via (among others)
the versatile radiation hard optical link architecture [5] de-
veloped at CERN. FELIX can be used to receive data either
via GigaBit Transceiver (GBT) [6] or the in-house designed
FULL mode protocol. FELIX uses a custom PCIe card that
receives data via optical links and passes them to the memory
of a commodity computer via PCIe bus. FELIX also provides
a software application that can forward these data to a number
of subscribers via a commercial network using Remote Direct
Memory Access (RDMA) to maximize performance. RDMA
is a technology that makes it possible to put data directly
into the main memory of another computer without involving
the processor, cache or operating system of that computer.
FELIX implements a custom network communication layer
called NetIO [7] on top of the RDMA over Converged Ethernet
(RoCE) protocol that is supported by many modern network
cards. NetIO provides a C API that can be used by a software
application to receive data from the FELIX system. A FELIX
card can be operated in two modes using the respective
protocols:

1) GBT Mode: with the GBT protocol a physical input
link can be subdivided into a number of logical sub-
links (known as E-Links), which can pass information
from separate pieces of FE electronics. For Run 3 the
maximum number of E-Links for a single FELIX card
is limited to 192, which in this case are equally spread
over 24 GBT links.

2) FULL Mode: this mode has no logical subdivision of
links and uses an in-house designed protocol for higher
bandwidth. For Run 3 this mode can be used to send
data either via 12 links at full occupancy with the speed
of 9.6 Gbps or via 24 links with 50% occupancy (4.8
Gbps).

III. SW ROD SYSTEM ARCHITECTURE

The SW ROD facility is envisaged to be implemented as
software running on a set of commodity computers. Given
that a single computer can serve only a limited amount of
input data, and in order to scale to the size of the new

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020 2

ATLAS readout system, the software had to be designed in
a way that allowed it to be distributed over an arbitrary
number of computers. In the current design this is achieved by
splitting the input data channels between a number of software
processes, which are referred to as SW ROD applications as
shown in Fig. 1.

Felix Server

SW ROD Server

SW ROD Application

netio::Socket

SW ROD Server

Felix Server Felix Server

SW ROD Application

SW ROD Application

Felix Application Felix Application Felix Application

netio::Socket netio::Socket netio::Socket

netio::Socket

netio::Socket

Fig. 1. SW ROD deployment.

Each instance of the SW ROD application can run on a
separate computer, but it originates from the same binary
executable. This executable implements a highly customizable
high-performance framework, rendering support for detector
specific event building and data processing algorithms pro-
vided in the form of shared libraries (a.k.a. binary plugins).
This way different instances of the SW ROD application
diverge by using distinct configurations that define a set of
plugins to be used as well as their configuration parameters.

IV. SW ROD APPLICATION FUNCTIONAL REQUIREMENTS

The Read Out Drivers being used by the legacy readout
system to receive and process data from the ATLAS detector
FE were developed independently by every subdetector. As
such, they perform subdetector specific data processing and
event building based on the signals received from the ATLAS
Central Trigger Processor (CTP) [8]. As the FELIX system
does not perform any data processing or event aggregation,
but merely provides data routing between detector FE and the
DAQ system, the task of data aggregation and processing has
to be fulfilled by the SW ROD application before transferring
data to the HLT farm. It is also expected that the SW ROD
application will be used not only for normal physics data
taking but for various auxiliary subdetector specific activities,
such as commissioning, calibration, monitoring, debugging
etc., in which data would have to undergo specific processing
and may need to be transferred to a different destination
than the HLT farm. To meet such requirements the SW ROD
application has been designed as a framework that supports
a high degree of customization by making it possible to
load subdetector specific event building and data processing
algorithms at run time, which can be further configured by
subdetectors with respect to their specific needs.

V. SW ROD APPLICATION HIGH-LEVEL DESIGN

The SW ROD application is split internally into a number
of independent components, with each of them providing

a simple interface that defines how other components can
interact with it. There are three main components defined by
the SW ROD application architecture that can be interacted
via the respective interfaces:

• DataInput interface: abstracts a source of input data to
shield the other components of the SW ROD application
from any changes in the network input protocol. In
addition it also makes it possible to use another data
source, for example internal data generators, for testing
and debugging.

