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Abstract. The ATLAS physics program relies on very large samples of GEanT4
simulated events, which provide a highly detailed and accurate simulation of
the ATLAS detector. However, this accuracy comes with a high price in CPU,

1o and the sensitivity of many physics analyses is already limited by the available
Q@ Monte Carlo statistics and will be even more so in the future. Therefore, sophis-
a ticated fast simulation tools have been developed. In Run 3 we aim to replace
8 the calorimeter shower simulation for most samples with a new parametrised de-
o scription of longitudinal and lateral energy deposits, including machine learn-
ﬁ. § ing approaches, to achieve a fast and accurate description. Looking further
Ey ahead, prototypes are being developed using cutting edge machine learning ap-
8 f@ proaches to learn the appropriate calorimeter response, which are expected to
d' 3 improve modeling of correlations within showers. Two different approaches,
< 8 using Variational Auto-Encoders (VAEs) or Generative Adversarial Networks

"‘ (GAN:Ss), are trained to model the shower simulation. Additional fast simula-
@) tion tools will replace the inner detector simulation, as well as digitization and

P g

reconstruction algorithms, achieving up to two orders of magnitude improve-
ment in speed. In this talk, we will describe the new tools for fast production of
simulated events and an exploratory analysis of the deep learning methods.

1 Introduction

The ATLAS physics program relies extensively on very large samples of GEant4 simulated
events, which provide a highly detailed and accurate simulation of the ATLAS detector [1-3].
In addition to physics, these simulated events are also used for the design and optimization
of the detector and trigger. The baseline simulation strategy [4] for the ATLAS experiment
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uses the GEanT4 simulation toolkit [5], which models the interactions of the particles with the
matter in the detectors to a very high level of accuracy.

However, with time, as the dataset from the LHC grows in size and complexity the com-
puting resources needed to produce these simulated samples continues to grow. In fact, the
sensitivity of many physics analyses is already limited by the available Monte Carlo statistics.
Figure 1 shows the projections for the CPU resources needed by the ATLAS experiment for
data and simulation processing. The brown points show the amount of time needed based
on existing software performance and uses the ATLAS computing model developed in 2017.
The large jump in the requirements in 2026 corresponds to the anticipated start date of the
High-Luminosity LHC (HL-LHC). The solid black line shows the amount of resources ex-
pected to be available under the assumption of a flat funding scenario. The clear discrepancy
between the resources needed and the resources available demonstrates that reducing the
amount of CPU needed by the ATLAS experiment is critical. At present, simulation takes
approximately 34% of the total CPU time used by ATLAS, and 75% of the time in simula-
tion is spent in the simulation of the calorimeter, which means that significantly improving
the speed of the simulation can have a large impact on the total amount of CPU required.
The blue points in Figure 1 show how much the total CPU could be reduced by extensively
using the fast calorimeter simulation instead of Geant4 (blue down triangles), and by adding
a fast method of tracking detector simulation and reconstruction (blue circles), and, finally,
by increasing the speed of the generators by a factor of two (blue up triangles). Here we will
outline the different fast simulation techniques currently under development by the ATLAS
experiment, discuss recent improvements, and briefly review the current performance.
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Figure 1. The estimated CPU resources needed by the ATLAS experiment for data and simulation
processing. The brown points are estimates made in 2017, based on existing software performance
estimates and using the ATLAS computing model parameters from 2017. The blue points show the
improvements possible in three different scenarios: (1) top curve with the fast calorimeter simulation
used for 75% of the Monte Carlo simulation; (2) middle curve using in addition a faster version of
reconstruction, which is seeded by the event generator information for the tracks; (3) bottom curve,
where the time spent in event generation is halved, either by software improvements or by re-using some
of the events. The solid line shows the amount of resources expected to be available if a flat funding
scenario is assumed, which implies an increase of 20% per year, based on the current technology trends.
From Ref. [6].



2 Fast Calorimeter Simulation

The ATLAS detector is a multipurpose particle detector with a nearly 4z coverage in solid
angle. It consists of an inner tracking detector surrounded by a thin superconducting solenoid
providing a 2 T axial magnetic field, electromagnetic (EM) and hadronic calorimeters, and a
muon spectrometer. The inner detector consists of silicon pixel, silicon microstrip, and tran-
sition radiation tracking detectors. The ATLAS electromagnetic calorimeter is a lead/liquid-
argon sampling calorimeter with an accordion geometry. It consists of a barrel section cover-
ing the pseudorapidity region || < 1.475 and two endcap sections covering 1.375 < |n| < 3.2.
For || < 2.5, the EM calorimeters are segmented into three layers with different granularities.
A thin presampler layer in front of the calorimeter covers || < 1.8. The ATLAS hadronic
calorimeter consists of an iron/scintillator calorimeter for || < 1.7, two copper/liquid-argon
calorimeters for 1.5 < || < 3.2 and two tungsten/liquid argon forward calorimeters up to
[nl < 4.9. The ATLAS calorimeters are used to reconstruct jets, photons, electrons, and in the
determination of the missing transverse energy.

