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Abstract

A statistical averaging of the Boltzmann-Langevin equation is performed. It is
shown that at the averaged level the fluctuations induce an additional collision term
with a medium-modified transition rate, which can give rise to a critical scattering
phenomena in the vicinity of unstable regions.

Transport models with self-consistent mean fields, like the Boltzmann-Uehling-Uhlenbeck
(BUU) model, are widely applied to the description of heavy-ion collisions [1]. These
mean-field transport models are very successful in describing the average properties of
the one-body observables associated with nuclear collisions, such as nucleon spectra, col-
lective flows and particle production [2, 3]. However, these approaches do not provide
an adequate description, when an instability occurs during the dynamical evolution of
the system, e.g., such as those in thermal fission or multifragmentation processes. The
reason is that the mean-field transport models bring about a deterministic description for
the average evolution and do not allow for any branching of dynamical trajectories in the
instability region.

The stochastic transport models offer a more appropriate framework for the description
of the unstable dynamic evolution. In these stochastic approaches, the transport theory is
extended beyond the mean-field level by incorporating the correlations within a statistical
approximation [4, 5, 6]. The correlations give rise to a stochastic collision term in the
equation of motion, which acts as a source of continuous branching of the dynamical
trajectories. In the semi-classical limit, this extended transport model is referred to as
the Boltzmann-Langevin (BL) model for the phase-space density. Here, as a continuation
of a previous work [7], we investigate the relation between the BL and BUU models. We

demonstrate that at the averaged level the BL model contains a new (as compared with
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the BUU model) collision term arising from correlations induced by long-range density
fluctuations.

For simplicity, we restrict our treatment to the semi-classical evolution of a spin-isospin
averaged phase-space density and consider only elastic binary collisions. According to the
BL model, the fluctuating phase-space density f(t, r,p) obeys the equation

~

(% +v -V, -V, Uln]- Vp> f(t,r,p)= K(t,r,p)+ 6§K(t,r,p), (1)

where U[#] is the fluctuating self-consistent mean field, which is assumed to be local and,

hence, determined by the fluctuating local density,

it7) = o [ f(trp), 2)

and K(t, r, p) denotes the collision term of the BUU form. The additional term § K (¢, r, p)
represents a stochastic part of the collision term. In analogy with the treatment of the
Brownian motion, it is regarded that eq. (1) describes a stochastic process, in which
the entire phase-space density f(t, T,p) is a stochastic variable and § K acts as a random

force. The stochastic collision term vanishes on the average
(6K(t,r,p)) =0, (3)
and 1s characterized by a correlation function
(0K (t,r,p) SK(t',v'.p')) =6.(t —t") 6(r — ') C(T, R, p,p'), (4)

where T = 3(t 4+ t') and R = 1(r + #'). In the Markovian treatment, the quantities
6c(t — t') and é.(r — ¢') are assumed to be sharp é-functions. Here, we take them as
“broad é—functions”

6c(t - tl) = \/21——7”7‘6)(}) |:“% <t ; tl) } ) (5)
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This is a more realistic parametrization of the correlation function. Here, the correlation

length, r. ~ 1 -2 fm, is of the order of the two-body interaction range, and the correlation
time is 7. >~ r./v, with v being an average relative velocity of nucleons. The correlation
function C(¢,7,p,p’) can be expressed as follows

Cltyrprpt) = [ @y dpa WL 13.) [(1= )01 = i fofa + ifull = )1 = fo)
—2/d3P2 dCps W(L2 | 1,4) (1= /)1 = fo) fufa + frfo(1 = fi)(1 = fy)]

+6(p, “‘P’1)/d3P2 Epy Pps W(1,213,4) [(1 = f)(1 = fo)fafs + fifa(l = f3)(1 = fo)].
(7)



The correlation function is closely related to the collision term and is entirely determined
by the one-body characteristics. This relation can be regarded as a consequence of the
fluctuation-dissipation theorem associated with the stochastic evolution of the phase-space
density. The BL equation (1) offers a stochastic description of the collision process, in
contrast to the deterministic one of the BUU model. For a given initial condition, the
BL equation (1) results in an ensemble of solutions. If the system evolves through an
instability region, these solutions can largely diverge from each other, giving rise to large
density fluctuations.