• ROBFragmentBuilder interface: abstracts implementa-
tions of data aggregation algorithms, which may need
to facilitate different data handling strategies as required
by subdetectors and should be able to support different
FELIX operation modes. This approach scales well with a
number of data aggregation algorithms, as adding a new
algorithm does not require modification of the existing
ones. It also offers the possibility to support auxiliary
data aggregation strategies to be used for calibration or
monitoring without affecting the basic procedures used
for normal physics data taking. An implementation of this
interface is responsible for aggregating data chunks from
individual E-Links received via the DataInput interface
into event fragments according to the given configuration.
Such a configuration defines the set of event fragments
to be produced as well as a list of input links for each
fragment.

• ROBFragmentConsumer interface: abstracts any kind of
processing that can be applied to fully aggregated event
fragments. Multiple implementations of this interface can
be used simultaneously in the same SW ROD application,
in which case they will be organized into a singly-linked
list. Each consumer in this list will have to forward
event fragments to the next one after finishing its specific
processing step. For example, as shown in Fig. 2, one
implementation of this interface can apply a custom
subdetector specific processing procedure to the event
fragments before passing them to another consumer that
is used to transfer these fragments to the HLT farm.

FELIX

<<Interface>>
ROBFragmentBuilder

buildROBFragment

<<Interface>>
ROBFragmentConsumer

processROBFragment

<<Interface>>
ROBFragmentConsumer

processROBFragment

subscribe(e-links)

receiveMessage
receiveData

insertROBFragment

insertROBFragment

<<Interface>>
DataInput

subscribe(e-links)

receiveL1Accept

Fig. 2. Typical interactions between SW ROD application components for a
normal data taking activity. The DataInput component subscribes to FELIX
and passes received data to the ROBFragmentBuilder, which aggregates data
into event fragments and transfers them to the first ROBFragmentConsumer
in the list.

As shown in this diagram the data handling is done by
the implementations of the SW ROD application interfaces,
while the Application itself merely loads and instantiates the
corresponding implementation classes in accordance with a

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020 3

given configuration and links the instantiated objects in the
order defined by this configuration.

VI. SW ROD DEFAULT COMPONENT IMPLEMENTATIONS

A shared library that contains default implementations for
all three interfaces is supplied along with the SW ROD
application. This library contains all classes shown in Fig. 3.

<<Interface>>
swrod::DataInput

+ subscribe(link_id, callback)
+ unsubscribe(link_id)

<<Interface>>
swrod::ROBFragmentConsumer

+ insertROBFragment(ROBFragment)
+ ROBDisabled(ROB_id)
+ ROBEnabled(ROB_id)

NetioInput InternalGenerator

GBTModeBuilder FullModeBuilder

FragmentProcessor FileWriter

HLTRequestHandler EventSampler

<<Interface>>
swrod::ROBFragmentBuilder

+ dataReceived(uint8_t*, size_t)
+ subscribeToFelix()
+ unsubscribeFromFelix()
+ disableLink(link_id)
+ enableLink(link_id)
+ l1aReceived(L1Accept)

Fig. 3. Default SW ROD interface implementations.

A. DataInput Interface Implementations

• The NetioInput class is responsible for receiving data
from the FELIX system using the NetIO Socket interface
for a given set of E-Links and passing these data to the
fragment builder via the ROBFragmentBuilder interface.

• The InternalDataGenerator can generate FELIX-like data
chunks of a given size for a configurable number of E-
Links. This class is used for debugging as well as for unit
test implementation.

B. ROBFragmentBuilder Interface Implementations

The library provides two implementations of the ROBFrag-
mentBuilder interface, which can be used to receive data
from the FELIX system in either GBT or FULL mode. The
algorithms implement a specific data aggregation strategy in a
generic way that is independent of the format of the incoming
data chunks. As this format is detector specific this feature
was implemented by allowing detectors to supply two custom
procedures as parameters for these algorithms:

• Trigger Information Extraction procedure - this is a
function that extracts the Level 1 Trigger identifiers from
a given data chunk. These identifiers are used to assign
data chunks to a particular event fragment as well as to
align data with the Trigger information received from the
CTP.

