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Abstract

In the following report we use a canonical dispersion formalism to derive a Fokker -
Planck equation for the motion of electrons in storage rings in the presence of nonlinear
damping by quadrupole - sextupole and octupole - dipole magnets. The formalism is used
to show how the nonlinear damping can modify the phase space distribution.
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1 Introduction

In an earlier paper [1] we studied the Fokker-Planck equation for electron motion in a
storage ring in the presence of damping and stochastic excitation due to synchrotron radiation
using the linearized fully coupled 6-dimensional formalism.

In this paper we re-examine a topic first treated by J. Jowett [2], namely the generalization
of the linearized theory in [1] to the study of nonlinear radiation damping effects caused by
superpositions of nonlinear fields. As pointed out by Jowett, these nonlinear damping effects
can lead to a modification of the energy distribution in the beam. As in his treatments we con-
centrate on the effects of quadrupole-sextupole and octupole-dipole magnets. Since in practice
one would try to insert such magnets in straight sections with minimum disturbance to the
optics and geometry, one would combine them into strings of magnets with alternating signs.
For simplicity, we therefore refer to these systems as “nonlinear wigglers”.

The present treatment contains the linear approximation of radiation damping as a special
case and can handle closed orbit distortion, pointlike rf cavities and transverse coupling due to
skew quadrupoles and solenoids.

We start with the fully coupled canonical 6-dimensional description of the particle motion
Then the stochastic equations of motion taking into account the synchrotron radiation are
derived.

After introducing the closed orbit as a new reference trajectory, new transverse coordinates
are defined by a canonical transformation involving the dispersion function. This preserves
the symplectic structure of the equations of motion in the absence of quantum excitation or
damping effects. In this formalism the coupling between betatron and synchrotron motion
appears only if there is non-vanishing dispersion in the cavities.

Using the new coordinates, action-angle variables for the synchro-betatron motion are de-
fined and their stochastic equations of motion established. These are then used to write the
Fokker-Planck equation for the phase space density in terms of action-angle variables. In Ap-
pendix D we present a convenient way of using the 6 x 6 formalism to calculate how the damping
constants become modified when the frequency of the cavity fields is changed.

The stationary solution of the Fokker-Planck equation is derived and is used to construct
the beam emittance matrix and energy distribution (Chapter 9). Appendix E serves to prove
that the stationary solution of the Fokker-Planck equation is unique.

In Appendix F it is shown that the surfaces of constant density in the 4-dimensional trans-
verse phase space are given by 4-dimensional ellipsoids which in turn can be described by 4
generating orbit vectors. These latter may be combined into a 4-dimensional matrix which
completely defines the transverse configuration of the bunch.

The formalism developed in this report is similar to the Fokker-Planck treatment of cavity
noise described in Refs. [3, 4].

The equations derived will be incorporated into the computer program "SLICK" [5].

2 The Stochastic Equations of Motion

2.1 The Hamiltonian for Coupled Synchro-Betatron Oscillations

We begin with the derivation of the equations of motion. We will use the same variables as
in Refs. [1, 6]:



z,z,0=s—c-tandn=AE/FE,
where z and z are the amplitudes of transverse motion (betatron oscillations), while ¢ and 7
describe the longitudinal (synchrotron) oscillation. The quantity o is the longitudinal sepa-

ration of a particle from the centre of the bunch and 7 describes the energy deviation of the
particle.

Starting with the Lagrangian

: , ¥ e . -
[,:—moC' l—c—2+;'(7’A)—€'¢

for the motion of a relativistic charged particle with the orbit-vector m(z,z,8):

T(z,2,8) = 7o(s) + a(s) - €(s) + z(s) - €.(s) ; (2.1a)
d "
) = Ka(s) -2 ()
FAOE ABIIBY (21b)
% €.(s) = —K.(s)- €x(s) — K.(s)-¢e.(s) ;

- d .
€,(s) = T ro(s) ;

K.(s)-K.(s) = 0; (2.1¢)

(piecewise no torsion)

In an electromagnetic field ! and introducing the length s along the design orbit 75(s) as the
independent variable (instead of the time t), one can construct the Hamiltonian of the orbit
motion by a succession of canonical transformations. Choosing a gauge with ¢ = 0, one then
obtains in the ultrarelativistic case with v ~ ¢ 6, 7]:

’H(:c,p,,z,p;,o,p,;s) = (1+p,)—(l+p,)-[1+K,~z+K,-z] x
e e 1/2
1— (pz: - E? 1:)2 . (pz - E_oAz)z
(1+p,)? (1+p,)?
—[1+K,-z+K,-z]-EiA,. (2.2)
0

The corresponding canonical equations read as:

d 0H

d

B — = . —_ = —_— 2.3
ds * +8p, ' gs P= oz ’ (2:32)
d oM d OH

el g = 2.3b
s ® T Yep LT T (2:3)
d 0H d OH

- — — s Ly =" 2.3
ds © +6p, g Pe 0o (23¢)

'For the physical situation we examine here, torsion needed not be included, i.e. we have a piecewise flat
orbit and therefore the relation (2.1c). For a more general treatment including torsion see e.g. Refs. [8, 9].



with

ptr = 7’ . (2'4)
Here the variables p,, p, and p, are defined [6] by :

C [

: = — s+ =A.; 2.5a
P = pmernt o (2.50)
c c
, = — c+ —=—A,; 2.5b
P = pmernt o (2.5b)
AF
= = — . 2.5¢
Pe =5 (2.5¢)

Since H contains the transverse coordinates z, p,, z, p. as well as the longitudinal coordi-
nates o, p, we are able to handle synchrotron oscillations (longitudinal motion) and betatron
oscillations (transverse motion) simultaneously. .

In order to utilize this Hamiltonian, the electric field £ and the magnetic field B or the
corresponding vector potential,

- —

A= A(z,z,s), (2.6)

for the cavities and for commonly occurring types of accelerator magnets must be given. Once
A is known the fields £ and B can be found using the relations:

. 104
E = —grad ¢ - 2797 ; (273.)
B = cull 4. (2.7b)
Expressed in the variables z, z, s, o, eqns. (2.7) become (with ¢ = 0):
.5 .
E=—4 2.8
P (2.8)
and
1 i} 3}
Bz' = -e—1(1 Kz . Kz ‘ i Aa - A Az ) 2.9a
[l-f—Kz-:l:—i-Kz-z] {BZ[( + T + Z) } 65 ( )
1 i} 0
B = . —Az - — (1 K;p' Kz * 'Al ) 29b
: 14+ K. -2+ K, -z] {33 32['( * =t 2) ]} ( )
i} 0
B = — —_ = A . 2.9C

We assume that the ring contains bending magnets, quadrupoles, skew quadrupoles, solenoids,
sextupoles, octupoles, cavities and dipoles as well as combined function magnets, quadrupole -
sextupole magnets and octupole - dipole magnets ? . Then the vector potential A can be written

?Skew quadrupole - sextupole magnets and skew octupole - dipole magnets are not treated.



as (see Appendix A):

EiOA, = % 1+ K, - z+Kl-z]+%g-(zz—zz)+N-:cz
—/\-g(23—3zz2>+u-%(24—6:1:2224-24)
Al it (e
+Ee—0-[ABl-z-ABz-z]; (2.10a)

FjoA, = —H-z; EOA = +H-2 (2.10b)

(h=harmonic number) with the following abbreviations:

g = Eio . (%lj:)z - ; (strength of a quadrupole) ; (2.11a)
N = % . Eio . (661:3: — a@i‘)zq:o ; (strength of a skew quadrupole) ;  (2.11b)
H = % : Eio -B,(0,0,s); (strength of a solenoid) ; (2.11c)
A= Eio . (%:B; )2:2:0 i (strength of a sextupole) ; (2.11d)
po= Eio . (%:%) L ; (strength of an octupole) ; (2.11e)
K, = +Ei0 -B,(0,0,5); K, = —;—0 - B.(0,0,5) ; (2.11f)

(design curvature in bending magnets) .

A combined function magnet is a superposition of fields of type (2.11a) and (2.11f):
x 2 z 2
G + (o + o
with

{ GEs) = gls) - Kals);
GENs) = g(s)- K.(s);

K.(s)-K,(s) =0

(2.11g)

b

The quadrupole - sextupole field is a superposition of fields of type (2.11a) and (2.11d):

Gos(s) = g(s)-A(s) # 0. (2.11h)
The dipole - octupole field is a superposition of a dipole field AB, and a field of type (2.11e):

Gpols) = EioABz(s)-p(s) £0. (2.11i)

7



Then using (2.10) and (2.11a - f) the Hamiltonian (2.2) takes the form * :

H(z,p2)2,P.,0,p038) = (1+p,)—(1+p,)-[1+ K, z+K, - z] x

e

1 1
+§-[1+K,:-:c+Kz~z]2——2—-g-(z2—z2)—N-a:z
1
+/\-g-(:cs—~3:czz)—,u~ﬁ (24—62222—{—.%4)
L eV(s) [ 27 ]
. . h.ZD.
b By g °t¢
— = .[AB, -z~ AB, -3 . (2.12)
Eq

2.2 The Radiation Power

In the Hamiltonian (2.12) radiation processes have been neglected. In order to include into
the equations of motion the additional forces induced by the photon emission, we adopt (as in
Ref. [1]) an "ansatz" in which the radiation reaction force RD is separated into two parts:

R = RP 41§R, (2.13)

a continuous part RP describing the smoothed radiation process and a discontinuous part 6R
describing the quantum fluctuations. The explicit expression for R is given by [10, 11]:

RP = 2.5 [(;*)2 + 7_(,':'.;*)2] (2.14)

and we take 6R to be a white noise process (see below, eqn. (2.22b) and the definition of £(s)
in (2.18d) )-
We also introduce the radiation power :
P=R-r (2.15)
of a (ultrarelativistic) particle in a purely magnetic field.
For the case where
FB=0 = 718 (2.16)

(a good approximation in bending magnets and the wiggler field under consideration) one then
may set [2]:

3Within the quadrupole - sextupole magnet one has g # 0; A # 0, within a octupole- dipole magnet
AB, # 0; 4 # 0 and within a combined function magnet g # 0; K24+ K2 # 0.

8



P(s) = E5 - (1+ ) {er -7 + /e - [897] - €(s)} (2.17)

with
l;(z,z,s) = = l;(:c,z,s) ; (2.18a)
Eq
2r, - p? . E,
“ 3 - (moc)? A G ( )
55r.hp;
— _ . 2.18¢
C2 24\/5- (moc)ﬁ ? ( )
<E(s) &) > = b(s—s); <&(s)>=0. (2.18d)

The quantity £(s) in (2.18d) describing a stochastic stationary process may be visualized as
a random sequence of small positive and negative pulses.

Writing
_ EO 2Te'E3 . . 62
C, = T-cl = _ﬁ?)c:‘-(mocﬁ with r, = m—062
2, E
— —e" v —
3 (mec)*
2, '73
S S ( 2.19
oy (2.19)
CZ = E_g.c — —M.Eg
T ez 2 24\/5-(777,06)6 cd
L5
_ 557‘¢h ’}’0 (2.20)
24\/5-(moc)
we obtain :
P(s) = PP(s) + 6P(s) (2.21)
with
D
2L apean, (2.22a)
Eo'C
8 P(s)
= (1 2.0, ¥R ) 2.22b
By = (0GB () (2.22b)

Using the equations for the magnetic fields of the different kinds of lenses (which may be
calculated by eqns. (2.9) and (2.10) [1, 6]; see also Appendix A ) the term b2 appearing in
(2.22a, b) can be written :

a) Dipole:
B = (—)2-[(AB,)2+(AB,)2] ; (2.23a)

9



b) Bending magnet :

b = b24+b2 = K24+ K2, (2.23b)

¢) Quadrupole :
b = b2+ = g% (22 + 2%); (2.23¢)
d) Skew quadrupole:
b = b24+b2 = N?-(2? 4 2%); (2.23d)
e) Sextupole :
b = b2 + bf = ). [2222 + ;}1-(22 - 22)2] ; (2.23e)
f) Octupole:
B2 = bZ4b? = 2. 33% [(z3 —32%2) + (322% — z:’)z} ; (2.23€)

g) Combined function magnet (horizontal bend):

b = bI+b = [goz-KJ+[g-at K, T
= 9@+ )+ [KJ+ KX +2g-[K, -2 — K, -]
= ¢ (@@ +2)+ K2+ KA +265 2268 2. (2.230)

h) Quadrupole - sextupole magnet :
1 2
b = bf+bz2 = [g-z—+—)\-:cz]2+ [g-:c+§/\-(1:2—zz)]
1
= g*- (22 +2%) + A%. [:czz2 + 2 (z? — 22)2]
+Gos - [:z:3 + zzz} . (2.23f)

i) Dipole - octupole magnet (horizontal bend):

2 1 2
b = b2+ b} = [ﬂ' 1(Z3 — 32:22:)] + [i “AB,(s)+ p- = (3z2? — 23)]
6 E, 6
= (i)z (AB,)? + p? - 1 [(z3 —32%2)? + (322 — :1:3)2]
E, ? 36
1
+Gpo -+ 3 3227 - z*] (2.23f)

Note that if there are no electric fields and (2.16) is valid, (2.22a) can be derived directly
from (2.14).

The photons are emitted in the direction of the momentum of the particle with an opening
angle of order
mgc?

E
10

0 =

(2.24)

=2+



so that at high energy we are justified in taking the radiation reaction force to be collinear with
7 [12).

For a longitudinal field :
r|| B (2.25a)

one has
P(s) =0 (2.25b)

(see eqn. (2.14)).

2.3 Motion under theVInﬂuence of Radiation Forces

The direction of the photon emission is given approximately by (see eqn. (2.24)):

dr’ dz dz ds
- o dr_de . dr o . L 2.26
T 7 i er-{—dl e:+[1+ K. ¢+ K, - z] T (2.26)
with (see eqn. (2.1))
dl = |dr| . (2.27)

Thus, taking into account conservation of energy and momentum during to the radiation
process, the quantities

d d d

[ . 1 - “ . % —
pz: - ds pE) pz — dS pl7 pd - ds pa’ 17

!

in eqn. (2.3) must be replaced using the relationships 4 :

1 "
An = 7]’(3) -As — A’{] — — At P(S) = As- 7']1(3) . (3) ) P(s) ’ (2.28a)
E, F,
Ap, = pli(s)-As — Ap, — L'M-T,
E, c
P(s)- At dz
= An T
N 1 .
= Ap, — P(s) - At =z (5) - As with dl — c . dt
E, c- At
P
P(s) - At
Ap, =pl(s)-As — ap,— = Fl)-At
Ey c
P
= As: [Pi( ) — (s) -z'(S)] (2.28¢)
EO - C

*In Ref. [1] we used other transverse variables at this point.

11



(see eqn. (2.5a, b)).
Using the relation :
o(s) = s—c-i(s) = o'(s) = 1—c-t(s) (2.29)
the term ¢'(s) appearing in (2.28a) can be written as:
c-t'(s) = 1-0'(s). (2.30)

The stochastic equations of motion then read as:

Lo 4 O Bs) oM (2.31a)
ds Op. ds 0r Ey-c 08p,
Lo om 4 M Pl o (2.31b)
ds Op, ds 0z Ey-c Op,
iaz_ﬁm; 4 - M Pl [ oH] (2.31¢)
ds Op, ds 0o FEy-c Op,
Instead of p, and p, we now introduce the variables 5 -
ﬁz — I, — H -z (2.323.)
5. = 4 H-g (2.32b)

and from the Hamiltonian in (2.12) using (2.31) we obtain:

0H

Az+H. = 2 =
p z op.

