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Abstract

The present paper contains a systematic exposure of basic principles of free elec-
tron laser physics. FEL models are discussed wherein space charge fields, energy
spread of the electrons in the beam and diffraction effects are taken into account.
We present detailed study of one-dimensional theory of an FEL amplifier, FEL
oscillator and FEL oscillator with multicomponent undulator. We present also an
introduction to the analysis of the diffraction effects using the FEL amplifier model.

When exposing linear theory we use analytical techniques and investigation of
nonlinear mode of the FEL devices operation is performed using the results of
numerical simulations. The results of the linear theory serve as a primary standard
to check an accuracy of numerical simulations. We perform thorough analysis of
the saturation effects in the FEL devices and of the methods to increase the FEL
efficiency.

Theoretical study is preformed with a wide use of similarity techniques, so the
obtained results are simultaneously of the high degree of generality and completely
specified. Numerous universal graphs illustrating various modes of the FEL oper-
ation together with the reduced design formulae can help the reader to find FEL
characteristics using the simple dimensional analysis only. It may be useful also for
FEL designers, especially at the design stage of an experiment.

Preprint submitted to Elsevier Science 11 November 1994



1 Introduction

The progress in the FEL physics and technique during last decade was so
rapid that there are only small groups of experts in each branch of the FEL
science which possess the required knowledge of the problem. On the other
hand, a large number of scientists working in the field of the FEL physics,
FEL applications and another branches of science have significant interest in
this subject. People who begin to study FEL physics face a severe problem,
namely that there is no textbook or review where the different FEL devices
are considered not as separate objects but in a common way. It is difficult to
understand the principles of operation of one device without a knowledge of
the principles of operation of another devices, because all the FEL devices are
tightly connected with each other. So, there is an urgent need in a textbook on
the FEL physics where all the existent FEL devices are treated in a uniform
way. The present paper is an attempt to fill this gap and contains a systematic
exposure of basic principles of free electron laser physics. It might be extremely
useful for physicists specializing in the FEL physics as well as in the adjacent
fields: laser physics, microwave electronics, particle accelerator physics etc. It
will be of help also for those who use the FEL as a research or industrial tool
in their work.

All the results presented in the paper are derived from the “first principles”
and the reader can follow the whole derivation process from beginning to end.
The present treatment requires from the reader only the knowledge of classical
mechanics, electrodynamics and a moderate knowledge of higher mathematics
(differential equations, Laplace transform and special functions). Both simplic-
ity and strictness of exposure are explained by the features of the object under
study (FELs are described rather well in the framework of classical physics)
and by the simplicity of the accepted FEL models. In the present paper we
study in details one-dimensional model of the FEL and present rather deep in-
troduction to the analysis of diffraction effects using the FEL amplifier model.
Despite of their simplicity, such models describe rather well almost all main
effects influencing the FEL operation. When presenting theoretical results, we
have tried to include all significant results obtained by another authors. Of
course, the aspiration to make the exposure to be uniform has led us to the
necessity to obtain some well known results in a different way with respect to
the original papers. On the other hand, significant fraction of the presented
material is based on our previous publications.



1.1 The place of an FEL among the sources of coherent radiation

During last two decades free electron lasers have passed a long way from
the first experimental demonstration [1] and occupied an appropriate place
among another sources of coherent radiation. FEL devices possess many at-
tractive features. FEL radiation is tunable and existent level of accelerator
technique R&D provides a possibility to construct FEL devices operating in
a wide range of electromagnetic spectrum, from centimeters down to X-ray
range. FEL radiation is always totally polarized and has ideal, i.e. diffraction
dispersion. FELs are capable to provide a high efficiency of transformation of
the electron beam power into the radiation power. It has been demonstrated
experimentally, the efficiency of an FEL amplifier has reached the value of
34 % [2]. Remembering that electron accelerators of driving beams for the
FELs can provide high average and peak power at effective transformation of
electric power into the electron beam power, one can expect to reach a high
level of the total FEL efficiency, high peak and average power. Due to these
unique features, the FELs are considered as perspective devices for a huge
number of scientific and industrial applications.

When the first operating free electron laser has been constructed, it seemed
that FELs will form only a small supplement to a long list of existent at that
time quantum lasers. Actually, the appearance of the FELs formed a novel
direction in the field of the sources of coherent radiation: they embodied the
type of the coherent source to which all the experimenters aspired since the
invention of the laser. The FELs have made to be a reality the dream to find
such a laser which is capable to generate powerful coherent radiation at any
wavelength from far infrared to ultraviolet part of the spectrum similarly to
the vacuum-tube devices which are capable to generate coherent radiation at
any wavelength, from kilometer to millimeter range.

It is relevant to notice that despite the FEL is named as a laser, when con-
sidering the principles of its operation, we find that it forms a separate class
of vacuum-tube devices, the principle of which operation is based on interac-
tion of electron beams with the radiation. From this point of view it is easy
to realize the origin of the mentioned above advantages of the FEL against
quantum lasers. The main advantage is tunability of the radiation. In quantum
laser, the lasing wavelength is defined by discreet energy transitions between
the quantum levels of atoms or molecules of an active medium. Despite the
variety of the discovered types of the active medium, the number of quantum
levels is and will remain to be finite. As for the FEL (or, in a more wide sense,
for vacuum-tube devices), their operating frequency is defined by their design,
namely by the electron beam parameters, characteristics of the electrodynamic
structure (waveguide walls, resonator mirrors, etc.) and by characteristics of
the electrical and magnetic fields in the interaction region. Due to these rea-



sons, the FEL can be tuned, in principle, to any desired operating frequency.

Another important feature of the FEL is that its radiation is always coherent
and has ideal, i.e. diffraction dispersion. In other words, the FEL radiation can
always be focused to a spot which size is defined totally by diffraction effects.
This feature of the FEL is the consequence of the fact that the process of the
electromagnetic field amplification develops in vacuum. It reveals wide posst-
bilities for the FEL applications in transportation of the radiation trough long
distances and obtaining high intensity. Contrary to the FEL, the dispersion
of radiation of powerful lasers usually exceeds by several tens of magnitude
the value of diffraction limit. The main effects which determine the growth of
the radiation dispersion are fluctuations of the active medium refractive index
due to thermal effects and nonlinear effects in the active medium.