In order to carry out the ensemble averaging of the BL equation (1), we decompose
the phase-space density and the mean-field as

f=Ff+68f, U=U+sU, (8)

where f = (f) and U = (U) are the averaged parts, while § f and 6U denote the fluctuating
parts of the phase-space density and the mean field, respectively. Note that (6 f) = (8U) =
0 by definition. By performing the ensemble averaging, we readily obtain the transport
equation for the averaged phase-space density

(g_t +v-V, -V, U- Vp> f={(K)+ Kgy, (9)

where (K) is the average BUU collision term, and
KpL = (V,6U - V,6) (10)

is an additional term indicating that the kinetic equation for the averaged phase-space
density, emerging from the BL model, is not identical to the BUU one.

The calculation of the additional collision term Kpgy in terms of the averaged charac-
teristics is, in general, a highly complicated problem. Therefore, we consider a particular
situation under certain approximations, which simplify the Kpy, calculation and, at the
same time, clarify the dissipation mechanism associated with this collision term. In this
particular case

(i) We assume that the magnitude of fluctuations is small as compared with that of
averaged quantities. As a result, the fluctuations can be treated in the linearized
approximation.

(ii) We treat the deviation of the collision term from its averaged value in the relaxation
time approximation

~

K(f) = K(f) = A4/, (11)

where TR = 1/A is the relaxation time of the phase-space density. In accordance
with this, we approximate the diagonal part of the correlation function of eq. (7) as

Ciag.(P1,P}) =8(p—P") 24 f(1 = f), (12)

and neglect its off-diagonal parts.



(iii) We consider fluctuations of the space-time scale to be much shorter than that of
averaged quantities. Hence, in the calculation of fluctuations, we neglect the space-
time dependence of the averaged quantities: f = f(p) etc.

As a result of the assumptions (i)—(iii), the fluctuations are determined by the lin-
earized BL equation

(%JFv.vT)éf—fo'V,&U:—A6f+61\’. (13)

To solve this equation, it is natural to use the Fourier transformation
§f(w, k,p) = /dt &Pr expliwt — ik 1) 6f(t, 7, p), (14)

and, similarly, for other quantities. In the Fourier representation, the solution of this
equation reads

k-V,f . $K(w, k,p)
8 = 7 :) — 15
bflw kp) = o RV ) — i T TR (1)
where V (k) 5K (w. k. p)
sU ,k:_-_;/(ﬁ b akhui? £ 16
Ulw. k) ZS(r.u,k) P v—w—iA (16)

k-V,f
5(w,k)=1—V(k)/dspk.v_w”_iA.

By using these together with the (§ ' § ') correlator in the Fourier representation

(17)

(6K (w, k,p) 6K (w' k', p")) = (27)" Go(w, k) S(w + ') 6(k+ k) 6(p—P) 2 A f(1 = ),
(18)

one can calculate all the required quantities. Here, the quantity

Ge(w, k) = exp ‘:—% (g;)? - }2- (%)2] , (19)

with w, = 1/7. and k. = 1/r., represents the cut-off determined by finite correlation
lengths in time and space of the correlation function (4) of the stochastic collision term.

First, let us consider the correlation function of the phase-space density. A simple but
somewhat lengthy calculation gives

(6f(w, k,p) (' k', p")) = (21)* Ge(w, k) 6(w + ') 8(k + k')
x [2n8(p —p) 6k v —w) f(1 = f)+ d(w, k,p, P, (20)

where ¢(w, k, p, p') is an analytic (nonsingular, except for simple poles) function of all the

variables. The inverse Fourier transformation into the coordinate representation results
n

(f(t,m,p) Sf(t 7. p)) = & (r—2' —w(t—1t)) §(p—pP) [(1 =)
+ o(t=tr -2 pp), (21)
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where ¢(t — t',» — r',p,p) is a nonsingular function proportional to A. The quantity
¢ goes to zero in the limit | » — ' |- oo and/or | t — ' |» oo. Here, the quantity
6() (r — vt) is again a “broad é-function” of the special kind

1 1 72

6£U) (1‘ - vt) = (27r)3/2(v T2 +r )1/47 exp {_ﬁ [(1‘ - vt)2 - m(v : (1’ - vt)f]} :
(22)

In particular, the §{*) (r — vt) function indicates that the nonlocality of the correlation

function (21) is larger in the longitudinal (with respect to ) direction than that in the

transverse one. When 7. and r. go to zero, §{*) (r — vt) transforms into conventional

§-function. The result of eq. (21) is a natural form of the correlation function, and it

serves us as a test for consistency of our calculations.