I

= [l+K,-z+ K, -]
NP —lpet H 2P o~ H 2] [+ B 2] (233)

0
p:—H-z = 7 = BZ

= 1+ K. -2+ K, 7]
NP —lpe— H 2P —[p+ H-2]?) o~ H 2] (2.33b)

( - and P, are the canonical momenta of the linear theory obtained from the Hamiltonian X
in eqn. (2.12) when terms of third and higher order are neglected; see below, eqn. (2.43a)).

Then using (2.31):

d oH
p, = — ~-H-z-H.2
Pe ds Op, ‘ ‘
OH L PH O ,, PH
— -2’: . .z .
920p, opz P= 7 Gap, 9p.0p, '*

>Using these new variables we get the linear theory of damping constants as a special case by neglecting
nonlinear damping terms (see chapter 8).

12



OH ,  PH

, M

. . —~H .-z—H.Z
ﬁ}_aaapz o 0p,Op. pot 0s0p, ‘ ¢
O*H P*H OH *H
= b+ H - 2] — i —H|- [p,— H -
Jz0p, [P + 2] op: Oz [azap, ] [? 2]

*H BH+ P*H OH P*H OH
0p.0p, 0z  08odp, 0Op, Op,0p, 0o

0*H
p H’ . z ; 2.34a
+358p, arr ( )
d OH
~1 — . HI . H . !
P: = G, Tt A
0*H L O*H ;s O’H ' F*H
= . . - Z -
0z 0p, * 0p.0p, Pz 0z0p, op? P
0*H 0°H , 0*H
.o . +H -z+H-2'
+303P: o dp.0p. '° * 0s0p, i *
O*H PH OH O*H
= H| -1+ H.2— e T p —H -
[Bmapz t ] [P + 2] O0p.0p, Oz + 0z0p, (7 2]

*H OH  *H OH P*H H
B op? Bz * 0o dp, . op, Op.0p. 9o
O*H
0s0p,

+ +H 247, (2.34b)

where we have gathered the radiation terms (appearing in p!, and p’) in 7, and 7, :

P(s) [0*°H OH PH M M 0H
r, = — . + . + <11 - ; (2.356.)
Eo-c | 0p Op. Op.Op. Op. Oodp. 9p,
2 2 2 OH
po= _FL) [OH OH U oH  PH [ } (2.35b)
Ey-c | 0p? 0Op, Op.dp. Op, Oolp, 0pq
Using eqns. (2.33a,b) and the relations:
0H
[1———} = 1+K,-z+K,-z]-(1+p,)
op,
(1 +pe) —[pe+ H 2P —[p. —H-2P| 7 ;  (2.36a)
M 2 2
G = L+ Keo+ K2 [(14p,) - 7]
<14+ pe)? ~lpet H-2 —[p. — H -] ; (2.36b)
*H
= 1 Kz: ) Kz ) ‘' PzP:
opop. ~ Lt Eeet Koozl pop
| +p) —[pe+ B 2P —[p.— H-2P] 75  (2.360)
P*H
= — 1 K . Kz ° ° 1 ) Pz
pp, A+ K. z+K.-z]-(1+p,) p
_3
« [(1 D) —[pet H -z —[p, — H- m]z] 2 (2.36d)

13



resulting from (2.2) we have ¢ :

re=71,=0. (2.37)
Thus eqns. (2.31) can be replaced by :
d
E T = }32 + H *Z3
d *H 3*H oM *H
S5 = p+ H - 2] — Rl _H|-[p,— H -
ds Pe T Goap Pt -G [azap, ] 7 ?]
2 2 2 2
_O*H _8_’H+ 0°H OH OH -3_’H+ 0*H _H'-z; (2.38)
dp.0p. 0z 00dp, 0Op, OIp,Op, Oo  Bsdp,
d
o= po-Hew;
d *H F*H OH M
— P, = H|-[p.+ H-z]— R Ap, — H -
ds P [azapz * } [P + 2] 0p,0p, 0z  0z0p, (b ?]
2 2 2 2
_8H‘3_H+3H.3H_ oM .QE+8H+H’-2; (2.38b)
op} 0z 00dp, Op, Ip,dp. 0o = dsdp,
d _ +6'H )
ds © T dp, '
ipa _ 9 P(s) 1— oH . (2.38¢)
ds do Ey-c Op,

Note that eqns. (2.38) are exact corresponding to the exact Hamiltonian (2.2) or (2.12).

The next step would be to express the r.h.s. of (2.38a,b,c) in terms of p,, p, instead of p,,
p.. The variables p., p, can in principle be eliminated exactly using the equations:

PetH-z = (1+p,) [P+ H 2]
x[(1+K,-;c+K,-z)z—l—Lﬁz—{—H-z]z-i—[ﬁ,—H-z]Z]— ;

[NTE

(2.384)
p.—H-z = (14p,)-[p.— H -z]
x [(1+K,-a:+Kz-Z)2+[13:+H'Z]2+[}5z—ﬂ‘”]2}_

[NTE)

which may be obtained from (2.33a,b) using the relation :
[1+K,-z+K,-z]2+[ﬁz+H-z]2+[f),—H-z]2

B . (1+p.)? :
= Bt Kezt Koo (L +pe) —[pet+ H-2P~[p,— H-2
—_ [1+K,-:c+K,-z]-{(1+p‘,)2—[pz+H°Z]2—[Pz_H'3]2}‘1/2

{(1+K,-a:+K,-z)2+[ﬁ,+H-z]2+[ﬁ;—H"3]2}l/2
(1+p,)

6This result is due to the fact that the photons are emitted in the direction of the tangent to the trajectory
so that z' and 2z’ remain unchanged during a radiation process.

14



which also comes from (2.33a, b).

2.4 Radiation Power and Series Expansion of the Hamiltonian

Now, since

lp. + H-z| < 1;
lp: —H-2| < 1

the square root

[1 Clpet H- 2P+ [p.—2H- :c]z} 1/2
(1+ p,)?

in the Hamiltonian (2.12) may be expanded in a series :

[1_ [pz+H'Z]2+[pz—2H'z]2}l/2_

(1+ p,)?
1_%_[p,+H-z]2+[p,—H-:c]2+_”
2 (1+p,)?

so that in practice the particle motion can be conveniently calculated to various orders of
approximation.

As we will demonstrate below the special dissipative effects described in this paper originate
in third order terms appearing in the equations of motion in the wigglers. Thus it is only
necessary to expand the Hamiltonian up to fourth order. Furthermore, within this framework
and in order to simplify the presentation, we only expand the Hamiltonian up to quadratic
terms in p, and p, " . Then we obtain from eqn. (2.12):

eV

H = —U-Esingp—Eio-[AB,-z—AB,-:c]
1 [p.+H-z*+[p,— H -z
2 (1+ p,)
+Ho + H, (2.39)

"The additional third and fourth order terrus

L lp-+ H 2 +[p, - H 2]

+3 (1+p,)

K. 2+ K, - 2]

and

1 e + H-2? +[p, — H-z]?)°
_g'(l+pr)'{ (1+pf))2 }

which would appear in the Hamiltonian (2.39) after expanding (2.12) and the relations for [p, + H - z] and
[p. — H-z] in eqn. (2.38d) as far as needed to get all third order terms in z, z, P, P. In the equations of motion,
contribute second and third order terms on the r.h.s of of eqns. (2.44a-¢}. Of these, the second order terms will
vanish by phase averaging (in Chapter 7). The third order terms are oscillatory and can be neglected. Note,
that eqn. (2.44f) which includes the radiation damping term is unaffected by these higher order terms of the
Hamiltonian. See also Footnote # 8.
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with

1
Ho(m,p,,z,p,,a,p,;s) = 5'{[K3+g]-:c2+[1(f—g]-zz}—N-zz
1 , eV 27

=50 -E—0~h-fcosgo—[K,-:c+K,~z]-p,; (2.39a)
Hl(ﬁ,pz,Z,Pz;U, Doy 5) = Hll + le y (239b)
' 1
Hll = +A . -é (233 —_ 3:322) )
1
le = _“'ﬁ (24—6$222+134) .

(constant terms in the Hamiltonian, which have no influence on the motion have been dropped).

By applying the relations:
OH

P+ H-2 = 2' = Pl (2.40a)
Pz
%,

p.—H-z = 2 = 6H (2.40D)
P:

(see eqns.(2.31) and (2.32) ) to the Hamiltonian in the approximate ® form (2.39) we may write:

(o + H - 2] ”aiﬁ};')z : (2.41a)
[p. — H-z] = %%’TI . (2.41b)

As a device to separate the r.h.s. of eqns. (2.38a,b, ¢) into symplectic and nonsymplectic
components, we now define an artificial Hamiltonian H in the variables z, p,, z, p,, o, p, by

1

= S {lBe+H P+ [ - Ho2f )+ Fo+ Hy (2.42)
with
’}%O(z,ﬁmzaﬁu'y’pa;s) = HO N (243&)
Hi(2, P, 2,550, 0038) = Hay + Haz 5 (2.43b)
Hiw = Hug
Hiz = Hiz .

Then, using eqns. (2.40a, b) together with the relations

OH OH

O0p. op, '

8 This approximation is fully consistent with that already discussed in Footnote # 7.
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OH

Op,
oH
Jz

OH
9z
OH
op,

OH

3o

O*H

op3

M

0z 0p,

P*H

0s0p,

O*H

0s0p,

0*H  OH
O0p,0p, 9o
?*H M
Jp,0p, 80

OH
dp,
[ﬁz—H'z]'(_H)

e

|1 et B lp B aP
) (1+p,)?

~ s {Be+ H -2 + [~ H 2P} ;

—[K. 2+ K, 2

H .2 ‘
(1+p,)’
P+ H- -2z eV
' —— singp ;
(1+p, )2 E, ¥

p.— H-z eV
- ———/— * — S§1h
(I+p 2 B 0%

(no solenoid fields in the cavities — V(s)- H(s) = 0 ) which result from the Hamiltonian

(2.39), eqn. (2.38) leads to:

OH

) 2.44

s (2.412)
oH eV(s) . e

SOt e — — . AB, ; 2.44b
oz B, Sne P g ( )
6?{ ; (2.44c¢)
0p,
oH eV(s) e

—_— 1 .9 — . AB: ; 2.44d
3 B, S Bt & ( )
oH ; (2.44e)
Op,

17



d B OH eV(s)

P T "o, T g sne
D
B OB PR I O T P (2.44f)
Eo C Bp,, Eg *C apa

where for simplicity we have neglected several small nonsymplectic terms in eqn. (2.38) in order
to make the theory more transparent, i.e. we approximate :

PH T PH 1 o
opr  opr 1 + Po '
0*H _ 92K ~ H N |
0zdp, _(9,2(9]3zc 14+ Po ~ ;
oM _ —[K,-:c+K,-z]—l.[p”+H‘z]2+[pz—H'-’C]2
ope 2 (1 +po’)2
- %"%'{[ﬁﬁﬂ-dzﬂﬁ,—f{-zr}
_ 0"
~ o
FH M 1 o
op2  8p:  1+4p, '
OH #H  H ~ H -
dz0p, 0z0p, 1+ p, !
0*H ): :
0s0p, N +(1 ¥ po) ~ +H' -z
N __ H'= . _Ha
0s0p, (1+ p,)
PH oH pz_f_]{.z eV Vo -
op.0p. 8c  (Ltp)y B P T P e
H oH p.—H -z €V | eV
apdapz.gg - m'E_Osm‘PzP;'Emn(p,

These terms could in principle be taken into account in a straightforward manner but only
produce a small shift of the nonlinear closed orbit and make a small correction to the linear
damping behaviour (chapter 3). Note that the radiation terms which appeared for pl, p! in
(2.31) no longer appear for 3., pL..

For the radiation term

Xk_m+ﬂwr_m—HwP*
I+pf — (+py

(see eqn. (2.36a) ) appearing in (2.44f) we obtain from (2.23a) and (2.24a-1):
PP(s) [1 BH}

- —Ci-[1+K.-z2+K,-2]-(1+2p, +p2)
-EI0°c 8pa'
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{(e? + N?) - (27 + 2%
e\? 2 2
HK?+ K2+ (-E—) - [aB2 1+ ABY)
0
+2G68) 2264 .,
+Gos - [2* + 227 + }

1
+GD0‘§[31222—2E3]+"'}

104

—Cy - {[Kf + K+ (Ei)2 [aBZ + ABE]}
0

—C'l-[Kf+Kf]-[K,-:c+K,-z+2pa]

=Cio(g" + N?)- (2% + 2%) - (1 + 2p,)

~C,-2GE) 2+ 268 -2

—Cl . GQS . [1C3 + ZCZZ].

1
—C; - Gpo - 3 [3zz? — z? (2.45)
where we again only retain terms up to third order.

The quantity

_6P(s) - oM
EO - C ap,,.

in (2.44f) should be evaluated on the actual orbit y'(s) leading to a multiplicative stochastic
process, but for simplicity we approximate it by (see eqns. (2.22b) and (2.23b)):

_(Z:_('sc). [1_3_:] = Vw-£(s) (2.46)

with w given by :

3/2

€
— AB,
Eqy

e
— AB,
* |E0

replacing 7 (s) by the design orbit 2 .

In this way we avoid the difficulties due to calculating multiplicative stochastic processes
and we only have to treat stochastic differential equations with additive noise. These are much
easier to handle.

By taking into account the relations (2.45) and (2.46) the final equations of motion up to
third order can be written in matrix form as !° :

Ly - ) +ec (2.482)
ds
® A more precise calculation would take the field on the closed orbit intoduced in chapter 3.
1®We neglect the contribution of the octupole component H;; introduced in eqn. (2.43) assuming that the
octupole- dipole field has alternating signs thereby minimizing the optical distortion. The same assumption is
made for the quadrupole - sextupole wiggler.
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with

F(§) = A GHEA-TH+Go+E + Cpua+ Coga+ Corn + G (2.48b)
and with
z 0
P= 0
;= | ? se=| 2. (2.49a)
y - ﬁz 3 c = 0 ) *
o 0
Do be
bc = Vw-€(s); (2.49b)
~T eV . 2 2 e\’ 2 2
¢ = {0,0,0,0,0, —~sing—-C,-{[K2+ K]+ <—> [(ABt) +(AB,) ] ;
EO z EO
(2.49¢)
&T = -;—0 (0, —AB,, 0, AB,, 0, 0) ; (2.49d)
Cua = —Ciog" (27 +2°) -(0,0,0,0,0,1)- (1 +2p,) ; (2.49)
€ue = —Ci-N?- (2% +2%) -(0,0,0,0,0,1)- (1+2p,) ; (2.4910)
- T 1 2 2
Cropg = 5)\(5) (0, 2* — 2%, 0, 222, 0, 1) ; (2.49g)
1
&r = —Cl-{GQS-[m3+:cz2]+GDo-5[32:22—::3]}-(0, 0,0,0,0,1);  (2.49h)
G O, K
A(s)=| -K, 0 —-K, 0 0 0 (2.50)
0 0 0 o %(j—)-h-zfcosgp 0
and
6A = ((84u));
eVi(s .
6A4,, = — E(O)-51n<p;
6A4 = 0As ;
6Ass = —C,- (K 4+ K?)-K,—C,-2GE);
6Ass = —Cy- (K +K?)-K,+C 2G5,
2
645 = —2C,-[K2+ K| —2C,- (Ei) (AB.) + (B,)] ;
0
6A;x = 0 otherwise (2.51)
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and with

0 1 H 0
_ —(K2+g+H*) 0 N H |
G(s) = _x 0 0 L (2.52a)
N -H —(K!-g+H?) 0
KT = (0,K,,0,K,) . (2.52b)

Here the matrix A(s) represents the symplectic part of the linear motion resulting from the
Hamiltonian H, (see eqn. (2,43a)):

. OH
4-§ = -5 212 (2.53)
9y
and the vector ¢,., is the symplectic part of the nonlinear motion resulting from the sextupole
component H,; of the Hamiltonian in eqn. (2.43). The matrix S is given by :

S =

o 1o 7
|

0 0 0 1
. _ - 2.5

and in §A(s) we have gathered the nonsymplectic linear terms.