• Data Integrity Checking procedure - this function is
intended to be used if there is a suspicion that input
data chunks could be corrupted or a sequence of data
packets for a particular input link is broken. This function
is assumed to know the location of the checksum value
in a given data packet format as well as the Cyclic
Redundancy Check (CRC) algorithm that was used to
calculate that value.

In most cases detector developers have only to define
these functions and reuse the data aggregation strategies
provided by the carefully optimized and extensively tested
default ROBFragmentBuilder interface implementations. On

the other hand, if another event fragment aggregation strategy
is required for a particular subdetector, a new algorithm can
be implemented and plugged in to the SW ROD application as
is done for the default implementations. This does not affect
the existing components of the SW ROD application and is
completely transparent for the application itself.

C. ROBFragmentConsumer Interface Implementations

• The FragmentProcessor class was developed to simplify
implementation of the common task, required by many
subdetectors, of applying custom detector-specific post-
processing to all event fragments produced by the given
SW ROD application. This class provides a workbench
to execute detector-specific code on every event fragment
that is passed to this consumer. This code should perform
the necessary modifications to the event fragment payload
but should keep the structure of the fragment untouched.
The code can be provided in the form of a function, which
has to be implemented by the corresponding detector
experts and be given to the SW ROD application in the
form of a shared library that will be loaded at runtime.

• The HLTRequestHandler class is responsible for buffer-
ing event fragments and serving them to the HLT farm on
request. It keeps the event fragments until informed by the
HLT that they are no longer needed. Event fragments are
indexed by their Level 1 Trigger identifier and stored in
an internal buffer until a clear request has been received
from the HLT. On receipt of a clear request, all the
event fragments with the identifiers provided by this
request will be removed from the index and their allocated
memory freed.

• The FileWriter class implements a consumer that simply
writes all received event fragments to a file on disk. Files
created by the FileWriter will be in the standard ATLAS
data file format [9] with all event fragments prepended
by the ATLAS full event header, which make such files
compatible with standard ATLAS event processing and
analysis applications. This functionality is useful for
testing, commissioning, calibration and other auxiliary
activities which are performed by detectors beyond nor-
mal data taking.

• The EventSampler implements event selection for online
monitoring. An instance of this class can be optionally
added to the list of a SW ROD application consumers
to select a subset of aggregated event fragments for the
purpose of online monitoring. This class passes selected
events to the TDAQ Event Monitoring service [10] that
transfers them to the applications responsible for data
quality assessment.

VII. SW ROD APPLICATION PERFORMANCE
REQUIREMENTS

In Run 3, the SW ROD has to be able to operate at an input
rate of 100 kHz, matching the ATLAS Level 1 Trigger accept
rate. The number of input links and the overall data rates are
defined by the output produced by the FELIX system. Table I
summarizes these numbers for a single FELIX card.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020 4

TABLE I
FELIX CARD OUTPUT RATES FOR RUN 3

Mode Chunk
Size
(B)

Chunk Rate
per Link
(kHz)

Links per
FELIX Card

Chunk Rate
per Card
(MHz)

Data Rate
per Card
(GB/s)

GBT 40 100 192 19.2 0.77
FULL 5000 100 12 (24) 1.2 (2.4) 6

An important goal of the SW ROD is to handle as many
input data links as possible in order to reduce the total system
cost by minimizing the number of computers to be used
to run SW ROD applications. While in FULL mode this
number is essentially limited by the input network bandwidth
available for a SW ROD computer, in GBT mode the data
rate produced by a single FELIX card is much lower and
the number of input links that can be served by a single SW
ROD computer is instead limited by the performance of the
GBT data aggregation algorithm. A dedicated study has been
performed to estimate the maximum number of input links
that can be handled by the GBT event fragment aggregation
algorithm executed on a single SW ROD computer. The results
of this study will be presented in the next section.