FEL predominates significantly conventional lasers in an ability to attain a
high level of average output power. In the conventional laser, unused fraction
of the pumping power (which significantly exceeds the output radiation power)
is dissipated in the active medium. So, a possibility to increase average output
power is limited by the heat elimination problem. Contrary to this, in the FEL
amplifier the process of the electron beam energy conversion to the radiation
one takes place in vacuum. Utilization of the used electron beam is rather
routine problem in the accelerator technique.

The FEL, as a device converting the net electrical power to the radiation
power, can provide, in principle, a high efficiency close to 100 %. There are no
principal physical limitations which prohibit attaining such a high efficiency
and it may be achieved at an appropriate development of the FEL technology.
In this sense the situation with the FEL is similar to that with microwave
electronic devices. Intensive development of the theory and technology of mi-
crowave devices during last fifty years has revealed a possibility to construct
powerful devices with the efficiency of about 80 %. The record value of the
efficiency equal to 34 % has been achieved in the millimeter wavelength range
FEL amplifier at the peak radiation power equal to 1 GW [2].

The FEL technique is one of the youngest branches of the technology, it is
only 20 years old and the main progress has been achieved during the last ten
years. Nowadays there are several tens of the FEL devices operating in the
wavelength range from 0.24 um up to centimeter. Despite a strong competi-
tion from the side of conventional lasers, the FEL is recognized nowadays as
a unique tool for scientific applications requiring tunable coherent radiation.
Taking into account the future perspectives of the FEL, many industrial firms
undertake intensive investigations in the FEL technology aiming a goal to con-
struct powerful FELs for industrial applications such as material processing,
microlithography, isotope separation, chemical applications, plasma heating,
etc. Analysis of the dynamics of the FEL technology development indicates



that within the next decades the FEL will be widely spread over the world as
irreplaceable toll for a wide range of scientific and industrial applications [3] -

[9].
1.2 Principle of an FEL operation

In the same way as vacuum-tube devices, the FEL devices can be divided into
two classes, amplifiers and oscillators (see Figs.1.1 and 1.2). The FEL ampli-
fiers amplify the input electromagnetic wave from external master oscillator.
There is no feedback between the output and input of the FEL amplifier. The
FEL oscillator can be considered as the FEL amplifier with feedback. The
radiation in the FEL oscillator grows from fluctuations of the electron beam
density or from the spontaneous emission spectrum. For the FEL oscillator
of optical wavelength range the feedback is carried out by means of optical
resonator which defines also the radiation modes which can be excited in the
resonator. When the rate of electron beam power conversion into the radiation
power exceeds the radiation losses in the resonator, the lasing process occurs.

Master Laser Undulator

Beam I’t\l ’L| ’LI rL Radiation
|T|T|T|T|T|T|

Electron
Beam

Fig. 1.1. Conceptual scheme of an FEL amplifier

Mirror Undulator

K, l,Ll ,L ,LI ,—L Radiation —H
|T|T|T|T|T|T|

Electron
Beam

Fig. 1.2. Conceptual scheme of an FEL oscillator

The key element of the FEL is an undulator (or wiggler) which forces the
electrons to move along curved periodical trajectories. There are two popular
undulator configurations: a helical and a planar. The helical wiggler is formed
by bifilar winding and produces rotating transverse magnetic field which forces
the electrons to move along helical trajectories. The planar undulator is formed
by a sequence of dipole magnets of the opposite polarity and produces linearly




polarized transverse magnetic field which forces the electrons to move along
sinusoidal trajectories.

To understand basic principles of the FEL operation, let us consider the helical
undulator. Magnetic field at the axis of the helical undulator is given by

H, = &H, cos(2mz/Ay) — €y Hy sin(2mz/),), (1.1)

where A, is the undulator period. In this helical field, the electrons move
along the helical trajectories. The angle of the electron rotation in the undu-
lator (i.e. the angle between the electron velocity and the undulator axis) is
0s = K/v, where K = )\, eH, /2rm.c? is the undulator parameter, vy = £/m.c?
is relativistic factor, (-¢) and m. are the charge and mass of the electron,
respectively. As a rule, the electron rotation angle is small, > < 1, and
longitudinal velocity of the electron v, is close to the velocity of light ¢ (in
other words, the longitudinal relativistic factor v, = (1 — v2)71/2 is large,
RI=140 = (14 KY)/y2 < 1),

In the FEL the electromagnetic wave propagates in parallel with the electron
beam. So as the field of the electromagnetic wave is transverse, the energy
exchange between the electron and the wave is performed due to the transverse
component of the electron velocity. The rate of the electron energy change is
d€/dt = —e(v, o E), where ¥ is the vector of the transverse velocity of the
electron and E is the electric field vector of the wave.

So as the longitudinal electron velocity v, is less than the velocity of light ¢, the
wave slips with respect to the electron beam with the relative velocity (c—wv,).
The FEL is a device with a prolonged beam-wave interaction, i.e. at the total
undulator length, the wave slips with respect to the beam by the distance
which is much more than the radiation wavelength. It means that the electric
field vector E of the wave performs many turns at the undulator length. The
vector U, of the electron transverse velocity rotates, too, and performs one
turn per undulator period. To provide effective energy exchange between the
electron and the wave, the scalar product (&, o E) should be maintained to be
constant at the whole undulator length, i.e. a synchronism should be provided.
Such a synchronism takes place when the wave slips against the electron beam
by one wavelength at one undulator period:

oA (1.2)

Uy c— 1,

where A = 27rc/w is the radiation wavelength. So as v, ~ ¢, this resonance



condition may be written as

Aw 1+ K?