Finally we remark that the cavity phase ¢ in (2.49) and (2.50) is to be determined by the
condition that the averaged energy radiated away in the bending magnets:

5o+ L
UBend = EO '/ ds - Cl [Kj + Kzz] ) (255)
50

in the dipole correction magnets :
2
Upiy = Eo- 3 c - (f_) [(AB.Y + (aB]-as  (2.56)
dipole correction magnets EO

and in the wigglers (= Uw,gg., ) ' must be compensated by the averaged energy gain in the
cavities :

L] +L V
EO ’ / ds - - (5) sin Y = UCav ’ (257)
30 EO
i.e. we have to require that
UO + UWiggler = UCa.v (2’58)
with
UO = UBend + UDip . (259)
Remark:

In eqn. (2.48b) we have neglected nonsymplectic third order radiation terms resulting from
bending magnets, quadrupoles, skew quadrupoles and sextupoles (eqn. (2.45)). These terms
can in principle be treated in the same way as the wiggler term ¢,,. See also Footnote # 13.

" The energy radiated in the wiggler will increase with the transverse beam size.
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3 Introduction of the Closed Orbit

Under the influence of radiation and nonlinear damping by wigglers the particle motion in
electron storage rings can be completely described by eqn. (2.48) together with eqns. (2.49 -
52) but the equations must be solved in several steps. First of all it is necessary to eliminate
the inhomogeneous terms ¢, and ¢,. This is achieved in the usual way by writing the general
solution as

¥ = Yo+9y (3.1)

where 3 is the (unique) periodic solution of egn. (2.48) (without 6¢) i.e.

d _ -

s Yo = F(z); (3.2a)
s

Yo(so+ L) = % (s0) - (3.2b)

with F given by (2.48b). (For a solution of eqn. (3.2a) see Appendix B.)

By substituting (3.1) into (2.48) we then obtain the equation for the orbit vector g valid up
to third order and describing the oscillations around the closed orbit Yo :

d . - -
—_y = F ) — s ~
Y _(y) F_( o) + é¢
= A-G+6A -5+ +E, +6¢(3) (3.3)
with
. 1
& = —a {GQS [:23+:EZZ]+GDO-§[3222—1‘:3] .}-(0, 0,0,0,0,1); (3.4a)
G O, K
A(s) = | -K. 0 —-K, 0 0 0 (3.4Db)
0 0 0 o0 ﬂ;o—')-h 2I:'cos<p 0
and
84 = ((64a));
- eVi(s .
642, = — E(o)~smgo;
. 1%
6A44 = "—ef)(os) . sin(,o 3

5*461 = 6A51—201'(92+N2)'230'(1+2T}0)—-C1'{GQs'[3$g+Z§]+Gpo'[zg—zg]};
64‘163 = 5A63—201'(92+N2)'20'(1+2770)—Cl'{GQ5'2$020+GD0’223020};

- 2
64gs = 8Ass—2C;- (g% + N?) - (22 + 22) — 2, - (Ei) [(aB.yY + (aB,Y] ;
0

§A;x = 0 otherwise
(3.4c)
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and with

G = G+G,.; (3.5a)
0 0 0 o0
—Zy 0 20 0

= 3.5b

Hsex /\(S) 0 0 0 0 ( )
20 0 Lo 0

whereby in ¢, we have gathered second order terms in &, DPzy Z, Pz, O, P, However, as we
shall see in chapter 7, it is not necessary to know the special form of ¢é,.

Equation (3.4c) demonstrates that closed orbit distortions can change the damping be-
haviour. See Appendix D also 1% .

4 Introduction of the Dispersion via a Canonical Trans-
formation

Equation (3.3) describes nonlinear coupled synchro-betatron motion in the presence of
synchrotron radiation. The linear symplectic part of this equation reads as:

d - S oK
— 4 = A-y = -§5.-— 4.1
dsy y - ag ( )
with
1
K202, 2,P016,P0ss) = = {[po+ H -2+ [p. — H - 2]}
+o {[KI 4582+ (K2 - §]- 2}~ N -2z
1 |4 2
—562-E—O-h-%cosga—[l(z-quKz-z_] Do (4.2a)
and
§ = g+X-zo; N = N+)-z (4.2b)
or, in component form :
d
—Z = p,+H-z: (4.3a)
ds
d .
;b= = Hp.-H-z]-H-[K:+§l- 2+ N -2+ K, 7; (4.3b)
s
d
—zZ = p,—H-z; (4.3¢)
ds
d -
5P = -+ H-Z-H+N-z-[K!-§]- 2+ K, 7; (4.3d)
s

12We have neglected curvature terms resulting from dipole correction coils, quadrupoles, skew quadrupoles
and sextupoles. But these additional terms generating spurious dispersion can be taken into account in a
straightforward manner. For more details see Ref. (9].
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% &6 = —[K,-2+K,-z]; (4.3e)
s

d eV(s) 2m

—_— = T - . h . — . . 4_3f
ds n g z, I cos ¢ ( )

Note that the linear betatron oscillations (eqns. (4.3a - d)) and the longitudinal motion
(eqns. (4.3e, f) ) are coupled by the term

~[K. -2+ K, - 3] (4.4)
appearing in (4.3e) which depends on the curvature of the orbit in the bending magnets.

We now introduce dispersion :

.
Il

(4.5)

and replace the quantities z, p,, Z, p,, &, p, by the new variables E, Pz, Z, P., G, P, defined

by :

& = Z—p,-Dy; (4.6a)
Po = P~ Do Ds; (4.6b)
Z = Z—p,-Dy; (4.6¢)
P: = P.—Pr Dy, (4.6d)

where the components Dy, (k = 1, 2, 3, 4) of the dispersion vector D are (in the ultrarel-
ativistic case) given by the periodic solutions of the equations (resulting from (4.3a-d) for

n=1):

d

— Dy = Dy+H-Ds; (4.7a)

ds

d A

oD = +[Ds—H-Dy|-H~[K>+§]-Dy+N-Dy+ K, ; (4.7b)
S

d

— Dy = Dy—H-D, ; (4.7¢)

ds

d A

;D0 = —[D2+H-Ds]-H+ N-Dy - [K!-§]-Ds+ K, . (4.7d)
L)

(For a calculation of dispersion see chapter B.2 in Appendix B.)
This replacement :
(i) Z—)r’ Za pza C_T, ﬁa’) - (Ea p'z) 21 ﬁza 5a ﬁa’) (48)

can be achieved using the generating function [13, 14]:

F2(57 z, 0o, ﬁz, ﬁzv ﬁcr) = ﬁz'[f-ﬁa"Dl]‘f‘ﬁv'DZ'i
+ ]3;°[2-—}30.-D3]+]3,-D4-2
1 - - -
- 5-[D1-D2+D3-D4]-pi+Pe'U (4.9)
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with the result that:
oF,

I = —/ = Z-p, Dy (4.10a)
0p.
oF
pm = __2:ﬁz+ﬁa'D2; (410b)
oz
OF:
P = 2 =z—p,Dy; (4.10¢)
. 0p,
oF
P = —__Zzpz+ﬁo°D4- (410d)
0z
oF
F = 6~2:&—ﬁ,-D1+:E-D2—;3,-D3+2-D4
Po

—[Dl'D2+D3'D4]’f’a

= 6—p.-D1+[z—D1-p,}- D,
—p.-Dy+[2— D3 p,]- Dy
= 0—pr D1 +&-Dy—p.- D3+ 2- D,

= 6_prDl+fD2-ﬁzD3+zD4, (4108)
P = %:ﬁo‘ (4.101)
Js
and
— oF
K=K+-—22 (4.11)
Jds

In agreement with eqn. (4.6).

In matrix form eqns. (4.10a-f) read as:

§g=F-§; §=F"'j (4.12)
with
5
D=
- 3
=_ | 2 4.13)
7 5. (
G
Do
and
1 0 0 0 0 —D,
0 1 0 0 0 —D2
0 0 1 0 0 -D3
— 4.14
£(s) 0 0 0 1 0 —-D4 |’ (4.14a)
+D, -D, +D, -D; 1 0
0 0 0 0 0 1
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1 0 0 0 0 +D;
0 1 0 0 0 +D2
-1 0 0 1 0 0 +D3
= 4.14b
£706) 0 0 0 1 0 +D4 (4.14b)
-D, +D, -Dy +D; 1 0
0 0 0 0 0 1
The new Hamiltonian (4.11) has the form:
K = Ko+ K, (4.15)
with
_ 1
Ky = 5-{[ﬁ,+H~Z]2+[ﬁZ—H-:E]2}
1 -
+§-{[Kf+§]-£2+[l(f~‘]-52}—N 33
1 2 |4
—§-h-%-%;cos<p &2
1
-5 P2+ (K. Dy + K, - Dy] ; (4.15a)
_ 1 2 eV - ~ ~ 2
Ky = —E-h-T-E_Ocosgo-[6+f),-D1—:c-D2+p,-D3—z-D4]
1 2 |4
+§.h.%.eEl_0cosso.62. (4.15b)

In this Hamiltonian the coupling term (4.4) which arose from the orbit curvature no longer
appears. Instead, there appears a new term X, for the cavities representing a coupling between
the longitudinal and transverse motion which disappears if

V(s): Dy = V(s)-Dy = 0 (4.16a)
V(S) 'Dz = V(S) ’D4 =0 (416b)
(i-e. no dispersion in the cavities).

To proceed we will treat Ky as the unperturbed part of the Hamiltonian (4.15) and K,
(representing the synchro-betatron coupling) as a perturbation.

In terms of the variables &, p,, %, 5,, &, p, eqn. (4.1) now takes the form:

d - s ..
— 9 = A-g+AA-§ (4.17)
ds
with
A-j = -S arcj,; (4.17a)
]
AA-§ = -S oK (4.17b)
]

In particular one obtains from (4.15a) and (4.17a):
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0 1 H 0 0 0
—(Gy+ H?) 0 N H 0 0
i —H 0 0 1 0 0 _
=7 N —H —(Gy,+ H?) 0 0 0 ’
0 0 0 0 0 —[K.- D, + K, - Dy]
eV{s) 2%
0 0 0 0 B, h-Tcosp 0
(4.18a)
(Gi = K;+§; G2 = K!-})
and from (4.15b) and (4.17b):
. v 2
AA(s) = < E(OS) -h- % cos @
Dg'[j —Dl '.5 D45 —D;;ﬁ —.l_j 64
X 0 0 0 0 0 0 . (4.18b)
—D2 Dl —D4 D3 0 0

The r.hs. of eqn. (4.17) includes only the (linear) symplectic part of the motion. The
whole equation (3.3) including also the nonsymplectic part of the motion now reads in terms
of the new variables &, p,, %, 5., 6, p, as:

i = Lirg
dsy T ods 15V
= F-y+F-g'
= P §+F-[A-§+64-§+G+E, + 6]
= [F'+E-A| - Fj+F-6A-F"' - §+F-[&+3, + 6
= [A+AA] - G+6A -G+ +8,+68 (4.19)
with
[A+A4] = [F+F-4)-F
given by eqn. (4.17) and
A = F.§A-F', (4.20a)
& = F-&; (4.20Db)
&y = F-&: (4.20¢)
6 = F-6¢. (4.20d)

Writing A and F in the form:

54—_‘(4“) 64 64
0

A = o7 0 ; (4.21a)
&Y 0 6As
1 64 -D 1 64 +ﬁ
F=|4D"-5, 1 0o |; F'=|_-DT.5, 1 o0 (4.21b)
64T 1 64T 0 1



with

54T = (5/161, 51‘162, 5A631 5!‘164) ; (4-223)

= - . .22b
so= (% 2 (4:220)

we obtain for 5A~:

64 = | —D" Sy Auyy O DTS, 6Any D (4.23)
&f 0 &7 D+ 64
and for ¢, and 6¢ we get:
- Py 1
Ew = DCI . {GQS'[Q_B:"*‘:EZ—Z]—{-GDO . 5[3 522—53]} N (424&)

68 = —bc-D=—\Ju(s)-£(s)- D (4.24b)

with
z = £+ﬁ,‘D1;
Dz = ﬁz“*'ﬁa'DZ;
z = 2+ija'D3;
ﬁz = ﬁz+ﬁa'D4

where we have introduced in (4.24a, b) the vector

b - . (4.25)

In the absence of the terms & and &, the stochastic differential equation (4.19) would be
a Langevin equation [1, 15] with periodic s dependent coefficients and linear drift terms and
the moments of the statistical distribution of the orbit variables could be found by standard
techniques [1, 15, 16, 17, 18, 19, 20]. However in the presence of nonlinear terms C2y Cu
an alternative approach is needed in which the canonical variables Z, P., %, P., &, P, are
reexpressed in terms of action - angle variables as described in the next chapter.

Later on we will need the relation :
[AA(s))T-S+S-AA(s) =0 (4.26)

resulting from (4.17b) [21].
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Remark:

The Matrix AA in (4.18b) results from the synchro- betatron coupling induced by non-
vanishing dispersion in the cavities.

The relations (4.18) can be used to calculate the 6 x 6 transfer matrix of a cavity in the
version of dispersion formalism in which all synchro- betatron coupling terms are retained [13].

For this purpose one has to investigate the solution of the equation of motion (4.17) for a
cavity. For a pointlike cavity at position s = s;:

Vis) = V-8(s— sp) (4.27)
one then obtains:

d - eV 2

Eg? = E-h-fcosgo-é(s—so)-ﬁ(s)g—j (4.28)
with
D,-D —-D,-D Dy-D -D,-D -D 4,
K = 0 0 0 0 0 0 |. (4.29)
_DZ D1 *.D4 D3 1 0

In solving eqn. (4.28) it is important that the term K(s)§(s) which multiplies the §-
function is a continous function of s at so although %(s) changes discontinously at sy, as may
be seen from (4.28).

The continuity can be proven easily if one takes into account the fact that &(s) and
z
P

@y
’_
1

ST

D2
are continous at s = s, (see eqn. (3.4b)) and that

—

DT80 = 0 = DT-S,-§, = D" 8,7,

with

=
2y
I
o
[
[ R
<
— o
(e
2y



in the form:

-

D-|D7-S,-§,|- D
0
- [p7-5,-3,] +5

Qy
Il

K

Now, integrating both sides of eqn. (4.28) from sy — ¢ to s; + € one immediately obtains
(e > 0):

14 -
[l-%f—-h-z%cosg)-i(so)} ¥(so —0) . (4.30)

5(3‘0 +0) = E,

From eqn. (4.30) one can extract the six- dimensional transfer matrix of a cavity which
reads as [9, 13]:

M(so+0,s0—0) =

oV 9x D;-D —D,-D Dy-D -Dy;-D —D 0,
1 + E—~h-—L—-cos<p‘ 0 0 0 0 0 o0 {. (431
° ~D, D, -D, D, 1 0

Note that M(so + 0,5, — 0) in (4.31) resulting from the Hamiltonian (4.15) is a symplectic
matrix.