The complexity of the ATLAS calorimeter geometry with its accordion structure and
varying cell sizes are the reason that the time to simulate a single event with the ATLAS
detector is of the order of minutes. This is why fast simulation methods for the calorimeter
have attracted significant attention. We will discuss the two methods under development
by ATLAS that can be used to parametrise the calorimeter response. The first, known as
FastCaloSim v2 or FCSv2 [7], uses principal component analysis (PCA), as discussed in
Section 3 and the second uses neural networks, as discussed in Section 4. In both cases, the
datasets used to derive these parametrisations are million of events containing single photons,
electrons, and pions simulated using GEanT4 with the simulation beginning at the surface of
the calorimeter. To account for slight differences in the calorimeter response for positively
and negatively charged particles, these are simulated separately.

3 Calorimeter Shower Parametrisation with Principal Component
Analysis

The fast calorimeter simulation (FastCaloSim) has been used for fast simulation in ATLAS
since Run 1 [8]. However, it is currently only used for a limited range of physics analyses
due to limited performance in particular ranges of phase space, such as high-momentum jets
or forward pseudorapidity. A new version of FastCaloSim, FastCaloSim v2, is currently
under development with the goal of improving the physics performance to enable it to be
used for an even wider range of analyses for Run 3. The parametrisation of the showers
is derived separately for the amount of energy deposited in each calorimeter layer, which
describes the longitudinal development of the shower, and the lateral shape of the shower
in each layer. As there are large correlations between the energy deposits in the different
layers, FastCaloSim relies heavily on PCA to convert the correlated input variables into a set
of linearly uncorrelated variables by an orthogonal transformation of the coordinate system.
The TPrincipal class from ROOT [9] is used to perform the PCA.

The FastCaloSim v2 parametrisation is derived in 17 logarithmically spaced energy bins
ranging from 60 MeV to 4.2 TeV for photons and electrons and from 256 MeV for pions, and
100 uniform bins in |77 ranging from O to 5 units of pseudorapidity. The inputs to the PCA are
the fractional energy deposits in each layer of the calorimeter, as well as the total energy. The
PCA is used to transform these into decorrelated inputs. The PCA component with the largest
eigenvalue is divided into five equally populated bins and then the PCA chain is repeated on
the showers within each bin.

The lateral shower shapes are modelled using two dimensional histograms binned in polar
coordinates in the plane tangential to the calorimeter surface. These histograms are used
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as probability distribution functions and a certain number of hits are drawn to model the
statistical fluctuations.
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Figure 2. (a) Number of clusters produced by a 16 GeV pion in the range 0.20 < |p| < 0.25 in
FastCaloSim v2 (red solid line) compared to Geant4 (black dashed line). (b) Fractional deposited
energy in the 7 direction for the second barrel layer of the electromagnetic calorimeter for a 65 GeV
photon reconstructed cluster in the range 0.20 < || < 0.25. The 3x7 and 7x7 refers to the rectangle of
cells considered around the cluster centre. FCSV2 (red solid line) is compared to GEanT4 (black dashed
line). In both cases, the FastCaloSim v2 parametrisation from October 2019 is used. From Ref. [10].

Recent improvements to FastCaloSim v2 include a new technique to derive the energy
fluctuations for pions, by evaluating the stochastic and constant term from the GEANT4 sam-
ples instead of those evaluated from beam tests. This results in a significant improvement in
the modelling of the number of clusters and hence the description of jet substructure. The
treatment of the cross-talk between the cells has also been improved, which leads to the frac-
tional energy deposits to be better described for the photons (see Ref. [11] for further details).
The current performance of FastCaloSim v2 is demonstrated in Figure 2. In both cases, the
predictions from Geant4 (black dashed) are compared to those from FastCaloSim v2 (red).
Figure 2 (a) shows that the number of energy clusters in the calorimeter for a 16 GeV pion
is very well described, which depends critically on the accuracy to which fluctuations are
modelled. Figure 2 (b) shows that the shape of the deposited energy in the n-direction is also
very well-described for 65 GeV photons.

4 Calorimeter Shower Parametrisation with Neural Networks

Neural networks have proven themselves to be very powerful tools and are used extensively
in reconstruction and analysis throughout high-energy particle physics. ATLAS is investi-
gating whether deep neural networks can be used for simulation by training a network to
approximate the showering from Geant4. This would provide an alternative parametrisa-
tion to FastCaloSim v2 to describe calorimeter showers. Two different approaches are be-
ing explored and both are based on unsupervised learning algorithms. The first uses Gen-
erative Adversarial Networks (GANs) [12] and the second uses Variational Auto-encoders
(VAEs) [13, 14]. The inputs to the neural networks are the energy deposits in the calorimeter
cells from single particle GEaNT4 events. At present, only photons in the central calorimeter
barrel with 0.2 < || < 0.25 have been studied.