When the resonance condition takes place, the electrons with different rela-
tive phases with respect to the wave acquire different values of the energy
increments (positive or negative, which results in the modulation of the lon-
gitudinal velocity of the electrons v, within the radiation wavelength A). This
velocity modulation is transformed into the density modulation of the elec-
tron beam. At some circumstances the electron bunches fall in a decelerating
phase of the wave and average energy of the electrons is decreased while the
field amplitude of the wave is increased due to coherent radiation of the evenly
spaced electron bunches, and the process of the field amplification takes place.

In the present paper we describe this process in a classical way by simultaneous
solution the equations of the electron motion and electrodynamic equations.
Classical approach can be used while the energy of the radiated photon hw is
much less than the electron energy £ (i.e. Aiw/E <« 1). As a rule, the energy
range of the FEL photons is 0.01 — 10 eV and the energy of the electrons is
£ ~ 10 — 100 MeV, parameter hiw/E is equal to 1077 and quantum effects
are negligible. On the other hand, many of the first papers on the FEL theory
were based on a quantum approach. In these papers, for instance, the radiation
process was considered as the scattering of virtual photons of the undulator
wave in the electron frame of reference and the process of the interaction of the
electron with the electromagnetic wave was described as the process of induced
radiation and absorption of laser photons (see review paper [10] and references
therein). On our opinion, the FEL description in terms of quantum physics
is an artificial one. Indeed, the terms of spontaneous and induced radiation
are necessary to describe quantum lasers, but this approach is not fruitful to
describe vacuum-tube devices to which the FEL belongs. Nevertheless, giving
no principally new results, the investigations based on quantum approach
have influenced significantly on the terminology of the FEL physics and such

essentially quantum notions as Compton regime and Raman regime are widely
used now.

It became a tradition in many popular reviews and books to derive the FEL
resonance condition using Lorentz transformation. Namely, the interaction of
the electron with the combined electromagnetic field of the undulator and the
wave is considered in the electron frame of reference. In this approach, factor
242 appears in the resonance condition as a consequence of the Doppler effect.
Our experience have shown that such an introduction to the FEL physics
usually forces the readers to believe that description of the FEL operation 1s
impossible without detailed knowledge of the special theory of relativity. We
have shown above that the resonance condition can be simply derived in the



laboratory frame of reference and there is no need to use the laws of relativistic
kinematic. In connection with this we should note that the only relativistic
formula necessary for the FEL description is?!

-

dﬁ/dtzfz—eﬁ—egxﬁ,
c

where § = m.y7. In other words, to describe the processes in the FEL it is
necessary only to take into account the relativistic dependence of the electron
momentum on the velocity. When the electron may be treated as a point
particle, such an approach always gives a reliable way to describe the processes
of the electron beam dynamics and radiation in the given electromagnetic
fields. Such a situation, for instance, takes place in the theory of particle
accelerators. 2

1.3 The use of the similarity techniques in the FEL theory

In traditional microwave electronics similarity techniques have been widely
used and served a good deal to clarify basic ideas of this science. But in physics
of free electron lasers these techniques still did not get the popularity it might
have due to variety and generality of their possible applications. At present,
there is an urgent need for a handbook to effectively help the researchers in
using the similarity techniques applied to FEL technology and present paper
is an attempt to satisfy the need of specialists for such a tool.

The analysis by similarity techniques consists in transforming absolute vari-
ables into relative ones. Simultaneously, the problem parameters transform
into dimensionless power complexes - similarity criteria. These latter are
unique parameters of the problem under study reduced to its dimensionless
form. Each factor influencing the FEL operation (space charge, energy spread
etc.) is matched with its own dimensionless criterion. For a given effect the
corresponding similarity criterion is a measure of its relative intensity. When
some effect becomes less important for the FEL operation, this is reflected in
the corresponding similarity criterion taking on small values and falling out
of the number of problem arguments.

The advantages due to the application of similarity theory are evident. A
dimensional analysis of any problem, performed prior to its analytic investi-

! To be more strict, in the present paper we use Hamilton equations which are
equivalent to dp/dt = F.

? Nevertheless, when the electron can not be treated as a point particle, for in-
stance, to describe the spin motion of the electron, there is urgent need in the use
of the Lorentz transformation.



gation, not only reduces the number of independent terms but also allows to
classify the grouping of dimensional variables in a way to be most suitable for
a subsequent study. Further on, the solution of the dimensionless equations
produces final results in such a form that the information contained will be
simultaneously of the high degree of generality and completely specified. The
use of similarity techniques forms a style of physical mentality and leads to a
deeper insight into the FEL physics.

To make the paper to be useful for calculations of practical devices, we have
included in the paper numerous universal graphs illustrating various modes
of FEL operation together with the reduced design formulae which will teach
the reader to find FEL characteristics using the simple dimensional analysis

only. It may be useful for FEL designers, especially at the design stage of an
experiment.

1.4 Organization of the report

The paper proceeds as follows. Sections 2 - 4 are devoted to the one-dimensional
theory of the FEL amplifier, sections 5 — 8 present the one-dimensional the-
ory of the FEL oscillator and sections 9 - 11 present an introduction to the
analysis of diffraction effects.

Section 2 deals with the linear theory of the FEL amplifier. In exposing the
linear theory the main emphasis is put on finding analytic solutions of the self-
consistent field equations with regard to the effects of the space charge and
energy spread of particles in the beam. An interaction process of the electron
beam with electromagnetic wave in an undulator in the linear mode of oper-
ation can be described by a unique integro-differential equation. The solution
of the latter under stated initial conditions at the entrance into the interac-
tion region allows to determine a relationship between wave field amplitude
and undulator length and thus to calculate the output characteristics of the
FEL amplifier. The solution of the initial problem has been performed by the
Laplace transform technique. The rigorous results obtained in a reduced form
furnish universal plots for calculating the output characteristics of the FEL
amplifier in the linear mode of operation. Besides, these analytic solutions
serve as a reliable basis for the development of numerical methods. The anal-
ysis of nonlinear processes refers to the problems solvable only numerically
by a computer. On the other hand, testing of the numerical simulation codes
would be difficult without the use of rigorous results of the FEL amplifier
linear theory as a primary standard.