5 The Unperturbed Problem

In order to investigate the particle motion under the influence of synchrotron radi_e}tion we
begin by neglecting in a first approximation the small terms AA, bA, ¢, ¢, and 6¢ in eqn.
(4.19) and consider only the "unperturbed problem":

d -

—F = A-7. 5.1
7 A-j (5.1)

The synchro-betatron coupling described by AA and the radiative perturbations described by
0A, é, é, and é¢ will then be treated in a second step with perturbation theory.

Since eqn. (5.1) is linear and homogeneous, the solution can be written in the form :
§s) = M(s,50)§(s0) | (5.2)
which defines the transfer matrix M(s, so) of the motion.
To come further we need the eigenvalues and the eigenvectors of the matrix M(s + L,s):
M(s+L,s) v.(8) = A,-v.(s) (5.3)
in order to study the normal modes. We proceed in the usual way [1]:
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The vector 7,(s) in eqn. (5.3) is an eigenvector of the matrix _Al(s + L, s) at point s with
the eigenvalue A,. The eigenvalues are independent of s.

If the eigenvector v,(so) at a fixed point so is known, the eigenvector at an arbitrary point
s may be obtained by :

Gu(s) = H(s, 50)u(s0) - (5.4)

Since M(s + L,s) is symplectic and we assume stability, the eigenvectors ,(s) come in
complex conjugate pairs

(’Z?k, E—k:‘il:)a (k:I, II, III)
with complex conjugate eigenvalues.
In the following we put :

Ay = e~ 1 2mQy .

bl

(5.5)

A—k — e—i . 27TQ_k .

?

(k =1, II, I11)
with
Qi = ~Qu (5.6)
where Q@ is a real number.
Defining 5,,(5) by
5,(s) = Su(s) -4 2mQu (s/L) (5.7a)
we find :
Su(s+ L) =,(s) . (5.7b)

Equation (5.7a,b) is a statement of the Floquet theorem : vectors 7,(s) are special solutions
of the equations of motion (5.1) which can be expressed as the product of a periodic function
9,(s) and a harmonic function

e~ 2mQ, - (s/L)

The general solution of the equation of motion (5.1) is a linear combination of the special
solutions (5.7a) and can therefore be written as:

i(s) = > {Ak . ":;k(s) et 2mQu (/L) 4 Ay -5_4(s) - et 2mQs (S/L)} . (5.8)

k=I,11III
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We have the orthogonality relations :
W (s) S vi(s) = —T,(s) - S-T_y(s) £ 0;
v(s)-S-0,(s) =0 for u# v ;
(k =1, II, IIT) .
Furthermore the terms v (s)- S - v,(s) in the last equation are pure imaginary :
[7(s) - S-a(s)] = a(s)-8* (o)
=~ [5(s) - 8- 4,(s)
(since ST = —S). We choose to normalise the vectors ux(s) and v_x(s) at a fixed point sy as:

U (30) - S+ Gi(s0) = —94(s0) - S - T_a(s0) = i ;

(k=1I, II, III) .

This normalisation is valid for all s if we use the definition in eqn. (5.4) for ¥,(s). Thus we
obtain:

5(s) S Tals) = ~a%y()- S - Ta(s) = i
(5.9)

i (s)-S-v,(s)=0 foru#v.

Note that the Floquet-vectors
B,(5) = 7u(s) - e TP 27Qu - (s/1)
then fulfill the same relationships:

5e(5) S Tu(s) =~ 4(s) - ST als) =1 ;

(5.10)

ﬁ“(s)-ﬁ-gy(s)ZO forp#v.

Using these results we are now able to introduce a new set of canonical variables Ji, ®i
which will be important for further investigations.

For this we write for the coefficients Ay, A_y (k= I,II,1II) in eqn. (5.8):

A = yfJ-e %~ 27Q - s/ I] (5.11a)
A = I, etil®—27Qu - s/1] (5.11b)

Then eqn. (5.8) takes the form:

is)= 3 \/3:-{5k(s).e‘iq’k +5_k(s)-e+iq’k} . (5.12)

k=II1I1I
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From (5.12) we now have:

6: | . e —1 b )

r;)/k = —1-y/Ji- {vk(s) P v_3(s) -e'H(I)"} ; (5.13a)
8§ L fz. —id, = +i<I>k}

— = . . _ . . 5.13b
o5, ~ Taum {”k(s) e Tt ials) e (5.13b)

Taking into account the relations (5.10) one obtains the equations:

=T s =T I~
gik ._5.:%1 - _Z?(/I)l .5.:_1 ~ b (5.14a)
-7 - -7 -
Zy;k ﬁg—z = Zik -i-%:(] (5.14b)
which can be combined into the matrix form [22]:
J'-5-J = S (5.15)

where 7 signifies the Jacobian matrix :

J (38‘;’/1’ ‘;9—;/1’ ;;%’n ’ ‘;9-;/11’ 38;111 , 36-;/111) (5:16)
being a 6 x 6-matrix just written as a row of column vectors (817/3‘131) etc.
Equation (5.15) proves that eqn. (5.12) represents a canonical transformation [22]
2, Pzy %, Py 65 Po — @1, I, @11y J1r, ®rary Jinn (5.17)

and that @4, Ji (k = I,II,II]) are indeed canonical variables which can now be interpreted
as action-angle variables since

dJ

f =0 = Jp = const; (5.18a)
s

d® 2

il R Z_W Qr = &, = r Q- s + const . (5.18b)

ds L L

These variables may also be used to describe the orbital motion.

Later we will need the fact that the revolution matrix M(s + L, s) has (eqns. (4.18) and
(5.1)) the simple block diagonal form:

(8)

~ M + L’ 0 X

(s +1,5) = | Leaxols+L9) oy (5.19)
Q(2x4) M(z)(z)(s + L, 5)

where Mgf))d)(s + L, s) corresponds to the (transverse) betatron motion and Mglz)(s + L, s)

to the (longitudinal) synchrotron oscillations.
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Furthermore, the 2-dimensional revolution matrix M((;iz)(s + L, s) which is defined by the
equations of synchrotron motion :

d
d_ G = —[Kz'Dz-i'Kz'Dz}'ﬁa' 3 (5206,)
S
d 2 eV (s)
—p. = k.. .G 5.20b
ds P° I E, ®¥° (5-208)

(see eqns. (4.12), (4.18) and (5.1)) can be represented in the form :

() _ [ c0827mQ, + a,(s) - sin 27Q, B(s) - sin 27Q, 5 91
M(zxz)(s tLs)= ( —v+(8) - sin 27Q,, cos 27Q, + a,(s) - sin 27 Q,, (521)
with
Bo e =al+1. (5.22)

From these equations one sees that for the eigenvectors v;(s) one can write :

J(ﬂ)
Vp = ( k ) ;o (k=1, 1) ; (5.23a)
02
- 04 . 1 ( Bo(s) ) —1 - p,(s)
g = I ;W = ——— - N v (5.23b)
" ( 0, ) J26.(s) \ ~lea(s) +1]
where, in the case that the betatron oscillations are decoupled :
(=)
MO s+ L,s)= | Lo+ L) Oc2x2) , (5.24a)
(4x4) 0 M(l) L
Yizxz) ——(2><2)(s + L,s)
(v) _ [ cos27Qy + oy sin 27 Q, By sin 27Q, ) 5 24b
M(2X2)(s tLs)= ( —Yy sin 27Q, cos 2Qy + oy sin27Q, /'’ (5.24b)
By-w=o;+1; (y=z, 2) (5.24¢)

the vectors o7 and v;; take a form similar to VIt

. W, B} 0.
5® - (62 ) O ( ), ) ; (5.25a)

wy = et Bu(s) cem e wuls) | .
y 28,(s) ( —[oy(s) + 1] ) S (5.25b)
(y==, 2).

Remark:

An approximate form for the matrix Mg))(z)(s + L, s) can be established if, in the equation
of motion (5.20a, b), the coeflicients of & and , are averaged over one turn (oscillator-model) :

00+L
[K.-D,+K, D] — nz%-/ di-[K.-D,+K,-D,] (5.26a)
3

34



(momentum compaction factor);

2 V 1 s+l 2 |4
h.%,eE(OS)COS(p Lk = f'/.o dg'h'f?r"eE(:)cosso
30+L V S
_ lhﬁcﬁ"f di. € (s).sinw
L L sing Jy E,
2
_ ¥ (5.26b)
K
with
K 27 UCau
VP=— h —.ctg p- 5.27
L L ¢ o (P EO ( )
where Uc,, is given by eqn. (2.57). Thus, eqn. (5.20) transforms to
d
— & = —kK-P,; (5.28a)
ds
2
4 o = Ly G (5.28b)
ds K

with the solution:

) L O o B S T ) BT

Using this ”oscillator-model”, the one turn matrix is given by :

Mira(s +1,) = ( (m/(cl(;s-?iiQL “(“@352“ e ) ( o ) (5.30)

and by the comparison of (5.30) with (5.21) we find (B >0):

2mQ, = —Q-L; (5.31a)
K

_ K 5.31b

b= % (5.310)

a, = 0; (5.31c)
Q 1

_ 2 5.31d

Yo s (5.31d)

where the quantities Q and x are taken from (5.26a) and (5.27). In particular by substituting
(5.30a) and (5.31) in (5.35b) one obtains:

g o= . % N 4 . (5.32)
C T [ as e (k2) + K3(5)
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6 The Perturbed Problem

The general solution of the unperturbed equation of motion (5.1) can be written in the
form

i(s) = 3 {Au-k(s) + Ak - ix(s)}

k=1,I1,I11
with Ax, A, being constants of integration (k = I, IT, I17).

In order to solve the perturbed problem (4.19) we now make the following "ansatz” (variation
of constants):

() = 3 {Au(s)i(s) + Ax(s) - Ta(s)} - (6.1)

k=IIIIII

Inserting (6.1) into (4.19) one obtains :

Y A4 T+ AL ()T = [AA+6A]- S {Aw(s)- ok + A_i(s) - Tn}
k=1,I1,IIT k=I,II,I11
+& + &, + 6 . (6.2)
Using the orthogonality conditions (5.10) and the relations (4.24a, b) one gets from (6.2)
fork=1,1I 1II:

—

A(s) = Xi(s) —i-9{(s)-S-&
—i-C - {GQS -[2* +22%] + Gpo -

i+ Jw(s) - €(s) - 5, (s) S D(s) ; (6.3a)
AL (s) = [As) (6.3b)
with
Xe(s) = X Als)(-)-5r-S-[aA+64] -5
+ X Au(s)(-i)-G7-S-[ad+sd] T, (6.4)

Taking into account eqn. (2.54) and the defining equation (4.25) for ) one can write for

the term 4,* S D appearing on the r.h.s. of (6.3a):
555D = v, Dy~ v} - Dy+ v, Ds—vly- Da+ v}
or, using (5.23):
Vi Dy — w3y - Dy + vy - Dy —viy- Dy for k=1, II;

5*Sh = (6.5)
+vpy for k=1IT.
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7 Stochastic Equations for the Variables J;(s) and ®(s)

Writing A(s) in the form (5.11), we obtain for the derivative A4(s):

Ik et [Pk —27Q - s/ L] _ [q;' _ _Qk} - A,

A(s) = %

1 J! 27
= A dc.TE [@'——0]
{3 o]
3

+(s) of the action - angle variables Ji(s) and ®(s):

DY =
S

and for the derivatives J}(s) and

H(s) = L a(s)- A(s)

ds
= A4(s) - ALu(s) + Au(s) - AL (s)
= 2-Re {A}(s)- Au(s)} ; (7.1a)
, 27 Ay(s) - A_i(s) 1 A(s)- A_i(s) + Ax(s) - A", (s)
R A O )
1 As) - A(s) - Au(s) - AL ()
2 - Ji(s)
= g S A A9} (7.1b)

Here the terms (A} - A_y) appearing in (7.1a,b) are given by:

A(s) - Ai(s) = Yal(s)+ Zi(s) (7.2a)
Ya(s) = Y(0) + ¥ (s) + v () (7.2b)

where we have separated Y} into first, second and third order terms with

(s)- Ai(s) .
= B RS adead] o BB

I=1,111I11

N Ve he (i) 5 s [AA v sd) L (B B (730

I=I 11111

Y(s) = =i [5(s) An(s)] -5 - &

= _;. 1/Jk_ei<I>,,(3) 5:(s)§

1
i) = —i-cp {Gqs 2+ :Efz] +Gpo- 3 [322% — 2% }

il (s)

|
>
tn

[tn

(7.3b)

a
Ntl

x\/z.eiq’k(s) .5:(3).5.5 (7.3¢)



and

!

Zu(s) = i-yw(s)-€(s) - [ (s) - Au(s)] - S -
= i yfw(s) £(s) /T et B(8) 56y 5. D . (7.4)

If we write then J(s) and ®(s) in the form:

Tis) = KEP(®4,J0) + QW (®h, 1) - €(s) ; (7.5a)
B(s) = K&, 1)+ QP(@y, 1) - €(s) (7.5b)

we obtain :

KE¥ = 2.Re{vi(s)} ;

o — _i.\/u?-,/Jk-{ﬁ;*ib-ei'@k—[zifif)} el (7.6a)
KD = 20— L smn(e)
L " Jk(S)
1 =+ = . =+ 21" .
ng) = —+-\/5-2\/J_k-{1;k§D-~s2 ‘I)"+['vk§D] et (I)"}- (7.6b)

In making the transformation from the variables (%, Py Z, Psy 6, Do) to (Jx, i) we have
used the usual rules of algebrai.e. in our classical model of photon emission we are interpreting
the Langevin equations according to the Stratanovich convention (see for example [15, 23]).

A comparison of eqns. (7.5) and (7.6) with eqn. (5.18) shows explicitely how the J} and &/
are modified by radiation effects. Note also from (7.5) that the stochastic motions of J; and
®, are driven from a common noise source. Furthermore, it is clear that the variables (J;, ®)
which by construction originally described uncoupled normal modes, have become coupled via
the radiation emission. Also, in contrast to the use of (2, Pz %, P:, &, P,) variables in eqn.
(5.16), the Langevin equations for the (Jx, ®1) are nonlinear.

The relations (7.5) and (7.6) now provide the basis for a Fokker-Planck [15] treatment of
orbit motion.

8 The Fokker-Planck Equation of Stochastic Orbital Mo-
tion

Now that the stochastic differential equations (7.5a,b) of the orbital motion have been estab-
lished the Fokker-Planck (F-P) equation for the orbit phase space density function W(J, &;s)
can be written without further ado as [2] :

oW 0 k 0 k
E R B AR AR (5.1

k=II1III11

1 ) 0 0* k) )
+ - . W4+ —— . -W
kyl:]‘Eu,]]] {2 BJ]CBJ([ J J ] aJka@l [QJ $ ]

10 ) A0
-_Z . W
+ 9 a(}ka(ﬁl[ ¢ Q§ ]
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with the drift coefficients given by

¥ = M4 g, (8.2a)
DY = g¥ 4 W (8.2b)

and where the quantities Ksk) and Kf,"’ are the artificial drift terms which arise when using the
Stratanovich interpretation of eqn. (4.19):

; 1008 ) 180W

FR) _ 29%1 k) 10E (k) . 8.3a
J 2 8J, @ity 0%, % (8:3)

i 160Q¥ 18Q%

ER = 22X ok 29%e (k) 8.3b
* 207, % t3s, 9 (8.30)

(Note that Q(Jk) and QE:) only contain the two variables J; and &;; see eqn. (7.6).)