VIII. GBT MODE EVENT FRAGMENT BUILDING
ALGORITHM OPTIMIZATION

Due to power consumption and heat dissipation issues the
clock frequency of a modern CPU is normally in inverse
proportion to the number of cores for the given CPU. Thus
the product of these parameters gives a similar value for any
CPU in the same price range. This value can be used to make
a rough estimate of the full computing power a particular CPU
can offer. It should be noted that a modern CPU is capable of
executing more than one operation per cycle, but in practice
this is difficult to achieve for complex code and normally a
one-to-one ratio between cycles and operations is considered
satisfactory. Taking 2.5 GHz as an average CPU frequency for
a CPU that has 10 cores, one can assess the total number of
CPU operations per second provided by an averagely priced
CPU to be on the order of 2.5 · 1010.

Given that the rate of data chunks from a single FELIX card
in GBT mode is about 20 MHz, a simple division shows that
such a CPU can provide about 1200 operations for a single
data chunk, which corresponds to 0.5 microseconds. It should
be taken into account that every chunk has to be aligned,
by means of the Level 1 Trigger identifier that every data
chunk contains, with the other ones for the purpose of event
fragment aggregation. From this point of view this amount of
computing power does not look large, especially if one wants
to maximize the number of FELIX cards that can be handled
by the same SW ROD computer, in which case this budget has
to be divided further accordingly. Moreover, the computational
resources provided by a modern CPU are proportional to the
number of CPU cores, which means that to utilize them in an
efficient way the software has to be designed to use multiple
threads with a high degree of parallelism. This essentially
precludes the use of high-level design patterns, like producer-
consumer, to pass data between threads as this would incur
too much performance overhead for thread synchronization.

The solution that was implemented for the GBT event
fragment aggregation algorithm to minimize the rate of in-
teractions between threads was to combine both data reading
and event fragment aggregation into the same threads. To
achieve that the total number of input E-Links is split among
a configurable number of worker threads, with each thread
reading data chunks from the given subset of E-Links and
aggregating them into a subfragment of a given event. When
all subfragments of a particular event are ready they are
assembled together by a dedicated fragment building thread.
This approach makes it possible to split the algorithm into two
stages:

1) The processing of individual data chunks is done in
parallel by multiple concurrent threads at the O(10) MHz
rate.

2) The final event fragment assembly that requires synchro-
nization between threads is done at the rate of 100 kHz
only.

The degree of parallelism provided by this algorithm can
be estimated using a formula that is based on Amdahl’s law:

S(n) =
1

(1− P) + P
n

. (1)

Equation (1) defines how the speedup S(n) of an algorithm
executed by a given number of threads n depends on the
parallel fraction of this algorithm P . Given that we know the
processing rates of the parallel and non-parallel fractions of
the GBT event fragment aggregation algorithm we can express
P as (2).

P = 1− CFA × 105

107
= 1− 0.01× CFA. (2)

Here CFA is the relative cost of the final subfragment
assembly operation with respect to the cost to handle a single
data chunk. This equation shows that if the relative cost of the
final assembly operation is less than 100 then the algorithm
should give some performance gain, but in order to scale well
this number should be at least less than 50. Using this equation
(1) can be transformed to:

S(n) =
n

0.01× CFA(n− 1) + 1
. (3)

This equation defines how the speedup of the GBT al-
gorithm depends on the relative cost of the final assembly
operation. Finally, inverting (3) yields (4), which will be used
in the next chapter to assess CFA for the current algorithm
implementation using the empirical values for S(n) obtained
from performance measurements:

CFA =
(S(n)

n − 1)

0.01× (n− 1)
. (4)

IX. PERFORMANCE MEASUREMENTS

A. Testbed Configuration

Event building algorithm performance measurements were
performed on a testbed that replicates the same hardware

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020 5

configuration that will be used by the readout system during
Run 3:

• SW ROD application running on a computer with a dual-
socket Supermicro motherboard with 2 Intel(R) Xeon(R)
Gold 5218 CPUs and 96 GB of DDR4-2667 RAM. Each
CPU has 16 physical cores with a base frequency of
2.3 GHz.

• Input data for the tests generated by a FELIX card soft-
ware emulation application running on another computer
with an Intel Xeon E5-1660 v4 CPU with 3.2 GHz base
frequency and equipped with 32 GB DDR4 2667 MHz
memory.