The similarity techniques are known to play a dominant role in numerical
simulation of processes observed in FEL. For instance, within the scope of the



one-dimensional approximation the output characteristics of the FEL ampli-
fier are controlled by 8 dimensional parameters of both the beam and undula-
tor. The system of self-consistent field equations describing a phenomenon of
the beam-wave interaction in the undulator may be formulated as a relation
between dimensionless quantities. The equations show that a family of the
similar modes of operation of the FEL amplifier is controlled by the values
of 5 dimensionless parameters. In a high-gain mode, when the dimensionless
undulator length is rather large, the field output amplitude in a saturation
mode is independent of both undulator length and input signal amplitude. In
this practically prominent case the maximum amplifier efficiency is a function
of only 3 dimensionless parameters: detuning, space charge and energy spread.

The calculation scheme the FEL amplifier output saturation characteristics
which is suitable for engineer’s practice is presented in section 3. This scheme
stems from similarity techniques and numerical simulation results given as
design formulae and universal plots. All stages of numerical experiment, i.e.
the physical statement of the problem, the construction of a mathematical
model, the realization of an algorithm and the computation process itself are
consecutively exposed in the paper.

A promising means to increase the FEL amplifier efficiency up to about unity
is the variation of undulator parameters along its axis. Further extensions
of the similarity techniques for efficiency calculations of the amplifiers with
variable undulator parameters are discussed in section 4. A procedure of the
engineering calculations of the optimal undulator parameters and FEL ampli-
fier output characteristics with an optimum undulator is given, too.

Sections 5-8 are devoted to the one-dimensional theory of the FEL oscillator.
A simple FEL oscillator model is under consideration when the duration of
the beam current pulse is infinitely long and the power gain per one undulator
pass is small. The lasing frequency is assumed to correspond a maximum of the
gain in a small-signal mode of operation and effects of the longitudinal mode
competition are excluded from consideration. Despite of its relative simplicity,
such a model is extremely fruitful to explain the main features of the FEL
oscillator operation.

Section 5 deals with a linear theory of the FEL oscillator in the small signal
approximation. In exposing the linear theory the main emphasis is put on
finding analytic solutions of the self-consistent field equations with regard to
the effects of space charge fields and energy spread of electrons in the beam.
These rigorous solutions, written down in a reduced form, are of great practical
significance. They are used to obtain the universal dependencies of the linear
mode of the FEL oscillator operation, lasing conditions and serve as a reliable
test base for numerical codes.



Section 6 deals with the description of the FEL oscillator operating in a satu-
ration mode. The main emphasis is put on finding optimal conditions for the
FEL operation to reach a maximal FEL efficiency. The present treatment is
based on the results of numerical simulations and their subsequent generaliza-
tion by similarity techniques. It is shown that the maximal FEL efficiency at
the saturation and the maximal amplitude of radiation field in the resonator
are universal functions of only three reduced parameters, namely the quality
factor @) of a resonator, space charge and energy spread parameter.

In section 7 we analyze a problem of the FEL oscillator efficiency enhancement
by tapering the undulator parameters. Principal differences between the am-
plifier and oscillator cases are discussed. In the FEL amplifier the frequency
of amplified wave is determined by a master oscillator, the tapering of undu-
lator parameters turns on near the saturation point and plays the only role to
keep the beam-wave synchronism when particles lose energy. Contrary to this,
in the FEL oscillator the undulator tapering strongly influences the small-
signal mode of the FEL oscillator operation, the lasing frequency depends on
the tapering depth and corresponds to the maximum gain in the small-signal
mode of operation. We illustrate these features of the FEL oscillator with
a specific case of the linear tapering law. Analytical formulae describing the
small-signal mode of operation are obtained. The results of numerical simu-
lations, presented by means of similarity techniques in the form of universal
graphs and tables are used to find the optimal relations between the tapering
depth and @ quality of the resonator.

Dispersive section

First Undulator Second Undulator

K- ALALA LA LA LAL A H
|T|T|T| Radiation |T|T|Tl

Mirror

Electron
Beam

Fig. 1.3. Conceptual scheme of an FEL optical klystron

Section 8 presents the theory of the FEL oscillator with a multicomponent
undulator. The most popular case is considered when the undulator consists
of two sections separated with a drift (or dispersion) section. Such a magnetic
system is widely used in an optical klystron to increase the small signal ampli-
fication or in the FEL oscillator with a prebuncher to increase the efficiency at
saturation (see Fig.1.3). We describe thoroughly a practically prominent case
when the first undulator section has fixed parameters and parameters of the
second section are tapered by a linear law. A small-signal mode of operation
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is studied analytically. The obtained rigorous solutions describe lasing condi-
tions taking into account the energy spread of electrons in the beam, relations
between the length of undulator and drift section, wave phase shift in the
drift section and the tapering depth. Nonlinear mode of operation is studied
with the help of numerical simulation and application of similarity techniques.
The universal reduced dependencies presented in the paper allow one to cal-
culate all main characteristics of the FEL oscillator with a multicomponent
undulator.

Sections 9 — 11 present an introduction to the three-dimensional FEL theory
and reveals to the reader the applicability region of the one-dimensional theory.
A basic approach to analyze diffraction effects in the FEL is formulated in
section 9. The analyzed models are based on the Maxwell wave equation taken
in a paraxial approximate form and on the description of particle motion
by a kinetic equation expressed in “energy-phase” variables. It is anticipated
that electrons move (averaged over constrained motion) only along trajectories
parallel to the undulator axis. Such a models proved to be very fruitful to
correctly explain the physical phenomena in the FEL. The general theory of
beam-wave interaction is used for the analysis of the FEL taking into account
diffraction effects, space charge and energy spread of particles in the beam.