From (8.3a,b) one has, taking into account (7.6):

ER = w(s)-|3, SDP
= w(s)- |5 SD; (8.4a)
= (k) - w(s) [+ 0217 .29 Pea A S L ¥,
Ky' = ¢- YA [vkﬁD] e k— [(vkﬁD)] € LA (8.4b)
k

It is clear that the F-P equation (8.1) is very complicated and that the drift and diffusion
coefficients are oscillating functions in s. But as in the previous paper [1] we will be interested in
the long time (asymptotic) equilibrium behaviour and therefore it will be sufficient to deal with
the distribution of quantities averaged over times on the scale of damping times [2]. Denoting
the one-turn averages by the bracket (), we therefore write the F-P equation in the form :

ow 0 k 0 k
= LT oW o) ) (5:)

k=IIIIII
1o (k) 0] 9° (k) Q)]
+ AT : W]+ —— Py - w)
k,lzgf:uu {2 3Jk3~71[< y )Wl BJkaé,R 7 %
1 & *) . A0
- . W
i 2a<1>kaq>,[< ¢+ Q) W]

whereby oscillating terms of the integrand due to the (linear) s-dependence of the angle variables

@ki

Pi(s) = ®4(0) + (s — s0) - szQk

(see eqn. (5.18b)) may be neglected since they are approximately averaged away by integration.

To do that, we first introduce the following abbreviations :

1 so+L —t . .
AQ, = 7 / ds -, (s) - S - AA(s) - 53 (s)
1 so+L . R
= oo [ s () S - A A(s) - duls) 5 (8.6)
30
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and

1 so+L -t . .
6Qu = oo [ ds-iy(s)-S-6A(s) - 5a(s)
1 IO+L - .
= 27/ ds - v (s) - S -6A(s) - vi(s) ; (8.6b)
50

(k=1, II, I1T)
and the quantities (the "damping constants”; see forward to eqn. (8.19)):
ap = =27 - Sm{8Q,} . (8.7)
Note that AQ is real (eqn. (4.26)).

Thus by using (7.3a, b, ¢):
. 27
W) = e (=0) - 1Ak + 6Q4]

= (=) [Re(aQu + 601} — i Sea] (8.8a)
<Yk(2)> - . \/J_k <ei@k(s) ) 5:(3) .S gz) : (8.8b)

Y = —iopJu,
<{GQ5 [ + 228 + Gpo - % (382° — 53]} . ot Px(s) B (s)- S 5> . (8.8¢)

In Appendix C it is shown that the quantities AQ} and 6Q appearing in (8.8a) are just
the (complex) Q-shifts of the k-th oscillation mode (k = I, II, IIT) caused by the (linear)
perturbations AA and 64 (see also Ref. (1]).

Away from resonances only the non - oscillating terms inside the ( ) survive. In particular,

since &; only contains quadratic terms, (Yk(z)) vanishes :
A (8.9)

leaving contributions from just the first and third orders. The quantity (Yk(l)) is the usual
linear damping term and contains contributions due to the closed orbit distortions. The next
non - vanishing order is (Yk(s)).

In order to exhibit the essentials of the damping effects due to the nonlinear wigglers we
now adopt the smooth approximation :

F ~ Dy-p,; (8.10a)
Z ~ Dy-p, (8.10b)
= [+ = [D} + D, D?] - 52

. o . 3
= [Di‘ + D1D§] . J131/12 . {{,1”6(3) ) e—l‘I>111 + 9_1116(5) .e+2‘§1u}

[32z° —2°] ~ [3D,D? - D53

. - . 3
= [3 D, Dg - Dﬂ ) ‘]131/12 ’ {171116(3) : e_zq)I” + 9-r116(8) - €+zq)1”}
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and from (8.8¢c) we get :

Y = 0 for k=1,11; (8.11a)

(3) _ : 2 1 o+l ~ A (o ~ ~ ~ ~\[2
() = —i-Cr-J- 5 d§ - 3035(5) - is(3) - [s(3))]
5
1
‘ {GQS (D} + DyD3)+ Gpo - - [3. Dy D - Df]}
. 2 1 so+L ~ * [~ ~ ~\|2
= —1-C,-J¢- Z/ d3 - 3vp(5) - vie(3) - |vre(3)]

1
X {GQS (D} + Dy D3]+ Gpo - (3D,D; — Df]}

3
3 ) 1 fo+l 5 3 .
= g dE g [T (9) @) +
5 1
«{Gos D+ DY 4 Goo - L3DiDI - DY)} (3.1m)
for k=1IT.

Then we obtain from (8.2), (7.6) and (8.4):
2
(D7) = =i Jan+ 2 Re(¥(s)

1 so+L Ing
+ Z/ ds - |vf SD|* - w(3) ;
20

2
= —Jk . Zak
3 1 so+L
——.C, - 2._/ ds -+,
9 1 Jj L/, S
1
< {Gas (D} + DD + Goo - £ [}~ D, DY)
1 fpeoo+l t o B2 .
+ Z/ ds - |[vfSD|* - w(3) ; (8.12a)
27
(D¢ = 7 Ok + Re{AQL +6Q4}] 5 (8.12b)
2Jy feotLl z
(@M = 7'5 ds - |5¢ SD|? - w(3) ; (8.12¢)
Gy = L [ s e s BR  w(s (8.12d)
((Q§ )) - 2Jk'L . S Ivk— I CU(S) .
and
( gk)~ (Jl)> = 0 for k#I; (8.13a)
QY -QP) = 0 for k#1; (8.13b)
QP .oy = 0. (8.13¢)

Introducing the constants:
ay = o — (8.14a)
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1 o+l =
M, = Z/ ds - |5} SDP - w(3) (8.14b)

by = 27-—-0y; (8.14¢)

=

0 for k=1, II;

— 1 s0+L
d = 9 3.0,. f/ ds - 7, () (8.14d)
X {Gos-[Di‘+D1D§]+GDo-§[D;‘—Dlp§]} for k=III
with
Qr = Qi+ Re{AQs+8Qx} (8.15)
we can finally write :
ds k=rirar U 0Jk 2 0%,
1 97 182 11
(2 MW ___[__.M.W]
Taaq B M Wit S5 a7, M }
d [ d oW
= Z T a7 _zak-Jk.W_"JII'W*Mk'Jk'—
k:I,II,III{ dJx 2 0J;
0 M, oW
o | W a0 8.16
9%, [ * 17, 8<I’J} (8.16)

This equation determines the averaged charge distribution of the particles in a bunch. On
comparison with eqn. (8.1) we see that the s-dependent coefficients have been replaced by
s-independent constants given by the one turn averages and that the r.h.s. has separated into
a sum of three terms, one for each pair of action-angle variables.

Remarks:

1) The averaging procedure indicated by the bracket ( ) only results in the forms (8.12)
and (8.13) away from the linear and second order resonances

n - Qr+ny-Qur+mny-Qr = integer ;
[l + na| + [ng| < 4.

On resonance the common noise source would cause the modes to be correlated and also extra
non - oscillating terms would appear [19]. But on resonance the particle motion can be unstable
so that this case is of no interest here.

2) In eqn. (7.5) the first terms on the r.h.s. describe the influence of the continuous
emission of synchrotron radiation on the synchro-betatron oscillations and the second terms
the influence of quantum fluctuations of the radiation field (function £(s) in (7.5)). If the
quantum fluctuation term is neglected and if one takes into account eqns. (7.6a) and (8.8) by
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neglecting the influence of wigglers (i.e. the term Yk(s)), eqn. (7.5a) may (approximately) be
written in the form:

2
Ji(s) = A Ji(s) . (8.17)
Equation (8.17) can be integrated with the result :

Ji(s) = Ji(so)- e~ 20k (s —s0)/ L

—  JI(s) = /Ku(so) e~k (s =o)L (8.18)
Since v/ J; represents the amplitude for the k-th mode of the synchro-betatron oscillations, the

quantity oy may be interpreted as the damping constant of the k-th mode [20, 24]. From (8.6b)
and (8.7) we have:

ap = —\sm/’:ML (s) - S-6A(s) - Tu(s)
= 5 /‘0+L [S 6A( )+ (5AT(S) Q] .{,‘k(s) . (8.19)

This formula may be used for a calculation of the damping constants.

By using (4.23) and (5.23) we get :
so+L
an=-%m [ ds (GO -5, - [bAenn(s) - Do) - 1(6)] - 50(6) for k=1, 1T

so+L _’
Qg = _gm/‘o ds - [w,(s)]* - S, - ( 3 DT Z4+65%4(::4) ) 1B, (s)

or using (4.22a, b), (3.4¢), (2.55) and (2.56):

1 UCau Cx o+l = = * *
o = —- —\fm/ ds - [vp, - Dy — v}, Dy + vy - Dy — vy, - Ds]
2 K 50
4
X Z 6Ag,, - iy for k= I, IT; (8.20a)
n=1
Ugen 0+l 2
apy = l;./, oA / ds { [92 + Nz] (25 + z5) + (Ei) [(ABz)z + AB;)Z]}
] 30 0
1 so+L 4 _

-5 ds - > 8§A46,(s) - Da(s) . (8.20b)

0 n=1

These results are already derived in Ref. [13].
For the sum

ar + o+ aggg
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one obtains from eqn. (8.20):

ar +arr + arrg

s0+L e
= Cl-/ ds{[g2+N2}-(:c§+z§)+(
50

2
2 2
E;) (aB.) +AB,)]}
UCav UBend

E,

1 AL o+l _
5 Z / ds - 8 Agn(s)
0 50

{ Dot £ [ (55 B) o4 ([,;,W-5.,.5)‘.[1,@]*]}.(8.21)

+

The dispersion vector D may now be expanded in terms of the eigenvectors

z—;k(ﬁ) and 77_(5) _ [,Jk(ﬁ)]x
(k=1 II):
D = Z[Ckv(ﬁ)‘f'ck (ﬂ)]‘
k=111

Since the coefficients ¢, and c_; according to (5.10) and (5.23a) are given by

o = —i- (5O -5, B) ;
C_r = Ci
one has:
D = ¥ [-i- (51 8-D) 5 +i. ((597* - 5,- D) 5] (8.22)
k=111

It is then clear from (8.22) that the second summand on the right sight of (8.21) vanishes
so that finally

UCau UBend
E, E,

so+L e
+C'1-/ ds{[gz+N2]-(:c§+z§)+(

art+ o+ oy =

E0)2 (aB.) + AB;)Z]} (8.23)

results.
In the absence of wigglers one has
UCav = UO

(see eqn. (2.58) with Uw.ggr., = 0) with U, given by (2.56), (2.57) and (2.59) and thus

Uo o+l 2 2 2 2
artoan+ o = 2F+Cl / ds-[g +N]-(zo+z0). (8.24)
0 30
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Since, in general

so+L U
C’l-/ ds-[gZ+N2]-(a:§+z§) < FO
30 0

(due to the contribution of the quadrupoles to the radiation damping) we find :
artarrtang = 2. (8.25)

This relation is known as the Robinson Theorem and in the absence of wigglers it allows
one of the damping constants to be defined in terms of the other two.

3) Taking into account also the influence of wigglers (i.e. the term Yk(s) ), an additional term
appears on the r.h.s. of eqn. (8.17):

Ji(s) = ——Q—ak - Ji(s) — A Ji(s) (8.26)
L 2
describing a nonlinear damping proportional J2. Thus the quantities d; can be interpreted as
nonlinear damping constants.
In our approximation (8.10) only dy for k = III (i.e. for the synchrotron oscillation) is
different from zero.

4) In order to optimize the design of the wiggler at a prescribed value of
di;r > 0

( drrr < 0 leads to antidamping) it is convenient to have a positive integrand in (8.14d), i.e.
one has to choose the sign of Ggs and Gpo and the local dispersion in such a way that the
terms Ggg-[D}+ Dy D3] and Gpo -[D? — Dy D?] in (8.14d) become positive at every position
within the wiggler 13 .

5) Equation (8.26) can be generalized if we calculate the derivative of the average < J; >
of the action variable Ji, using the Fokker-Planck equation (8.16).
Then we obtain:

d d
E < Jk(s) > = E_ // d.][d.]]]d]]][d@]d@[}d@]]} T W
L
0
= // d][d]]]d][][d@]d@[]d@]ll Jk—a-—W
S

= // dJrdJrdJr d®rd®rr d®rr - Ji

13Taking into account nonsymplectic third order radiation terms in the equation of motion (4.19) resulting
from bending magnets, quadrupoles, skew quadrupoles and sextupoles, we would obtain an additional integrand
in (8.14d) which takes positive and negative values around the ring. The contribution of these oscillating
quantities to nonlinear damping has been neglected since they have in practice the tendency to average away
by integration around the circumference of the ring. In principle the omitted terms could be included in a
straightforward manner.
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0 d;
X Z {——[(—QGI'JI—}-MI—_'J) W_*‘(Jl M, - W)]
=1 U 0J1 2 0J,

8 1 )
_— W = MW
0%, [’ 45, ' 8%y ”

= / ' / dJrdJyrdJ d®r d®; ddy - Ji

ds ow
x{—i[——Qak-JrW 5 CJEW — My - Jy - }}

ENA al
— /.../dJIdJIIdJIIId(I’Id(}IId@III
g W & w5 O
X -— ay - Ji - E ko ks aJk

[ d
X —2ak~Jk~P Zk J2 W+MkW]

d N
= —2ak-<Jk>—7’°-<J,;> + My (8.27)

(see also Ref. [2]).

In this equation there appear similar damping terms

2
—2a- < Jp > = —% < Jp >

and

_di
2
as on the r.h.s. of (8.26) and an additiona.l term M, due to the influence of quantum fluctuation

on the orbit motion (characterized by the function w(s) in eqns. (8.14b)). Thus the constant
M), which is proportional to % is a measure of the stochastic excitation rate of orbit motion.

C< JE >

6) Inspection of eqn. (8.16) shows that for the angle variables there is no analogue of the
coeflicients o which lead to damping of the action variables. Thus the angle variables are only
subject to diffusion and we can thus assume that the angles ®, are uniformly distributed in
0,27] (2]

7) In Appendix D it is shown that the damping behaviour of the beam characterised by
the linear and nonlinear damping constants can be modified by making slight changes in the
frequency of the accelerating fields and how the dependence of damping constants and bunch
lengths on frequency deviation may be computed.

8) Assuming that the phases &, are uniformly distributed (see Appendix E), the phase
space density function W becomes independent of the ®; and we may write:

1\ ..
W (Ji, &) = (ﬂ) W (I, I, Ji) (8.28a)
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k=I1I1I1 dJ

The relation (8.27b) has the form of a continuity equation:

a . 8
S w 2 g, =0
rRURIEDY a7,

k=II1,I1I
with

di
2

. g
i\sk:—2ak-Jk-W— ajk

Thus ¥, may be interpreted as a current density for the probability W.

9 Solution of the Fokker-Planck Equation

'JIZII'W—Mk'Jk'*W.