• Both computers were equipped with Mellanox ConnectX-
5 100 GbE network adapters, which were connected via a
100 Gb network switch. Data were sent to the SW ROD
application via the FELIX NetIO protocol.

B. Network Throughput Test
In order to access the overhead of the RoCE protocol the

network throughput was measured using a simple bandwidth
test utility from the Mellanox OFED software package with a
default packet size of 65K bytes. The receiving application
was started on the SW ROD computer with the following
command:
ib_send_bw -F -n 100000
The client (sending) application was started on the FELIX

computer with the IP address of the SW ROD host:
ib_send_bw -F -n 100000 192.168.100.1
Both applications reported an average rate of 91.3 Gb/s

that stayed almost constant throughout the test, with marginal
variations of less than a fraction of 1 Gb/s.

C. GBT Mode Tests
The aim of these tests was to study how the GBT event

fragment building algorithm scales with the number of input
E-Links and the number of threads used to handle input data.
To this end, three series of tests were performed with the SW
ROD application using one, two and three threads respectively
to receive and aggregate data chunks from every group of 192
input links, which corresponds to input from a single FELIX
card. The total number of emulated FELIX cards for different
test series varied from 1 to 6, which made for a total number
of input channels increasing gradually from 192 to 1152. The
size of the generated data chunks was set to 40 bytes. The
results of these tests are shown in Fig. 4.

These results show that the GBT event fragment aggregation
algorithm implementation scales well in both dimensions:
with the number of worker threads aggregating data from a
given number of E-Links as well as with the number of such
aggregation operations running concurrently in the scope of
the same SW ROD application.

The dotted line shows the maximum theoretical input rate
that can be obtained with the given hardware configuration,
which is limited by the available network bandwidth. This
line represents (5):

L =
91.3× 109

192× F × (40 ∗ 8 + 12 ∗ 8)
, (5)

0
50

100
150
200
250
300
350
400
450
500

1 2 3 4 5 6

R
at

e
(k

H
z)

of simulated FELIX Cards

Input rate 40B chunks
192 E-Links per FELIX Card

1 thread per FELIX Card
2 threads per FELIX Card
3 threads per FELIX Card
RoCE limit (91.3 Gb/s)
Netio limit (+12B per chunk)

Fig. 4. GBT event fragment aggregation algorithm performance.

TABLE II
ESTIMATE OF THE PARALLEL FRACTION OF GBT ALGORITHM

N of threads Average S(n) CFA P
2 1.86 7.5 0.925
3 2.65 6.6 0.934

where L is the input rate, F is the number of simulated
FELIX cards, 40 × 8 is the size of the data chunk in bits,
12 × 8 is the size of the NetIO protocol overhead per chunk
in bits as well and 91.3 · 109 is the maximum bandwidth
that can be achieved with using the RoCE protocol in Gb/s.
This line demonstrates that the last three results of the tests
with two reading threads and all but the first two results for
the test series with three reading threads were limited by the
network bandwidth. The dashed line shows the maximum rate
that could be achieved if the NetIO protocol overhead was
equal to zero. It indicates that the input rate could potentially
be improved by reducing the NetIO overhead.

Using the results which were not limited by network band-
width one can calculate the speedup S(n) and parallel fraction
P of the GBT event fragment assembly algorithm and then
use these numbers with (4) to compute an estimate of the
CFA coefficient. The results of these calculations are shown
in Table II.

D. FULL Mode Tests

In FULL mode, larger sized event fragments are sent to
FELIX over fewer (higher bandwidth) links, with no data
aggregation required in the SW ROD. The number of links
needing to be serviced at this increased bandwidth can vary
from 1 to 24 in the extreme case. In FULL mode several
links can be grouped together to be used to send fragments
corresponding to different Level 1 trigger events in a round-
robin pattern from the same piece of detector FE electronics
if more bandwidth than a single link can provide is required.