To illustrate basic approach presented in section 9, in section 10 and 11 we
present selected elements of the FEL amplifier theory wherein diffraction ef-
fects are taken into account. Particular features of this three-dimensional the-
ory are illustrated by a model of the FEL amplifier with an axisymmetric
electron beam. It is shown that in the linear high-gain limit the radiation of
the electron beam in the undulator may be represented as a set of modes. In
the amplification process the mode configuration in transverse plane remains
unchanged while the amplitude grows with undulator length exponentially.
Each mode is characterized by an increment eigenvalue and field distribution
eigenfunction in terms of transverse coordinates. The mode with the highest
gain has advantages over all other modes. By following the gain process along
the undulator axis one can find that after all the field distribution is settled
corresponding to the mode with a maximal increment (the so called “optical
guiding” effect takes place here). The complete description of radiation modes
is performed with the self-consistent field method to get from the kinetic equa-
tion and the Maxwell equation a unique equation for the field amplitude. The
modes are calculated from the solution of the self-consistent field equations
inside and outside of the beam. To define eigenvalues, the conditions of the
quadratic integrability and the continuity of eigenfunction and its derivative at
the beam boundary are used. The eigenvalue equation is derived and expres-
sions for eigenfunctions and field distributions are found. The initial problem is
solved for a practically important case when one has a nonmodulated electron
beam and electromagnetic radiation from the master laser at the amplifier en-
trance. The asymptotic formulae for the high-gain mode are derived by taking

11



into account space charge and energy spread of the beam electrons. The opti-
mal conditions of the input radiation focusing on the electron beam are found
for a Gaussian laser beam. Analytic results are compared with the results of
the self-consistent field equations integration on a computer.

Section 11 is devoted to the analysis of a nonlinear mode of the FEL amplifier
operation. The macroparticle method, developed in sections 2 ~ 4, is extended
to the three-dimensional case. Further extension of similarity techniques is
discussed and the reduced self-consistent system of the FEL amplifier equa-
tions is formulated taking into account space charge fields, energy spread and
diffraction effects. Then, using the results of numerical simulations presented

in the reduced form, we analyze various features of the FEL amplifier in the
nonlinear mode.

12



2 Linear mode of the FEL amplifier operation

As a rule, the following approximations are accepted in the one-dimensional
theory of the FEL amplifier:

the electron beam has a uniform density distribution in the direction per-
pendicular to the undulator axis;

the electrons move along identical trajectories parallel to the undulator axis;
the amplified wave is a plane wave;

— the slippage length of optical bunch with respect to the electron bunch is
much less than the length of the electron bunch.

One-dimensional theory of the FEL amplifier has been studied thoroughly by
many authors and the most essential results has been obtained in refs. [11]

- [14]. The authors of ref. [11] carried out the first theoretical study of the
linear mode of the FEL amplifier operation. They obtained the self-consistent
field equations and derived from them the eigenvalue equation taking into
account action of the space charge field and influence of the energy spread
of the electrons in the beam. In ref. [12] the Laplace transform method was
used to obtain the solution of the initial-value problem for the case of neg-
ligibly small energy spread of electrons in the beam. Ref. [13] contains the
most comprehensive study of the initial value problem using Laplace trans-
form technique. The authors of this paper obtained the Laplace transform of
the self-consistent field equations, taking into account the effect of the energy
spread of the beam particles and managed to derive from them an expression
for the Laplace transform of the field amplitude. The field amplitude in this
case may be found by means of inverse transform which requires the compu-
tation of an integral over complex plane. For a number of cases, for instance,
for a Lorentzian energy spread, this integral can be transformed to an integral
along the closed contour in the complex plane and calculated using the calcu-
lus of residue theory. This mathematical trick does not work for a Gaussian
energy distribution, and in that case the authors of ref. [13] solved the initial-
value problem using numerical methods. However, it is important to note that
in practice there is often no need for a complete solution of the initial-value
problem, since it is sufficient to consider only the case of high gain. In the limit
of high gain the Laplace method can be used to obtain an analytic solution
of the initial-value problem even in the case of a Gaussian energy spread. The
corresponding asymptotic expression for the gain has been derived in ref. [14].

In the linear mode of the FEL amplifier operation, the output radiation power
is proportional to input one. Physically it means that in the linear regime the
first harmonic of the beam density modulation dominates significantly against
the higher harmonics. So, when describing the linear mode, a linearized kinetic
equation can be used for description of the particle motion. As a result, very
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powerful analytical technique can be used. In exposing the linear theory the
main emphasis is put on finding analytic solutions of the self-consistent field
equations with regard to the effects of space charge and energy spread of parti-
cles in the beam. An interaction process of electron beam with electromagnetic
wave in an undulator in the linear mode of operation can be described by a
unique integro-differential equation. The solution of the latter under stated
initial conditions at the entrance into the interaction region allows to deter-
mine a relationship between wave field amplitude and undulator length and
thus to calculate the output characteristics of the FEL amplifier. We solve
the initial-value problem using the Laplace transform technique. The rigor-
ous results obtained in a reduced form furnish universal plots for calculating
the output characteristics of a FEL amplifier in the linear mode of operation.
Besides, these analytic solutions serve as a reliable basis for the development
of numerical methods. The analysis of nonlinear processes refers to the prob-
lems solvable only numerically by a computer. On the other hand, testing of
the numerical simulation codes would be difficult without the use of rigorous
results of the FEL amplifier linear theory as a primary standard.

2.1 Effective Hamiltonian

Let us consider an FEL amplifier with a helical undulator. The undulator
magnetic field at the axis has the form:

ﬁw(z) = €xHy cos(kyz) — €y H,y sin(ky, 2),

where Ky, = 27/, is the undulator wavenumber and €x,y are unit vectors
directed along the z and y axes of the Cartesian coordinate system (z, 9, 2).
One of the main characteristics of the undulator is the undulator parameter

K:

K = eH, [m.c*k,

where (—e) and me. are the charge and the mass of the electron, respectively,
and c is the velocity of light. It is useful to present another form of this
expression convenient for numerical calculations:

K =0.0934 x H, [kGs] x A, [cm].