- ] . d .
—W = ¥ { [—2ak-Jk-W—Ek.Jf,I-W—Mk-Jk-

J -
—W
0Jy

In order to solve the Fokker-Planck equation (8.16) we make the ansatz:

W = wi(Jr, ®1) - wir(Jrr, @11) - wirr(Jrir, ®111)

and obtain

fork=1, II:
9 9 2 J + M, -J g
Js k BJk ay kW k k 8Jk k
d b M, 15}
—_— ——— - _——-—w
2%, | * 7 17, 8%,
and for k = JIT:
15} 0 d 2 d
_ — - hnd J - —
Bsw +8J[2a.]w+2 Jow+ M BJw
0 M 0
0P 4J 0%
with
w = Wiy ;
J = Jur;
® = P
a = agm
b = bur;
M = M]U

]} . (8.28b)

(8.29a)

(8.29b)

(9.1)

(9.2a)

(9.2b)



and
1 10+L
d = dpy = 3-01-5/ d5 - v,(3)
50

1
X {GQS (D} + D1 D?] + Gpo - 3 [3D,D? - Df]} (9.3a)
(see eqn. (8.14d) ) or, using the oscillator model (see eqn. (5.31)):
Q 1 e+l

1
d = 3.6 [T a5 {GQS (D} + DD+ Gpo - - [3. D1 D ~ D;‘]} . (9.3b)
K 50
We are only interested in the stationary distribution :
0
— = 0. 9.4
as "k (94)

In this case eqn. (9.2) can easily be integrated. One gets

fork=1, II:
2
wlf = Ck'eXP [——Jk—ﬁ(;—:] . (95&)
and for k= IIT:
2a d
= C. ~J = —-Jr. 1. 9.5b
w exp[ % 4M} ( )

Thus in these approximations the nonlinear wigglers modify the longitudinal phase space
distribution so that it is no longer Gaussian. The deviation from a Gaussian form depends on
the size of the integral in eqn. (9.3a) over the wiggler strengths and the dispersions. As has
been shown in Ref. [2], if d is large enough and positive the tails of the energy distribution
can be reduced.

Here the factor C} is fixed by the normalization condition :

2% oo
d@k/ d.]k"wk(.]k,@k) =1 (96)
0 0
which leads to
1 1
Ck = —-— for k:I, II (9.7&)
2 J
and
1 1
o= o (9.75)
with
N M
Jk = —k
2ak
1 so+L -
= —/ ds- |5 SDIP - w(s) for k=1, II (9.8a)
2ak 40



and

. o0 2a d
— . —J- = g2, for k=1II. 9.8b
J ; dJ - exp [ J i 4AIJ or ( )
Thus we have for W :
1 1 Jr .]1] 2a d
W(stat) _ - ex [ ( + = )] - ex [_J .- J2 s — . 99)
(27)3 JI i J P Jr o Jn P M aM (

In Appendix E it is shown that this solution is unique.

From eqn. (9.9) we obtain for the average < J, > of Jy (k=1, II, III):

2x

< Jp > d@k/ dJ - ’wk(.]k,@k) Ji

Jo for k=1, II;

- (9.10)
/ A7 - Joexp|-J- 2252 | por k=101
2 J P M aM
and using this result and eqn. (5.12):
27 2x 27 oo [e ) oo
< YmYn > = dd; de;; d‘I’Iu/ dJI/ CUII'/ dJrr
0 0 0 0 0 0

x WO T 84) - Gou(5) Gn(s)

]_ ]_ 2x 2x 2x o) oo fee)
= I S / dd dd / dJ / dJ / 47
(27()3 J] . JII . J 0 QI 0 II o IIr 0 I 0 II o IIr

X exp [— (ﬁ {H” - exp [—J 2 J?. i}

J T, M 4AM
< 2 Ve {ﬁkm(s) AL Drm(s) - 8+iq>k}
k=IIIIII
<X () e () etit
I=II1I1II
= 2- ) < Ji> Re{bgm o5}
k=III1III
= 2 > <Ji> -Re{vim- v} (9.11)
k=IIIIII

where the term < J; > is given by eqn. (9.10).

Furthermore, the density of the particle distribution in the (—p,—2—p.—6 —P,) - phase
space is given by :
P(E, Pay 2, Pz, 6, o) = WO - [det(T)| ! (9.12)
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where J denotes the Jacobian matrix (5.16).

But from eqn. (5.15) it follows that :

|det(T)] =1 .
Using then the relationship

Jr = [0 S g/?

w2y

which may be derived from eqn. (5.12) and (5.9), eqn. (9.12) finally takes the form :

1 1 JI JII)] [ 2a 2 d }
Z,Dey2,D2y 0, Py) = - — = exp|—{—=—+ — || -exp|-J-—=—-J* —
AZ:Po 2,505, 7) (2m) Jp-dpy-J P [ (JI Ju M M
1 1 r oz 1 VIR | )]
= c=——= exp|—||v]S =+ 1S gl —
(@m) Jr-Jn p[ (, r3 4 Jr 718 31 Ji
1 1 = 2(1 = d
“om 7P [‘ (anﬁ gl* - w7t o7 S gl* - W)J : (9.13)
For further investigations it is useful to adopt the special form of the eigenvectors vy in eqn.
(5.23) (—no synchro-betatron coupling) to decompose the orbit vector § into two subvectors
i(ﬂ) a.ndg‘/_:(a):

. i(ﬁ)
vy = ( :(a)) ) (9.14)
7

a transverse part (betatron oscillations):

i

7@ Pe (9.15)
Z

P:

i = (;) . (9.16)

- = (8)
[vk(ﬂ)]+§4 'y

and a longitudinal part (synchrotron oscillations)

Then one has:

for k=1, II;

(9.17)
6,5,-5 7 for k=1III

Jk:

and the density p(%, 3., Z, p,, &,P,) may be factorized as:

p(iaﬁmzaﬁz’5vﬁa‘) = pﬂ(iaﬁzvz,ﬁZ)'pa(&aﬁa) (918)
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with

- = (B
11 [ 165,57 1585, 5 7F]
= ~— exp | — < = ; (9.19a)
(27m)2 Jp - Ji l Jr I J

1 % d
- _ +Jz.
onf ¥ [ <J M 4M)]
1 2a d

= 2 a8, e S s, § ) 9.19b
— e |, § - s 71, (9.19)

Here pg(&, p., Z,p.) denotes the density in the transverse (%, #,, 2, B, ) - phase space (beta-
tron motion) and p,(5,p,) the density in the longitudinal (&, p,)- phase space (synchrotron
oscillation).

For the term |w,*S, § (a)lz appearing in (9.19b) one has from (5.23b):

aho ml) 1 . -2 22
|w, " S, 7 | _zﬁd'{[aa'0+ﬁa-p,] +cr} . (9.20a)
Using the oscillator model, this equation simplifies to :
B = (e), O K2,
. Sy § — =P +d’ 9.20b
55 - g e (9.20b)

where « and ) are given by (5.30a) and (5.31).
It follows from (9.19b) and (9.20) that the lines of constant density in the longitudinal
(¢, P-)- phase space are represented by the ellipse equation :

1
26,

The areas of constant density in the transverse (Z, ,, Z,P.)-space are investigated in Ap-
pendix F.

Finally we remark that from eqn. (9.19b) one obtains the energy distribution by integrating
ps(6,D,) Over & :

. {[aa G+ 8, .}30]2 + &2} = const. (9.21)

+ o0
be6) = [ d5 - pul5, )

Using eqn. (9.20b) for the oscillator model we get :

. +oo 2 Q [&2 _,
pe(Bs) = —/ dé - eXP{ TP @'P.;JFU]}

2
XeXP{ STy [QZ Pt ] } (9:22)
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10 Summary

As in Ref. [2] we have investigated the influence of linear and nonlinear radiation damping
and quantum fluctuations on the motion of charged particles in storage rings by using the
Fokker-Planck equation. In this treatment we have shown how to include closed orbit distortion,
pointlike rf cavities, transverse coupling due to skew quadrupoles and solenoids, all within a
6 x 6 symplectic dispersion formalism.

A number of approximations have been used which were mentioned explicitly in the text.
However, it is clear that quadrupole-sextupole and octupole- dipole wigglers could in principle,
and if used in sufficient quantities, modify the tails of the longitudinal phase space distribution
so that these would no longer be Gaussian. Clearly, in a realistic evaluation of the utility of
nonlinear wigglers in a real storage ring the effect of the various approximations would need to
be considered in more detail and the effect of closed orbit deviations on the damping should be
included. Naturally, it would then be necessary to consider the nonlinear Hamiltonian motion
and the stochastic radiation effects in the nonlinear fields.

One of the original reasons for considering [2] these wigglers was that they could perhaps
reduce spin depolarization effects by reducing the energ gy spread. They could have other uses
[2].

In this paper we have only considered the case of ultrarelativistic particles. In order to
study the case of arbitrary velocity one would introduce the variable o = s — vo-t (vy =average
speed of the particles) as described in Ref. [25, 9]. But for nonrelativistic particles the radiation
effects could be neglected.

Finally we remark that the classical spin motion in linear approximation could be easily
incorporated in our dispersion treatment in analogy to the investigations in Ref. [1].

Appendix A: Description of the Electromagnetic Field

Using the freedom to select a gauge, we can choose any vector potential which leads (via
eqns. (2.8) and (2.9)) to the correct form of the fields. Suitable vector potentials are as follows
and have been chosen for their simplicity [6].

A.1 Bending Magnet

If the curvatures K, and K, of the design orbit are fixed, the magnetic bending fields on
the design orbit, B)(s) and B()(s):

BI(s) = B,(0,0,s); (A.la)
BO(s) = B,(0,0,s) (A.1b)
are given by (with s =¢) :
€
—.B = _g, - A2a
=5 , (4.22)
€
— .89 = 4K, . A.2b
7B + (A.2b)
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The corresponding vector potential can be written as

1
E%-A,': —5(1+K2-2+K,~z); (A.3a)
A, = A, =0. (A.3b)
A.2 Quadrupole
The quadrupole fields are

B, = =z (03,) ; (A.4a)

B

oB

B, = z- ( Z) , (A4b)

61} z=z=0

—

A, = (8£ - z —:132) ; (A.5a)
A, = A, =0. (A.5b)

In the following we rewrite the term (e/Ey) - 4, in (2.2) as:

1
A — .. 32 _ p2 ; A6
Eo 59 (2% =27 (A.6a)
e JB
= —. z . A .6b
g EO ( B(E )z:zzﬂ ( )
A.3 Skew Quadrupole
The fields are
1 B oB
- . :_ il .- A7
Be 2 ( 0z Oz )E:FO T (A-Ta)
1 0B oB
B, = Z. A -z, A.7b
: +2 ( 02 62 )rzz—o ? ( )
Thus we may use
o
A, = _L1(2%5. 95 Tz ; (A.8a)
2\ 9z dz R
A, = A, =0, (A.8b)
and we write
EiOA’ = N-zz; (A.9a)
N = L. e (9B 9B (A.9b)
2 FEy \ Oz 0z om0



A.4 Sextupole

0’8,
B, = ( 522 )zzz:o ‘Tz (A.10a)
’B 1
B = z (2 = 2 A.10b
= (5F)ees (A.10b)
so that
Ry -A l(zs — 3z2%) (A.11la)
E, 6
with
e 8’B
A= —- = . A.11b
EO ( 3232 )z:z—o ( )
A.5 Octupole
1 {38, 5
B, = 5 ( o )xzz:o (2* = 32%2); (A.12a)
1 (838,
B. = 6 ( 0z3 ),,:z:o R ()
so that
Zo4, = i 1 (z* — 6222 + z*) (A.13a)
E, 24
with
e 8B
= —- ~ . A.13b
S ( 823 )m:o (4.13b)

A.6 Solenoid Fields

The field components in the current free region are given by [6, 26]:

B.(z,z,8) = =z- i bays1- (2% + 2B ; (A.14a)

¥=0
B.(z,z,5) = =z- f: bovir - (22 + 22 (A.14b)

v=0
B,(z,z,s) = i bay - (22 + 22)” (A.14¢)

v=0
where for consistency with Maxwell’s equations the coefficients b, obey the recursion equations:
baia(s) = g Bale) (A.15a)
1

bat2(s) = by, +1(8) ; (A.15b)

+(21/+ 2) " U2p 41
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(v=10,1,2,..)
and where
bo(s) = B,(0,0,s) . (A.16)

The vector potential leading to the solenoid field of eqn. (A.14) is then:

A (z,2,8) = —z- ,,Z_:O 2172 “biny(s) - ™ (A.17a)
Az, z,s) = ) . A.17b
(2159) = 2 ¥ s ha(e) 0 (A7)
A,(z,z,8) = 0 (A.17¢)
with
r? = g? + 22,
Thus we can write:
1
S A = —H(s) - z4+ -H"(s) - (22 +2%) -z + - (A.18a)
E, 8
1
S A = +H(s) -z~ -H"(s)- (22 +2%) -z +--- (A.18b)
Eq 8
with
1 e
1 e
= —--—B,(0,0,s).
> E (0,0,s)

Note that the cyclotron radius for the longitudinal field (A.16) is given by

A.7 Correction Coil

(A.20)

so that

— A, = — - 6(s — s0) - [AB, .z — AB, - 1’] . (A.21)
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A.8 Cavity Field

For a longitudinal electric field

& = )
£, = 0; (A.22)
& = &(s,0)
we write:
A, = 0;
A, = 0; (A.23)
4, = /”da £(s,5)
)
which by (2.8) immediately gives &, .
Now the cavity field may be represented by
. . 27 '
E(s,0) = V(s)sin [h ot @] (A.24)
and using (A.23) we obtain :
L 2
,:—Zw.h-V(s)-cos[h-%-a-%-go] , (A.25)

in which the phase ¢ is defined so that the average energy radiated away in the magnets is
replaced by the cavities and A is the harmonic number.

Appendix B: Solution of the Equations of Motion; Thin
Lens Approximation

B.1 Using the Variables z, p,, z, p,, o, Po (Oscillations Around the
Design-Orbit)

When written in thin lens approximation (excluding the solenoid case) the transfer matrices

of eqn. (2.48), M + éM, defined by :

( 7 (s +1As/2) ) (M4 6 ( ¥(s — As/2) ) (B.1)

may be written in the form:

A A
M(s—%—TS,s— s)+6M (s+—



ém;, = are the non-symplectic elements due to the matrix §4 which contains

dissipative terms

and

Mp = transfer matrix for a drift space .

The thin lens matrices m, ém are then given by :

1) Quadrupole:

2) Skew quadrupole:

3) Bending magnet :

my = —g-As;
Mgy = —M21 ;
m67 prsaan _Cl 'gz . (22+22) '(1—+—277)'A3 . (B'2a)

my; = N-As;

T4 = M2z,
mer = —Cp-g°- (:c2+z2) (14 2n)-As. (B.2b)
My = -Kﬁ - As
mye = K,-As;
my = —KI-As;
mye = K, -As;
ms; = —K_,-As;
msy3 = —K,-As;
mer = —Cy-(K;+ KI):As;
émey = —Cp-K2-As;
bmes = -C; - Kf - As
bmeg = —2C, - (K2+ K?)-As. (B.2¢)

4) Combined function magnet :

bmgy

6m56

—[Kf-}-g}-As;
K. -As;
— [K?—g] - As;
K, As;

—C1 - {(K2+ K2+ g% [2* + 2% - (1+ 2n)} - As ;

~Cv- |[K2+2G3] - As

~Cy - [K2-2GY)] - As;

—2C,-(K2+ K?)-As . (B.2d)
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5) Cavity :

eV 2n
Mgy = E—-h — - COoS P ;
0
eV
Mer = E— TSN @ g
0
eV
dmy, = g sing;
0
14
dmyy = _eE_ -sin ¢ . (B.2e)
0
6) Sextupole:
1 2 2 )
My, = 5)\(3)-(: -z )~As,
myr = A(s)-zz-As. (B.2f)
7) Dipole correction magnet :
2
bmes = —20C, - (Ei) (AB.)* + (AB.Y] - As ;
0
e \?2
mer = —C, - (E—o) (AB.Y + (aB,Y] - As . (B.2g)
8) Quadrupole - sextupole wiggler :
ma = —g-As;
M43 = —M2 ;

1 2 2 )
Mgy = 5/\(3)-(2 —:z:)-As,
myr = A(s)-zz-As;
mer = —Cp-g°. (1:2+22) (14 2n)-As
—01 . GQS . [23 + 222] . AS . (BZh)

9) Octupole - dipole wiggler :

e
= —Z AB,-As;
Moy EO S
e
= — AB, - As ;
Myy +E0 s
2
mer = —C - (i) (AB,)* (1 + 27) - As
E,
1 .
—-C,-Gpo - 3 [3 zz% — :::3] -As . (B.2i)



10) Solenoid (for which we don’t use a thin lens approximation but instead consider the
transfer matrix for thin slices over which the field H remains constant):

M, = % (14 cos20) ;
M, = —l— sin 20 ;

2H
M, = l sin 20 ;

2 .
M, = % (1 -cos20) ;
My = —-H- % sin 20 ;
My = My
My = H-%(l—cos2®) :
My = My
My, = —M;;
My, = —My;
M3, My, ;
M, M12 3
My = —May;
My = —Mys;
My = My
My = My
Msys = 1;
Mes = 1;
Mz = 1;
M, = 0 otherwise (B.2j)

with ®© = H.As and H constant over the intervall As .