Tests have been performed to study the behavior of the
SW ROD’s FULL mode data handling algorithm relative to
the number of input link groups, which need to be serviced
independently. Each group of links was used to send an
independent stream of data and inside a group event fragments
were sent over the given links using round-robin pattern. For

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020 6

these tests the size of the generated packets was set to 5K
bytes and the number of independent streams of data generated
by the FELIX software simulator varied from 1 to 24. For
each configuration the average input rate per data stream was
measured. The results of these tests are shown in Fig. 5.

1760

1137
758 570

380
190

95

0
10
20
30
40
50
60
70
80
90
100

1

10

100

1000

10000

1 2 3 4 6 12 24
R

at
e

(G
bp

s)

R
at

e
(k

H
z)

of Data Streams

Full Mode with 24 links, 5kB data chunks

L1 Rate
Data Rate

Fig. 5. FULL mode data handling algorithm performance.

The results demonstrate the excellent scalability of the
FULL mode data handling algorithm with respect to the
number of input links. In all test series except one input rate
was limited by the network bandwidth. The only exception is
the configuration with all 24 input links used for the same data
stream. In this test the input rate went up to 1.76 MHz, which
saturated the CPU cores used by the SW ROD application’s
reading threads. No further study has yet been done for this
scenario as the rate that was achieved is far in excess of the
readout performance requirements for Run 3.

E. Scalability Towards Run 4 Requirements

For Run 4, which is planned to start in 2027, the LHC
will undergo the High Luminosity Upgrade [11] that will
significantly increase instantaneous luminosity and the number
of particle interactions per bunch crossing. This will bring
new requirements for the ATLAS TDAQ system, which will
have to receive data from trigger and detector electronics at an
input rate of 1 MHz. As the readout system for Run 4 will be
based on FELIX it is useful to study the limits of the current
readout implementation, such that they can be addressed in the
new TDAQ architecture. For this reason, a series of tests were
performed with the GBT event fragment aggregation algorithm
to reveal the maximum number of input E-Links and chunk
size configurations at which 1 MHz input can be sustained.
For these tests the SW ROD application used the default GBT
event fragment aggregation algorithm that assembles data from
all the given input E-Links to a single fragment. Two rounds
of tests were performed. In the first one the number of input
E-Links varied from 24 to 192 and the input data chunk sizes
were set to 40 and 80 bytes for different test series. For the
second round of tests the number of input E-Links was fixed
to be 48 and the data chunk size varied from 40 to 240 bytes.
The algorithm used 6 reading threads for both rounds of tests.

0
10
20
30
40
50
60
70
80
90
100

0

200

400

600

800

1000

1200

40 80 120 160 200 240 280

D
at

a
R

at
e

(G
bp

s)

R
at

e
(k

H
z)

Message Size (bytes)

Input Rate with
48 E-Links

memory pool
new/delete
data rate (memory pool)
data rate (new/delete)

(a)

0
10
20
30
40
50
60
70
80
90
100

0

200

400

600

800

1000

1200

1400

24 48 72 96 120 144 168 192

D
at

a
R

at
e

(G
bp

s)

R
at

e
(k

H
z)

of E-Links

Input Rate 80 bytes chunks 40 bytes chunks
data rate (80 bytes) data rate (40 bytes)

(b)

Fig. 6. SW ROD input rate with varying data chunk size (a) and with varying
number of E-Links (b).

Fig. 6a shows two data series which were obtained with
the same test configurations but using different versions of
the SW ROD application. The first test series revealed a
bottleneck in the SW ROD application that was caused by
the standard new and delete memory management operations.
This was not a problem for the previous tests, where these
operations were taking place at a rate of about 100 kHz,
but when the input rate was increased towards 1 MHz the
memory management overhead became prominent. A quick
solution was put in place by replacing the new and delete
operations with a custom memory pool implementation that
preallocates a large number of memory blocks and keeps a list
of free blocks in a tbb::concurrent_queue container
[12], which made the use of this memory pool by multiple
concurrent threads possible. This improved the input rate of
the SW ROD application by almost 50% and made it possible
to reach a rate above 1 MHz with some configurations. The
same implementation was used for the second round of tests,
for which the results are shown in Fig. 6b.