We neglect the transverse variation of the magnetic field and assume the elec-
trons to move along the constrained helical trajectories parallel to the z axis:

—

U1(2) = cbs[€x cos(kwz) — €, sin(ky2)].
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The electron rotation angle 6, = K /v (where v = £/m.c? is relativistic factor
of the electron with nominal energy &) is considered to be small and the
longitudinal electron velocity v, is close to the velocity of light ¢ (v, ~ ).

The electric field of the amplified wave is presented in the complex form:

Ey+E, = E(z) expliw(z/c —t)],

where w is the frequency of the amplified wave. The complex amplitude of the
field E does not depend on time at any space point which corresponds to the
standard formulation of the initial problem with the definite initial conditions
at the undulator entrance at z = 0. We assume the complex amplitude E(z)
to be a slowly changing function, i.e. | 0E/0z | < ky | E |.

Let us consider the Hamiltonian formalism for the equations of motion of the
electrons in the total electromagnetic field of the undulator, the radiation and
the space charge. The Hamiltonian is defined as

H(per 2,t) = [(poc + eAs)? + (A + Ay)? + mzc“]”2 ~ ed. (2.1)

Here p, is the longitudinal component of the generalized particle momentum,
A is the vector potential of the wave, ¢ and A, are, respectively, the scalar
potential and vector potential of the space charge field, and

s

Au(z).= =& x /ﬁwdz

is the vector potential of the undulator field. In the one-dimensional model
the transverse generalized momentum of the particle is an integral of motion,
and we take it to be zero. We transform the Hamiltonian H from the variables
P2, z and t to variables convenient for describing the amplification process.
We shall use the extended Hamiltonian formalism where t is considered as a

canonical variable (see Appendix A) and choose coordinate z as a new time.
Phase

Y =kwz+w(z/c—1t) (2.2)

is chosen as a new canonical coordinate. According to formula (A.7), trans-
formation (2.2) is canonical when

P =—po/w,  Po=p.+ (po/w)(kw +w/c),

where (po,p,) and (Po, P) are the old and new canonical momentums conju-
gated to (¢, z) and (z,%), respectively. Hence, the new Hamiltonian H(P, ¢, )

15



1s given by

7:((’P7 1/1, Z) = (KW + w/c)p - pZ(Pv 2, d)) = (KW + W/C)P +
eA,fc—c! [(Pw +ed)? —e(A+ Ay)? - mzc"]l/z, (2.3)

and the canonical equations of motion have the form

dip/dz = OH/OP,  dP/dz = —0H/0.

It is well known that the scalar potential ¢ and the longitudinal component
of the vector potential A, may be subjected to the following gauge transfor-
mation:

¢=¢ =¢—c10%/0t, A, = A=A, +0%/0z,

where ¥ is an arbitrary function of coordinate z and time ¢. In this case the
longitudinal component of electric field

E,=-0¢/0z—c'0A,/0t

remains unchanged 3. We choose for the gauge transformation the following
function

%= c/dt¢(z,t)

As a result, the space charge field is described with the only vector potential
and we may write the following expression for Hamiltonian (2.3)

H=(ku +w/c)EJw — cTHE? — XA+ Ay)? — m2c)/? +
= [ aE.(z,v).

Hence, the electron interaction with the space charge field is now described
with the longitudinal component of electric field F,. In the chosen gauge the
canonical momentum P is equal to the electron kinetic energy £ divided by
w.

31t should be noted that the value of canonical momentum P is not gauge invariant
as well as potentials.
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It is convenient for the further consideration to simplify the expression for
the Hamiltonian. First, we expand Hamiltonian H in the first order of the
radiation field amplitude A. Such an approximation is valid when the electron
transverse constrained motion is determined with the undulator field and not
with the radiation field, i.e.

|E|(1‘-UZ/C)<<HW,

where | E |= ¢™' | 9A/dt |. So, we get

H = g(nw +w/c) — l[82 —e?| A, |? —m§c4}1/2+
w c
208, A . -
W[éﬂ | A, —mﬁc‘*] 1/2 n E/dll)Ez. (2.4)
w

Second, we expand Hamiltonian (2.4) up to the second order of the energy
deviation £ from the nominal value &,. Finally we get

w

26’7280

Z

/ dipek,, (2.5)

Hw = H(P,4,z)=CP + P?— (Ue" + U"e™) (1 - P/&) +

where P = £ — &, C = kw — w/(2¢y}) is the detuning of the electron with
the nominal energy &, U = —eb,E(2)/(2:) is the complex amplitude of the
effective potential of the particle interaction with the electromagnetic wave,
and

0 = eHy/(Eokw), v 2=~ 46, v = & /(mec?).

2.2 Self-consistent field equations

The evolution of the electron beam distribution function f is determined with
the kinetic equation:

of  OHOf OHOf _

Ep +EF@—%8_P_O' (2.6)

In the linear approximation we shall seek the solutions for f and E, in the
form

f=fot fieY 4+ fre™, E,= B 4 Ere .

17



Using equations (2.5) and (2.6) we get

5fi+z(c+wp/(c7250))f1 + (iU — ek, )5%=0. (2.7)

We assume that the electron beam at the entrance into the undulator is mod-
ulated neither in velocity nor in density, i.e.

filimo=0,  folsmo= noF(P), /FdP — 1, (2.8)

where ng is the beam density. The beam current density is connected with the
distribution function f; as follows (we assume here v, =~ c):

Je=—Jjo+ ne+C.C., i~ —eC/fldP,

where —j5 o —ecng is the longitudinal component of the beam current density
at the undulator entrance.