(Equation (B.2j) is valid also for a solenoid field of arbitrary length if H is constant across the

whole length.)

The determining equations of the closed orbit 3,(s) (see eqn. (3.2a,b)) now read as:

170(50 + L) = {M(so + L, So) + oM (50 + L, 30)} YJ’O(SO) = 50(50) 3 (B.3a)
(periodicity condition) ;

Yo(s) = {M(s,50)+ 6M(s,50)} Fo(s0) - (B.3b)

Since eqn. (3.2a) is nonlinear, it must be solved iteratively.
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B.2 Using the Variables z, 5,, z, P:y 0, P, (Oscillations Around the
Closed Orbit)

The linear part of eqn. (3.3) reads as:

d . —

—y = A-g+6

ds Yy a4y
For the resulting transfer matrix

_ As As _ As As
M —_— 5 - — oM —, 5 — —) =
(s -+ 5 s 5 ) + oM (s + 5 S 5

N
@

(B.4)

Hp (54 500) {1+ () + (@)} B (6 - 22) |
(G k=1,2---6)

(where the quantities 7, are the non-symplectic elements due to the matrix 64 which con-
tains dissipative terms and M, = transfer matrix for a drift space), one obtains:

1) Quadrupole:

My = Mgk g
bmg = ‘201‘92'20'(1+2U0)'A3;
bme; = —ZCl-gz-zo-(l+2n0)'As;
omes = —2Cy-¢°- (22 +22). As. (B.5a)

Thus a closed orbit deviation in a quadrupole produces damping effects similar to those in
a combined function magnet (eqn. (B.2d)).

2) Skew quadrupole :

My = My ;
6Th61 = _2CI‘N2'230'(1+2T70)'AS;
bmgy = ~2CI-N2-z0~(1+2no)-As;
bmes = —2C;-N?-(22+22).As . (B.5Db)
3) Bending magnet :
My = Mg ;
57’71,‘]: = 6mz~k . (B5C)

4) Combined function magnet :

Mike = My ;

dme, —201-92-2:0-(1+2770)-As;

omes = 5m63*2c1'gz-zo-(1+2no)-As;

6mee = émge —2C; - g2 - (23 +23)-As . (B.5d)

67’77.61
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5) Cavity :

M = My ;
5T7lik = 6m,-;: .
6) Sextupole :
Thgl = —A- Zg * As N
’ﬁL23 = —+'/\ *Zo - AS N
My = +Ma3;
Mgy = —Mg .
7) Dipole correction magnet :
e\’ 2 2
67’7166 = =2 C] ’ (F) [(ABZ) + (ABZ) } - As .
0

8) Quadrupole - sextupole wiggler :

M2y
23
my;
My

67’7’2,53

5m66

9) Octupole - dipole wiggler :

dmMey

6ﬁ1,63

6m66

11) Solenoid:

= —[g+XA-zo] As;

= A-zg-AQs;

= +mas ;

= —Mmy ;

~2C1- g% 2o+ (14 2m0) - As

—CI-GQS-[3$§+z3]-As;

= —=2C,-¢% 2z -(1+2m) - As
—C1 - Gos - 22029 - As

= =2C,-¢°- (22 + 23 As.

= ——CI'GDo'[ZOz—CBg]'AS;
= —C,-Gpo - 2zpzg-As;
€

2
= =2C,-|—| (AB.)?-As.
“ (Eo) (AB.)"- As

My = My .

61

(B.5e)

(B.5¢)

(B.5h)

(B.51)

(B.5Kk)



These matrices are those used in the standard thin lens version of SLIM.

The sympletic part M of the whole transfer matrix (M + 6M) is needed for a calculation
of dispersion.

The nonsymplectic part §M can be used to calculate the linear damping constants within
the framework of the fully coupled 6 - dimensional formalism [1].

B.3 Using the Variables z, p,, %, 5., ¢, p, (Oscillations Around the
Dispersion - Orbit)

In order to calculate the eigenvectors v} (see eqn. (5.9) ) we need the transfer matrices due
to eqn. (5.1):

[~

i = g (B.6)

& &

with A given by eqn. (5.18) (oscillations around the dispersion - orbit).

Writing :
~ As As
(e 3a-2) -
M {5+ 5 S 2
. A - As
8y (s+50s) L+ ()} Lo (55 - 57) 5
(1,k=1,2---6)
we get :

my, = my for (i,k:l,z...4);

mse = —[K, D+ K, D] -As;
Vo2
Mes = ;—0 k- Tﬂ - Cos @ (B.7)

with V defined in (B.2e).

The nonsymplectic component of the whole transfer matrix resulting from the term 64 in
the equation of motion (4.19) reads as:

- A A -
50 (s+75,s——2—s) — 64 As (B.8)

with 64 given by (4.23). This matrix can be used to determine the linear damping constants
(see Appendix C).
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Appendix C: Perturbation Theory and Damping Con-
stants

C.1 Introductory Remark: Two Methods for Calculating the Linear
Damping Constants

In chapter 8 we have derived an analytic expression for the damping constants oy of the
(coupled) synchro-betatron oscillations (see eqn. (8.19) ). This expression allows the calculation
of a, if one knows the eigenvectors v,(s) of the unperturbed problem (5.1) and the matrix
elements §A4;; of eqn. (4.23).

On the other hand, A. Chao [12] calculates the damping constants by using the eigenvalue
spectrum of the revolution matrix

M(so + L,so) + 5M~(So + L, so)

of the perturbed problem
g = (A+64)-§. (C.1)
This matrix with the perturbation part (51&_?(50 + L, sp) is not symplectic in contrast to
M(so+ L, So) .
Therefore, writing the perturbed eigenvalues (\x + 8);) in the form (see eqn. (6.16)):
A+ Xy = e 2m(Qr + 6Q4)

one will generally obtain complex values for the Q-shift §Q; caused by the perturbation §A.
According to A. Chao [12] we put

ar = —27-Sm{Qi +6Qx}
= —27-Sm{6Q:} . (C.2)

The purpose of this appendix is to show the equivalence of (8.19) and (C.2).

C.2 Equivalence of the two Methods
C.2.1 Calculation for the Perturbed Part of the Revolution Matrix

In order to prove the equivalence of the two methods mentioned above we determine the
perturbation part § M (so + L, so) of the revolution matrix (of the perturbed problem).

According to eqn. (C.1) the transfer matrix
M(s,s0) + 6M(s, s0)

obeys the equation :

| &

; [M(s,50) + 6 M (s,50)] = [A(s) + 6A(s)] - [B(s, 50) + 8M(s, 50)] ; (C.3a)
M(é‘o, 50) + 5A_~I(So, so) = 1. (C.3b)

Q
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Takinginto account the corresponding equations for the unperturbed transfer matrix ﬂ(s, So):

d - - -
IM.(S’SO) = A(S)'M(S,SO) )
s
M(SO) 50) = l
we obtain from (C.3), to first order, the differential equation for M (s, S0):

d - - . - -

T 0M(s,50) = A(s)-6M(s,s0) + 6A(s) - B(s, 0)
s

with the initial condition :

5&(30’30) = Q .

The solution of this equation (and thus the first order solution of eqn. (C.3)) reads as:

SM(s,s0) = d§-M(s,§)-6_/i(§)~M_(§, S0)

For the perturbative part §M (s, + L, so) of the revolution matrix one therefore gets, to
first order, the expression :

so+L ~ ~ ~
§M(so+ L,s) = / di - M(so+ L, 3) - 6A(5) - B1(3, so

~—

- so+L -
= M(so+L,so)-/ di- M
50

and for 6M~(s + L,s) one thus may write:

6M(s+ L,s) = M(s+ L,s)-/’+L ds- M (5,5)-64(5) - M(,s) . (C.4b)

Remark:
Writing :
i = sm” +6m® s 4.
and
s = a1,

whereby 6M(V) denotes the v** order in §4 of §M, we obtain from (C.3a,b) forn > 0[27]:

d _~(n
__5M( +1)

d (s;50) = A(s) - 6M"™*V(s,50) + 64(s) - 6M™(s, 50) ;
S

5M(n+1)(30, 50) =0
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with the solution:

~ (n+1)

oM (s,80) = A_}(s,so)-/’d§-_ﬂ:4_

In particular we have:

(1)

621 (s, 50) = M(s,so)-/:o‘diﬂ (5, 50) - A(5) - 6HL(5, 50) -

The matrix §M used in (C.4) is identical to 5M:_(1).

C.2.2 Perturbation Theory

Equation (C.4b) determines the perturbed part §M(s + L, s) of the revolution matrix if
the (unperturbed) transfer matrix M(3,s) and the perturbation 6§A(5) are known. Using the
eigenvalue equation

(M~+6M~)'(6#+66#) = ()‘u+6’\#)'(6#+67?#)§
(,u::tf, +11, :}:III)

or (since Mﬁu = A,7,)

M -6, +6M -5, =)\, - 63, +6)\, -7, (C.5)

we can calculate the Q-shift

?
0Q, = <0 C.6
Qe = 56\ (C-6)

caused by §M (22, 28].
For that purpose we expand év), in terms of the eigenvectors v, of the unperturbed problem:

6V, = D a,, - U, (C.7)

and by inserting (C.7) into (C.5) we get :

Do AT A M T, = A Y @b, 8N, T, (C.8)

Multiplying this equation from the left hand side with

1
lts
1

and taking into account eqn. (6.28) we obtain

1
Aun * ’\n - 'T'{;:iin +

~ 1
—vrS-6M -v, = Ay @~
1

pr
1

S5, 6 (C.9)

1 . 1
= J:Lg.vn + 6An T
1 1

with

- +1 fork=1, 11, IIT ;

1
— . + v —
;e S { ~1 for k= —I,—II,-III .

(C.10)
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For k # p the expansion coefficients are given by (see eqn. (C.4)):

pK

1 1 1 -
G = (—.v“:&a) - IS B - (s)
1

Using the symplectic condition of the transfer matrix M_(s,,sz):
. T -
M (31732)'§'M(51752):§

and the equation

{tn

() S M(s+ Ls) = 52(s)- (Mo + L,s)]"

0 (5)- S M(3,s) | (C.11)

a,. can be rewritten as:

K

1 s+L .
x> / ds - 5 (5)- S - 6A(5) - 5.(5) (C.12)
so that the perturbation v, of v, is given by (see eqns. (C.7) and (C.12)):

1 A
Si(s) = ¥ (jirsa)
# iy V1 Ay — A

[T a w6586 06)] -

+a,, - v,(s) . (C.13)

Here the coefficient a,, remains undetermined but can be determined to first order by using
the normalization condition (6.28) applied to the perturbed eigenvector v, + év, :

[0u(s) +89,(s)]" - S+ [T(s) + 80,u(s)] = () S~ Tuls)
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with év, given by (C.13) which leads to:
0 = 61}:(5) -ﬁ-ﬁ,‘(s)—f—ﬁ"L(s)-ﬁ-éiﬂ(s)

= (@t a,)- [57(s) 5 5,(5)]

- Ay =19,

where ¢, is an arbitrary real number. This is consistent with the fact that one can multiply
an eigenvector v, with an arbitrary phase factor e*» without disturbing the normalization.
Without loss of generality we may set :

=90.

Pu=0 = a,

For 4 = & the first terms on both sides of eqn. (C.9) cancel and one obtains with (C.4),
(C.6) and (C.11) the following approximate expression for the Q-shift §Q, in linear order :

1 1 . 3
6Q. = (f'ﬁiﬁx)' TS 6M(s+ D, s)- i.(s)
) 2m - Ag

1 1 ~
= (—,-WSUK)- i S-M(s+ L,s)
) 21 A,

x /"+L ds - M (3,5) - 6A(5) - BL(5, 5)5,(s)

= (1 *5*) /'+Ld~ 0T (3)-S-64(5)-7.(5)
= |=--vrfSv, ey §-07(35)-S-8A(8)- v,

1

1 - 1 so+L -, o,
= (zearsa) [T a5 846) - 0.09)
1 2m r]
(in the last step we have used the fact that the integrand is a periodic function of period L; see

eqn. (6.22)).
or for k = k and k = —% (k==+1,+I1,+1II):

1 so+L -
Q) = 2—-/ d5 - 5H(3)- S - 6A(5) - 0u(3) ; (C.14a)
T 30
1 s0+L ~
6Qur=—o—- [ 5 5,(5) S - 6A(5) - Tu(d) - (C.14b)
Kig 50
Using the facts that:
1 + 1 so+L . .
6Q, = (—. . 1?*56&) —/ ds - [6*(5) -S-6A(5)- vn(.s’)}

" Cor

as well as



the following relations can be derived from (C.14a,b):

Re(serh = - [ di ) [s-6d0) - 687 - 5] -

o
= —Re{6Q_i}; (C.15a)

1

Sm{60:} = -—4_7;-/’;"“015.7;;(;)-[5-54”(&)+5AT(5)-§]-5k(5)

= +Sm{6Q_,} . (C.15b)

This means that in addition to a real Q-shift, there is also a complex Q-shift, and comparing
(9.18) with (C.15) we find the desired result that the two methods mentioned at the beginning
of the appendix are equivalent. Equation (9.18) allows the calculation of the damping constants
simply by a numerical integration if one knows the eigenvectors of the unperturbed problem
instead of calculating the eigenvalue spectrum of the perturbed revolution matrix necessary for
evaluating (C.2).

Finally it is worth mentioning that the applied perturbation theory is only valid if 6§}, and
6v, are small compared with the unperturbed quantities A, and v, :

Ié’\p' < ’/\#I;

l6vull < gl -
Therefore, in order to apply this kind of perturbation theory the following condition must

hold (see eqn. (C.13)):

[ s 55 5640 5,09) | < 1A - Al

This condition is well satisfied if the values for different Aus A are far apart. However the
calculation breaks down if two eigenvalues coincide :

Ap = e L 2mQu Ao = e 00 2mQw Q—Qw=mn
or
/\k — e—i . 27er ~ )‘—k' — e+7, . 27'er; — Qk + Qk' —n

(n=integer).
Since these Q-resonances can lead to instabilities of the particle motion we do not investi-
gate these effects in this report.