X. CONCLUSION

A mixture of the legacy ROD-based and the new FELIX-
based readout will be used by the ATLAS TDAQ system
for LHC Run 3. The SW ROD is a new component of the
ATLAS DAQ system that was developed to receive data from
the FELIX. The SW ROD implements a high performance

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020 7

customizable framework that supports custom input data for-
mats and different event fragment aggregation strategies as
required by the new ATLAS detector and trigger components.
The SW ROD fully satisfies the performance and functional
requirements which have been defined by ATLAS for Run
3. The default GBT event fragment aggregation algorithm
makes it possible to handle data input at or above the required
rates from up to 6 FELIX cards working in GBT mode, thus
minimizing the overall cost of the new readout system by
reducing the number of required computers for the SW ROD
system. Further optimisation could be achieved by reducing
the overhead of the FELIX communication protocol. A study
of how the Run 4 performance requirements can be met is
ongoing and has already revealed some very promising results.

REFERENCES

[1] ATLAS Collaboration, “The ATLAS Experiment at the CERN Large
Hadron Collider,” JINST, vol. 3, p. S08003, 2008.

[2] ATLAS TDAQ Collaboration, “The ATLAS Data Acquisition and High
Level Trigger system,” JINST, vol. 11, no. 06, p. P06008, 2016.

[3] A. Gabrielli, “Commissioning of ROD boards for the entire ATLAS
pixel detector,” Journal of Instrumentation, vol. 13, no. 09, pp. T09 009–
T09 009, sep 2018.

[4] S. Ryu, “FELIX: The new detector readout system for the ATLAS
experiment,” Journal of Physics: Conference Series, vol. 898, p. 032057,
oct 2017.

[5] F. Vasey, D. Hall, T. Huffman, S. Kwan, A. Prosser, C. Soos, J. Troska,
T. Weidberg, A. Xiang, and J. Ye, “The versatile link common project:
feasibility report,” Journal of Instrumentation, vol. 7, no. 01, pp.
C01 075–C01 075, jan 2012.

[6] P. Moreira, R. Ballabriga, S. Baron, S. Bonacini, O. Cobanoglu,
F. Faccio, T. Fedorov, R. Francisco, P. Gui, P. Hartin, K. Kloukinas,
X. Llopart, A. Marchioro, C. Paillard, N. Pinilla, K. Wyllie,
and B. Yu, “The GBT Project,” 2009. [Online]. Available:
https://cds.cern.ch/record/1235836

[7] J. Schumacher, C. Plessl, and W. Vandelli, “High-throughput and low-
latency network communication with NetIO,” Journal of Physics: Con-
ference Series, vol. 898, p. 082003, oct 2017.

[8] G. Anders, D. Berge, H. Bertelsen, M. Dam, E. Dobson, N. Ellis,
P. Farthouat, C. Gabaldon, M. Ghibaudi, B. Gorini, S. Haas, M. Kaneda,
S. Maettig, A. Messina, C. Ohm, T. Pauly, R. Pottgen, R. Spiwoks,
M. Stockton, T. Wengler, and S. Xella, “The upgrade of the ATLAS
level-1 central trigger processor,” Journal of Instrumentation, vol. 8,
no. 01, pp. C01 049–C01 049, jan 2013.

[9] C. P. Bee, D. Francis, L. Mapelli, R. McLaren, G. Mornacchi,
J. Petersen, and F. J. Wickens, “The raw event format in the
ATLAS Trigger/DAQ,” no. ATL-DAQ-98-129, Feb 2016, revised
version number 5 submitted on 2016-11-03 11:47. [Online]. Available:
https://cds.cern.ch/record/683741

[10] I. Scholtes, S. Kolos, and P. F. Zema, “The ATLAS event monitoring
service: Peer-to-peer data distribution in high-energy physics,” IEEE
Trans. Nucl. Sci., vol. 54, pp. 1610–1620, 2007.

[11] C. Bernius, “HL-LHC prospects from ATLAS and CMS,” Journal of
Physics: Conference Series, vol. 1271, p. 012004, jul 2019.

[12] A. D. Robison, “Intel® threading building blocks (tbb).” in Encyclopedia
of Parallel Computing, D. A. Padua, Ed. Springer, 2011, pp. 955–964.