The additional collision term K gy can be evaluated by making use of the expressions

for 6 f(w, k,p) and U (w, k) given by egs. (15) and (16). We find that it takes the form
of the Balescu-Lenard type [8] collision term

2

; o dw 3k , L V(k)
Kpi, = zv,,/ T el k) b |-
[ k-0 =) 6" =) [k Vo f S = ) = k- VoS J(1= )]

(23)

with a medium-modified transition rate determined by the permittivity. Here, the G.
factor introduces a natural cut-off in momentum transfers, which is determined by inverse
correlation lengths [cf. eq. (19)]. The collision term Kpp involves a contribution of
collective excitations which correspond to zeros of the permittivity: e(weorr.(k), k) = 0.
Hence, the collective modes appear as poles of the integrand in eq. (23). For weakly

damping collective modes, their contribution into the Ky, collision term can be separated
to give

,(coll _ d°k R 2 F+ ‘
I VP/ (27!')3 Gc(“‘)a k) k (k)l (RC’E(W, k))2 4 (V(k)r_)g (k VP)f? (24)
where ” .
r, = ‘2A/d3p' Tf(T_:j;—))z (25)
, kY f .
__A/(P v o (26)

and w = k - v. This is the semi-classical limit of the collision term, derived in ref. [7]
in the quantal representation and with due account for the full correlation function, as
well as the memory effect associated with finite duration of the binary collisions. This
collision term arises from the correlations associated with the long-wavelength collective
density fluctuations. It describes the dissipation mechanism resulting from the coupling
between the single-particle motion and the collective vibrations. In the vicinity of the

ot



spinoidal instability, the magnitude of this dissipation mechanism increases due to the
large density fluctuations. Therefore, it can slow down the expansion of nuclear matter,
as well as induce the critical scattering phenomenon similar to the critical opalescence
in liquids near the phase transition [9]. In addition, the collective term Kpy, of eq. (23)
contains non-collective contributions corresponding to the small-angle binary scattering
with momentum transfer & < k.. Hence, it gives rise to corrections to the BUU collision
term in the range of small momentum transfers.

In conclusion, we have considered the evolution of the averaged phase-space density in
the BL model. We have demonstrated that, besides the usual collision term of the BUU
form, the equation of motion involves an additional collision term arising from correlations
associated with long-wavelength density fluctuations. This additional term can strongly
affect the averaged evolution of the system in the vicinity of the spinoidal region. In
the limit of small fluctuations around a quasistatic state, we have derived the explicit
expression for this collision term.

We are grateful to J. Randrup for fruitful discussions. We also appreciate the warm
hospitality and support provided us by the GSI (Darmstadt) and the LBL (Berkeley),
where a part of this work was carried out. One of us (Yu. I.) acknowledges the support
of the Alexander-von-Humboldt Foundation and the Tennessee Technological University
during the initial stage of this work.

References

[1] G. F. Bertsch and S. Das Gupta, Phys. Rep. 160 (1988) 190

[2] W. Cassing and U. Mosel, Progr. Part. and Nucl. Phys. 25 (1990) 1

[3] W. Cassing, V. Metag, U. Mosel and K. Niita, Phys. Rep. 188 (1990) 363

[4] S. Ayik and C. Gregoire, Phys. Lett. B212 (1988) 269; Nucl. Phys. A513 (1990) 187
(5] S. Ayik, Phys. Lett. B265 (1991) 47

[6] J. Randrup and B. Remaud, Nucl. Phys. A514 (1990) 339

[7] S. Ayik, Z. Phys., A350 (1994) 45

[8] E. M. Lifshitz and L. P. Pitaevsky, Physical Kinetics, Pergamon Press, 1981

[9] H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford
University Press, New York, 1971.