In the framework of the one-dimensional model, from Maxwell’s equation we
have the following equation for E,:

OE,/0t = —iwE,e™ + C.C. = —47r]rl cos(yp + 1) =
—4rje + C.C. (2.9)

Here j; and ¢; are the amplitude and phase of the first harmonic of the beam
current density, respectively, which are connected with the complex amplitude
j1(2) by relation: (1/2)j; exp(¢1) =| 11 | exp(¥1) = j1. As a result, we have

E, = —idnj1(2)/w. (2.10)

Substituting egs. (2.8) and (2.10) into the kinetic equation (2.7) and integrat-
ing over z and P we get the following integral equation for j;(z):

31(2):ij0]d2/[br+ 47_63@] X

w

/deF (2) exp{ [C-}- 672];0]( ' — z)} (2.11)
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One more relation between the amplitudes j;(z) and E(z) must come from the
solution of the electrodynamical problem. The vector potential of the radiation
field can be found using the wave equation

82A)822 — T2 A)0t® = — (4 /c) L,

where the density of the transverse beam current is given by

Jx +igy =0 exp(—iﬂwz)jl COS(#’ + 1)

We shall seek a solution for A, (z,¢) in the form

Axy = Axy(2) exp [iw(z/c — )] + C.C.

in which we have explicitly isolated the strong z dependence of A, . From the
wave equation we have

. 27,(4) 6 Ax 82 Ax
exp[zw(z/c——t)]{Tg (/iy 3.2 Ay + C.C. =
—470, | cos(kwz) _
_— J1cos(Y + ). (2.12)

¢ — sin(ky 2)

Neglecting rapidly oscillating terms in eq. (2.12), we transform it to the equa-
tion containing only slowly varying amplitudes:

dE[dz = —270,c7'}(z), (2.13)

Here we have used the fact that in the one-dimensional approximation the
vector potential and the electric field vector of the electromagnetic wave are
related as cEy, = —0(Ayy)/0t. The characteristic scale of the complex ampli-
tude £ change is much larger than the radiation wavelength, so in eq. (2.13)
we have omitted the second derivative of E with respect to z. Substituting
(2.11) into the right-hand side of eq. (2.13), we easily obtain a single integro-
differential equation for the field amplitude E. For the rest of our discussion
it is convenient to transform to reduced parameters given by the relations:

2=Tz, C=CJT, P=wP/(c2&D).
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The gain parameter I' and longitudinal plasma wavenumber A, are given by
formulae -

1/2

) Ap = [47rj0/(7z2'7IA)] :

. 1/3
T = [rjob2w/(cy2y1n)]

where Iy = m.c®/e ~ 17 kA. As a result, we obtain the following reduced
equation:

dE [ [ e g dE()
7 —O/dz {E(z)—{—zA }x

P dé/
_4 dﬁjg exp{i (P+C) (¢ - 9)}. (2.14)

Here Af) = A2/T? is the space charge parameter and F(P) is the distribution in

the reduced momentum P satisfying the normalization condition [ F'(P)dP =
1. )

2.3 Solution of the initial-value problem by Laplace technique

Equation (2.14) is an integro-differential equation for the field amplitude E(%)
and can be solved by a Laplace transform technique. Multiplying eq. (2.14)
by exp(—pz) with Rep > 0 and integrating over z from 0 to oo, we obtain for
the integral of derivative of F with respect to z the following expression:

[ d¢ exp(=p0)BE(C)/0C = PE(p) ~ Eexs

Here E(p) is the Laplace transform of the field amplitude E

E(p) = [ d¢ exp(—pO)E(C),

Eext is the amplitude of the field at the undulator entrance at z = 0 (for
definiteness, we assume its value to be real and positive, i.e. Eexi = Fexy > 0).
The Laplace transform of eq. (2.14) has the form

B (B i (o5 — B g 1)
PE() — Eox = [B(p) +i8 (pB0) = Eo)] [ a6

(2.15)
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If we solve eq. (2.15) for E(p), we obtain the expression

E(p) = E; : (2.16)
p_l—z‘[\g[)
where
i F(¢)
D= [d _ 2.17
[ e 210

To find E(z), we should take the inverse Laplace transform of (2.16). This
transform is defined by the integral

~'41i00 ~'+1i00

; 1 - Eex A2
By =5 [ @BMew(s) =352 [ dk%- (2.18)
»y/-—ioo ’Y’—iOO _1—1A%D

Let the integration in the complex A plane run parallel to the imaginary axis.
The constant 4’ is a real positive number, larger than the real parts of all
the singularities of the integrand. The linear integral (2.18) obtained by the
inverse transform is usually calculated by closing the integration contour by
a semicircle at infinity in the left half-plane and using the residue theorem.
For this trick to be applicable to the integral (2.18), it is necessary that the
integrand in (2.18) have an analytic continuation into the left half-plane, and
the coefficient of exp(A2) in the integrand in (2.18) satisfies the conditions of
Jordan’s lemma.

According to eq. (2.17), the function Disa complex integral and has a discon-
tinuity on the imaginary X axis. This integral becomes an analytic function if,
following Landau’s method [15], the function D is defined as

A+i(e+0)

S o [ F(¢) fgey P _

D_P—!o d{/\+i(£+é)+7rF(z)\ ¢),  Re(A)=0

. oo 1:—1/(6) By A

D_-_/ d{—)\+i(€+é)+27rF(z/\ &), Re(\) <0 (2.19)
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Here P(...) denotes the principal value. If the distribution function F(P) is
such that the coefficient

1
A——D

1-iA2D

of exp(AZ) in the integrand in (2.18) satisfies the conditions of Jordan’s lemma,
the complete wave field can be represented as a superposition of partial waves.
Finally, using the residue theorem, we obtain the following expression for F(z):

(N2
- eth _oxp(AE) (2.20)
____;

1 - 1-iA2 ?

Here we have introduced the abbreviated notation

A

. . ' dD
DJ = D‘A:x\p DJ d/\ |/\ Ay

where J; is the j-th root of the equation

~

)\ - —IDA_A = O, (221)
1—14AZD

and the function D is defined by expression (2.19).