The GANS consist of a generating neural network and a discriminating network, which
tries to discriminate between the generated showers and those simulated by Geant4. After
training, the generating network is used to simulate physics events. The VAE uses two stacked
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neural networks each containing four hidden layers. The first encodes the representation of
the Geant4 showers into the latent space with reduced dimensionality. The second decodes
the latent representation and is used to produce simulated events. See Ref. [15] for further
details about initial design and architecture used for the GANs and the VAEs.

New and improved architectures for both sets of networks have been developed with re-
spect to Ref. [15]. The GAN has been conditioned on the position of the incident particle
and an additional discriminating network has been added to ensure that the total energy is
well-modelled. In addition, the generator architecture has been optimised. This results in
significant improvements to the description of the mean and the width of the showers. Fig-
ure 3 (a) compares the mean and width of the relative total energy distribution between the
GAN and Geant4. Excellent agreement is demonstrated for all energy values. Good perfor-
mance is also observed when interpolating between the energy points.

Recent improvements to the VAE include moving from cell energy to energy ratios to
simplify the learning process for the network. In addition, five energy fractions are provided
to the network in order to learn the correlation between the energies across the layers and the
total energy. These fractions re-normalize the energies from the ratios. Weights were added to
the reconstruction term of the loss function representing the importance of cell reconstruction
with respect to the distance from the shower center. They are derived from the width of the
energy ratio distributions. A weight per input feature is the inverse of the standard deviation.
Figure 3 (b) compares the relative total energy distributions between the improved VAE, the
previous VAE and Geant4. Previously the VAE significantly overestimated the width of the
energy distribution, but now the mean and the width are in good agreement with GEaNT4.
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Figure 3. (a) Energy response of the calorimeter as a function of the true photon energy for particles
with 0.20 < || < 0.25. The calorimeter response for GEanT4 is shown in black full markers used as
reference and is compared to the one from the generative adversarial network (GAN), shown in green
open markers. The GAN is shown with a small artificial shift towards the right for better visibility. The
error bars indicate the resolution of the simulated energy deposits. From Ref. [16]. (b) Energy response
of the calorimeter as function of the true photon energy for particles in the range of 0.20 < || < 0.25
comparing GEaNT4 (black circles), the baseline VAE model (Ref. [15]) (cyan triangles) and the new
improved VAE model (red squares). The shown error bars indicate the resolution of the simulated
energy deposits. For clarity, a small offset is applied to the different simulation choices. From Ref. [17].

As both neural networks will produce parametrisations of the energy response similar
to FCSv2, the CPU time when using the neural networks in simulation is expected to be
comparable, but potentially with a reduced memory footprint.
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5 Towards Even Faster Simulation

While the fast calorimeter simulation shows great promise, even greater gains in the CPU
time are needed to simulate and reconstruct events, requiring additional techniques and new
paradigms. The FastChain [18] is a generic fast simulation framework that incorporates
FastCaloSim2, but provides additional fast simulation modules. The main target for im-
proved speed is through the introduction of fast simulation (and reconstruction) techniques
for the inner tracking detector and, to a lesser extent, the muon spectrometer. Two possibili-
ties are currently being explored. The first, known as Fatras [19-21], simulates events using
a simplified description of the detector geometry and parametrisations of physics processes.
The second avoids both simulation and reconstruction of tracks by producing hits based on
the true particle and fitting those to determine the track parameters. While the second is
significantly faster, it is expected to have worse physics performance, as the impact of fake
tracks is neglected.

Figure 4 shows the CPU time required to simulate 500 ¢7 events in ATLAS using three
different simulation techniques. The average time required using Geant4 is ~O(4 X 10°) ms.
With FastCaloSimv2, the time is reduced by more than an order of magnitude to ~O(3 X
10*) ms. With FastChain, and using Fatras, the time is again reduced by more than an order
of magnitude to ~O(10%) ms.
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Figure 4. Comparison between GeanT4 and two fast simulators, the fast calorimeter simulation (la-
belled as ATLFASTII) and the fast chain (labelled as ATLFASTIIF), in the CPU performance of event
processing time. Simulations were performed in Athena release 21.3.8 on semi-leptonic #f events. Sim-
ulation benchmarks were performed using the BNL USATLAS Tier-3 Cluster which consists of 300
nodes, each with 8 2.6GHz CPUs and 16 GB of memory. 500 events were produced in a single run. No
pile-up is simulated. From Ref. [22].

6 Conclusion

Large samples of GeanT4 simulated events play a critical role within the ATLAS physics pro-
gram, but their production requires large amounts of CPU. This is why the development of fast
simulation techniques is critical for maintaining, and indeed increasing, physics performance,
especially when looking ahead to the large datasets of the HL-LHC. We have reviewed the
fast simulation methods currently under development by the ATLAS experiment. Two meth-
ods focusing on replacing the expensive calorimeter simulation with a parametrised response
were presented with FastCaloSim v2 aiming to become the default simulation method for
Run 3. In addition, FastChain seeks to speed up the simulation even further through new
methods for the inner detector simulation and reconstruction. The methods presented are at
various levels of development and highlights of recent progress were presented.
Copyright 2020 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.
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