Remark:

Replacing in (C.1) the perturbation matrix §A by the matrix AA (as defined in eqns.
(4.15b) and (4.17b) ) we obtain the result that the Q-shift induced by AA, i.e. by dispersion
in the cavities, is given by :

1 so+L . .
AQy = oy / ds -9 (s)-S - AA(s) - T(s) ; (C.16)
s 30
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(k = I, IT, ITT).
The term AQ; is a real number because of eqn. (4.26).

Appendix D: The Dependence of Damping Distributions
on R.F. Frequency

Using the relation

c = s—ct,
the cavity field in eqn. (A.24):
. 27 :
& = V(s)sin [h-f-o—kgo] (D.1)
can be written in an alternative form as:
& = V(s)sin {h-?w%—w,ft%—(p] (D.2)
with
h-ons (D.3)
” = Y g .
w. f L

defining the design frequency of the cavities in a storage ring of length L.

It has long been recognized that the damping behaviour in electron storage rings can be
modified by making slight changes in the frequency of the accelerating fields [29, 30], and the
aim of this appendix is to show how frequency shifts can be incorporated in the equations of
motion (2.48) (see also Ref. [31]) when each magnet is represented by a set of thin lenses
separated by straight drift sections.

If the 1.f. frequency is slightly changed from w,; to wys + 6w,y but the cavities remain
in their usual positions, particles moving in the straight sections become progressively out of
synchronisation with the common phase. In this case the voltage seen by the particle may be
written as:

£ = V(s)sin h-27r%—(w,f+6,.f)t+<p . (D.4)
Defining
~ 6wrf
o = 00— (1—0’) (DS)
Wr g
we obtain:

(D.6)



Thus the r.f. phase at a cavity is now given in terms of the new quantity ¢ differing from the
6&),.}
Wr g

simple bunch length variable by the term [s —a].

In addition we may write :

dé do  bw, do
7. 29 s |90 (D.7)
ds ds W f ds
so that in first order the equation of motion for & reads as:
o _ do_bwy (D.8)
ds ds Wy ¢
The complete equation of motion (2.48) then has to be replaced by :
d — — — —_ = — - - — — -
ds VA YHSA -4+ 80+ + Cqua + Crga + Cren + Gy + 66 (D.9)
s
where we have replaced & by .
This equation contains an additional inhomogeneous term:
=T (Sw,f
& = (0,000 %% g (D.10)
Wr s

resulting from eqn. (D.8) and it induces a closed orbit shift.

As described in chapter Bl of Appendix B, the new closed orbit may be found by using
the thin lens approximation. In this study, where all optical elements where divided into a

sufficient number of thin lenses, the only modification to the 7 x 7 matrices given in chapter
Bl is to put

Mgy = — -1 (D.ll)

Wy ¢
for drift spaces of length I. Since all other elements (thin lenses) have zero length, their ms;,
elements remain zero. This merely expresses the fact mentioned above that in this thin lens

approximation it is in the straight sections that the particles loose synchronism with the r1.f.
phase.

The oscillations around the new closed orbit can be calculated by the analysis described
in sections B.2 and B.3 of Appendix B. These chapters remain valid and may be taken over
completely.

Appendix E: The Essential Uniqueness of the Fokker-
Planck Solutions for Large Times

The following considerations are based mainly on a method outlined in Ref. [15]. The
difference between our treatment and that of Ref, [15] lies in the use of different boundary
conditions.
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In order to investigate the asymptotic time behaviour of the Fokker-Planck solutions we
first introduce the abbreviations

(1,22, 23,24, 25,26) = (J1, Jiny Jrir, @1, @11, @111) (E.1)

so that the Fokker-Planck equation (8.16) can be written in the form:

ow 6. 08 6 o*
— = {—-Y — L. — L2 W E.2
Os { ; oz; ° + Z_:l Oz, 0z; ]} (E-2)
1= 1,)=
where
(Lla LZ, L-’.’c’ L4, L5a LG)
1
= (=2arJr+ My, —2a;;Jrr+ My, —2apr i + My — 50«’111 -J%1, br, bin, brrr) (E3)
and where
Li; = &; - L, (E.4a)
with

(Ely f’27 Eih E‘h -z57 -EG)

(E.ab)

M, M My
= (JI'MI, Jir - Myp, Jpp - My, =%, =2 ! )

4J; 4Jy 4Jir

From eqns. (2.22), (2.47), and (8.14b) it is clear that the diffusion matrix ((D;;)) is positive
definite which is connected with the positivity of the radiative energy loss of the electron. We
will need this property later.

We now introduce the Lyapunov functional '* of W with respect to another special physical
solution Wy 1® (W; is assumed to have no zZeros):

. w
H(s) = /Vds:c-W-ln(Wo)
= /dﬁ:c-W-[an—anO] (E.5)
v
(V denotes the action - angle phase space).

Defining the quantity

R = (E.6)

w
W

and using the relation (R > 0)

R
R-lnR-R+1 = / de-lnz > 0 (E.7)
1

"sometimes called the 'relative entropy’

1*A solution W of the Fokker-Planck equation (8.16) is called physical if it is normalized and nonnegative
and if the moments of Jy, Jy;, Jr1; with respect to W are finite.
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as well as the normalization condition for W and Wy :
/Vd% W= 1 (E.8a)
/V &Pz W, = 1 (E.8b)
we obtain the inequality :
fi(s) = /Vd% ‘W -lnR
- /Vdﬁ:c'[W-lnR—WnLWO]
- /Vd%.WO-[R-lnR—RH]Zo, (E.9)
l.e. H(s) cannot have negative values.

For the derivative

g -
— H
Os (s)
of the Lyapunov functional we get :

8 . ] ) 1 2 1 0
— H = = . = = W= — . W
5, H(s) /de {(as W) InR+W [ o W Bs o]}

- /Vd%-{(a% W) -InR—R-(% WO)}+56; & w
/Vdﬁ:c-{(%W)-lnR—B%(%Wo)}. (E.10)

Using eqn. (E.2), the first term on the r.h.s. of eqn. (E.10) can be written as:

i

. (8 p 5. 9 5. 2
dz-|—W)| -InR = -InR-{— L, L+ W
J, (35 ) " y 25, +i§162;831 ’
= [ w I+ S 22 g
Y = it Yoz, | dz;
= [dew sy p, 0 (LR
I ¥ z_; ’+.Z_: Yoz, R Oz;
1= 1,7=1 7
w 6 6 d | OR
= [, L
v TR {; +,~,,Z J@:cj}c'):c;




18R 10R
~few Y gy Roe Rom,

1,7=1
0
6
AdﬁR( 0)
10R 10R

-—— . (E.11
/dﬁz w- ZL” R(?:c,- R Oz; ( )

1,7=1

To carry out the partial integration we have used the fact that W and W, are periodic
functions in &, (k = I, II, IIT) with period 27 and that the probability currents (see eqn.
(8.27b)) of W, i.e.

6
3 Z ai (i=1,2,3) (E.12)

and of Wj associated with the action variables J, (k = I, II, IIT) vanish for J, = 0 and
‘]k — OO.
Equations (E.10) and (E.11) lead to

S0 = - [aewe o ()] ()] e

1,7=1 *

Now, since the diffusion matrix ((D;;)) is positive definite we have

(;93 H() < 0 (E.14a)
if
2{3‘1.- [%]}2 70 (E.14b)

Hence from eqns. (E.9) and (E.14) we have:

lim [ai,- (%)] ~ 0 (E.15)

(otherwise H(s) would decrease below 0).

From (E.15) and using (E.9) we can finally see that the two solutions W and W, must
coincide for long times.

Choosing for W, the solution (9.9), we obtain the result that the stationary distribution
(9.9) is unique.

Note that Wy given by (9.9) is in fact nowhere vanishing so that the assumption made after
(E.4) is allowed.
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Appendix F: The Areas of Constant Density in the Trans-

verse (I —p, — Z — p,)- Phase Space
F.1 The Four- Dimensional Ellipsoid

We look for the areas of constant density in the transverse (€ —p, — Z— p,) - phase space.
From eqn. (9.19a) we obtain :

p(&,Pz, 2,p.) = const
J J

= 7 = const. (F.1)
Jr Jir

The variables J; and J;; may therefore be parameterised as :

VJr = a-cosy-VJr;
\/J]] = a-sinx~ j]]
and it results from (5.16): '
i (six,61,6) = ayTr - cos - [61(5)(5) i1 4[58 (5] - - 6—15,]
+ ayJp-siny - [ﬁIgﬂ)(s) cetrr [7,%(s)] - -e_w”} . (F.2)

Equation (F.2) defines a four- dimensional ellipsoid in the (€ — p, — Z — p.)- phase space
[28, 32] which is periodic with period L [28] as may be seen by using eqns. (5.3) and (5.7):

= (B) = (8B)
§ (s+Lix,6n,6m) = §° (s;x,61 — 27Qr, 611 — 27Qy1) .

By a decomposition of the vectors

a VI 5P k=1 1D

into a real and imaginary part :

/5 o 1 .. ..
a- JJ'UI(m = 5'{1/1—2'?;2],
= r .. ..
a'VJII'vI(Iﬁ) = 5'[?/3*1'3/4]
eqn. (F.2) takes the form:
= (8) - ’ - .
¥ (s;xy01,611) = cosx- [91(s) - cos b7 + ¥a(s) - sin &;]
+ sinx - [¥3(s) - cosérr + ya(s) - sinéyy] . (F.3)

It follows from eqn. (F.3) that the motion of this ellipsoid under the influence of the external
fields can be described by four generating orbit vectors gy :

u(s) = ME) (s,50) Tuls0); (1=1,2,3,4). (F.4)
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Combining these vectors into a four-dimensional matrix B(s):

B(s) = (7(s), 52(s), 9:(s), 7a(s)) (F.5)
one has [32]:
B(s) = M{),(s,5.) B(s.) . (F.6)

This "bunch -shape matrix”, B(s), now contains complete information about the transverse
configuration of the bunch which can be obtained by projecting the ellipsoid (F.3) on the
individuel phase planes [28, 32] as shall be discussed in the next chapter.

F.2 The Projections of the Four - Dimensional Ellipsoid. Beam En-
velopes

In order to determine the projections of the four- dimensional ellipsoid which characterize
the beam envelopes [28, 32] we first of all write eqn. (F.3) in component form :

E(s;x,61,611) = cosx - [yn(s)-cosér+ ya1(s) - sin ;] +
siny - [y31(s) - cosbrr + ya1(8) - sin éyg] ; (F.7a)

Pe(8iX,61,611) = cosx - [y12(s) - cos &1 + ya(s) - sin br] +
sinx - [y32(s) - cosérr + yaa(s) - sin &pg] ; (F.7b)

Z(s;x,61,611) = cosx - [yi3(s) - cosé; + Y23(s) - sin é7] +
sinx - [y33(s) - cos 11 + yaa(s) - sinéys] ;5 (F.7¢)

555081, 611) = cosx - [ynals) - €051 + ysa(s) - sin 1] +
sinx - [y3a(s) - cos 81 + yaa(s) - sinédyy] . (F.7d)

The computation of the single projections is then similar to that in Ref. [28] in which the
functional relationship between pairs of components was investigated.

Since the details of the method have already been given in Refs. [28] and [32] only a
summary will be needed here.

1) Projection on the z — z plane.

We first investigate the projection on the z — z plane. This describes the beam cross section.
We will need the maximum amplitude in the = and z directions.

a) Maximum oscillation amplitude in the z direction:
Using the relation

Mazs {A-cosé+ B-sind} = VA? + B?
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and eqn. (F.7a), the largest possible # amplitude is

Maz(y5,,5,1) (55 X1, X2, 61,611, 6111) = \/Z/f1 + 3 + Y5+ vh

= E.(s). (F.8)

This occurs for the values:

Y1 . Y2

cosby = ——=———; siné; = ——

vV yfl + y%l vV y?1 + y§1
cosby = yu ; sindy; = yu ;
I = = I =

Vi + vk Y3 + 5

Y yfl + ?/%1
o cosy =

;
Vv v+ v+ v

Y ygl + y§1

siny = . (F.9)
\/yfl +y5 + ¥ + v

The corresponding 7 -coordinate is given by eqn. (F.7c¢) together with eqn. (F.9):

1
G, = m Avi1 Y13 + Y21 - y2s + Y31 Y3z + Ya1 - Ya3} - (F.10)

b) Maximum oscillation amplitude in the z direction :

Correspondingly, the maximum amplitude in the z - direction is obtained from (F.7¢):

Maz(y s, 6,1) 2(85 X1, X2, 61,611, 6111) = \/ny + 33 + y3s + yis

= E.(s). (F.11)
The accompanying # -coordinate is then :

1

G, = E.(s) Ay11  vis + yar - yas + Y31 Y33 + Ya1 c Yaz} - (F.12)

Thus
E:c : sz = EI. ) Gzt . (F13)

c) The boundary curve of the beam cross section.

The projections of the ellipsoid (F.3) are ellipses, and these are described by the three
independent quantities E,, G,,, E,. The parameter G,, depends on the other three (see eqn.
(10.24) ). In terms of E,, G.., E., the ellipse can be written as:

E?-3* - 2E.G,, i+ E}-3* = & (F.14a)

Tz
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Figure 1: The beam cross section

with

€ = E.-\JE2-G2,. (F.14b)

and where 7e,, is the area of the ellipse.
The half axes E; and E; of the elliptical beam cross section are :

1
Eip = 5 { 2+ B2 +/[E2 — B2) + 4Bz ng} (F.15)

and the twist angle 6 of the beam is given by :

Ez ) Gzz

tan 20 = 2m

(F.16)

The projections on the (y, p,)- plane (y = z, z, o) can be found in a similar way [28, 32].
One obtains:

2) Projection on the z — p, plane.

For the projection of the ellipsoid (F.3) onto the z — p, plane the corresponding equations
are (F.7a), (F.7b). Since these two relations have the same form as eqns. (F.7a) and (F.7¢),

[



<

“*Ey*—’

Figure 2: Projection on the y — Py plane; (y ==z,z2)
we obtain an elliptical projection onto the z — p. plane by analogy with eqn. (F.14). We write
the ellipse in the form:
A& -2E.G,,, -ip, + B = e, (F.17)

with

Ar(s) = Ma:c(x,ﬂly&l) ﬁr(s)X)éhéﬂ)

= Vit vt v+ vk (F.18)

Gep.(s) = E(s) Ay yi2 + v21 - Yo2 + Y31 - Ya2 + Va1 - Ya2} ; (F.19)
Teop, = 7 Epy[A2 — B2 ; (F.20)
(area of the ellipse (F.17)).

Here, the function A,(s) represents the maximum amplitude of the momentum p, and could be
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called the momentum envelope for the z — p, plane. m€yp. gives the area of the ellipse (F.17)
and the meaning of E,_ is indicated in Fig. 2.

3) Projection on the z — p, plane.

A similar treatment can be used to describe the projection on the z — p, plane. We
write

A -2EG,,, -ip.+ E*- B2 = & (F.21)

z zp:

where

Az(s) = Maf(x,éf,au) f?z(S,X,éz,fSn)

= \/yﬁ + Y34+ Yia + Vi s (F.22)

1
Gop.(8) = ‘m “{Y13 Yia + Y23 - Y2u + Y3z - Ysg + Yaz - Yas + Ys3 - Ysa + Vo3 " Ysa) ;5 (F.23)

T€p, = 7m-E.\JA? - EZ, (F.24)

(area of the ellipse (F.21)).
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