2.8.1 “Cold” electron beam
In the limit of a small energy spread, the distribution function F can be

replaced by the delta function £ = §(P). In this case the function D is given
in the entire complex A plane by

D=i(x+iC)”

Since the coefficient of exp(A%) in (2.18)
1 1

— & )\ — “—.12—.
1-iA2D (A +iC) +A2

is of the order of O(A™!) for | A |— oo, the condition of Jordan’s lemma is
satisfied. Therefore, eq. (2.20) is applicable and the partial-wave expansion of
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the wave has the form

E(Z) — E tz exp(/\Jé)
T - 20 40N

where ); are the roots of the cubic equation

A=i [(A +iC)" + [\;ﬁ] o (2.22)

Using the relations between the roots of the cubic equation (2.22),
MAgds =14, MAz+ s+ MAs=—C*+ A?,,
)\1 + /\2 + /\3 = '—'220,

after simple algebra we obtain the familiar expression for the wave amplitude
[12,13):

~ )\2A3€XP(A1£’) /\1)\3exp(/\22)
E zEex
)= e [ =0 %) T e ) i)
A Az exp(As?) ]
(A3 = A)(As = Ag) |’

(2.23)

A

Exactly on resonance (C' = 0) in the absence of the space charge field, the
solution for E(z) is written as

E(z) = Eex [exp (\/§+ ié) + exp (_—\/gﬂé) + exp(——ié)] . (2.24)

Fig.2.1 illustrates the dependence of the field gain | £ | / Eex, on the reduced
length 2. When the undulator length is sufficiently large, the contribution
in eq. (2.24) from the growing wave will exceed the other terms, and their
contribution can be neglected. Then for E(z) we can write the asymptotic
expression:

- Eext (\/'?—) + Z .\)
= exp Z}.

5 (2.25)
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Fig. 2.1. Dependence of the field gain E/FE,,; on the reduced length 3. Solid curve
is calculated with analytical formula (2.24) and crosses are results of numerical
simulations with egs. (3.5) and (3.6). Here C' = 0, A2 = 0 and A% = 0.

The power gain G =| E |? / E2 ext 18 an important characteristic of the amplifier.
According to eq. (2.24), the value of G for € = 0 is given by the expression

G= % [1 + cosh \/T?:é (cosh \/Tgé + cos %gz)] .

In the high gain limit, according to eq. (2.25), the power gain G in decibels is
asymptotically equal to

G(dB) = 10lg (| E [* /E2,) = 7.52 — 9.5.

It follows from eq. (2.22) that for [\2 = 0 the partial-wave propagation con-
stants A;, A2 and A3 are universal functlons of only the detuning parameter
C. Study of characteristic equation

A +i0) = (2.26)

shows that one of the partial waves is a growing wave in the detuning range
C < 1.89. We denote the propagation constant of the growing partial wave by
A. Then in the detuning range C < 1.89 the power gain for a sufficiently long
undulator can be written asymptotically as

G = Aexp (2 Re([\)é) , (2.27)
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where the increment Re([&) and the pre-exponential factor A are universal
functions of the detuning parameter C. Graphs of these functions are shown
in Figs.2.2 and 2.3. The maximal increment is reached exactly at resonance
C = 0. For small deviations from the resonance, when C? < 1, the increment
is given by

Re(A) = 01. (2.28)

1.0 ———
QB; 5\‘&\3
0.6 s &\\

0.4}

\
]

0.2}

0.0 b— —_—
-3 -2 -1 0 1 2

C

Fig. 2.2. Dependence of the reduced increment Re(A) on the detuning parameter
C. Solid curve is calculated with exact solution of the eigenvalue eq. (2.26) and
crosses are results of numerical simulations with egs. (3.5) and (3.6). Here Af) =0
and AZ =

For large negative detuning, | ¢ |> 1, we asymptotically have

Re(A) =|C |7/2.

The electromagnetic wave amplification process in the undulator displays res-
onance behaviour which causes the gain factor to depend strongly on the
detuning parameter C. Usually the amplification bandwidth is defined as the
difference of the input signal frequencies w; — wy = Aw for which the output
power is decreased by a factor of two. It is convenient to introduce the amplifi-
cation bandwidth in the reduced detuning AC, which is related to the amplifi-
cation bandwidth in the frequency of the input signal as Aw/wp = (I'/kw)AC,
where wg = 2¢y2k,, is the resonance frequency. The amplification bandwidth
can be found by solving the initial-value problem. In Fig.2.4 we show a graph
of the dependence of the amplification bandwidth AC on the maximal power

25



1.5 ——————r ' —
1.0
<t
0.5 /
i //
0.0 =
-3 -2 -1 0 1 2
¢

Fig. 2.3. Dependence of the _preexponential factor A entering eq. (2.27) on the
detuning parameter C'. Here A2 = 0 and A% = 0.
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Fig. 2.4. The dependence of the amplification bandwidth AC on the maximum
power gain. Here A2 = 0 and A% = 0.

gain. This graph has been calculated using eq. (2.23) and the roots of the
characteristic equation (2.26). As an illustration, in Fig.2.5 we give a graph of

the amplitude-frequency characteristic for the maximal gain Gpax = 40 dB.

In the high gain limit, we may neglect the change of the pre-exponential factor
A in eq. (2.27), and the amplification bandwidth can be calculated using eq.
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Fig. 2.5. Dependence of the field gain E/FE.y, on the detuning parameter C. Solid
curve is calculated with analytical formula (2.23) and crosses are results of numerical

simulations with egs. (3.5) and (3.6). Here the reduced length of the undulator is
zy = 6.6, AZ—OandA?P_O

(2.28):

10.4
G(dB) + 9.5

At G > 40 dB, this approximate expression for AC provides an accuracy
about of several per cent with respect to the exact solution of the initial-value
problem (see Fig.2.4).

Let us now consider the influence of the space charge field on the amplification
process in the undulator. When the space charge parameter is small, A2 <
1, the space charge effects can be included using perturbation theory. After
s1mple calculations using eq. (2.22), we find that the maximal increment is
attained for the detuning parameter Crn A2 and is given by
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In the opposite case, Ag > 1, the space charge field significantly affects the
increment, which at the maximum for Cy, ~ A, is equal to

1
27,

max (Re(A)) o~

When the space charge parameter Af, is of the order of unity, the increment
can be found by solving the cubic characteristic equation (2.22). It should be
noted that, according to eq. (2.22), the maximal increment and the detuning
parameter Cpm for which this maximum is reached are universal functions of the
space charge parameter Ag. The pre-exponential factor A in the asymptotic

expression (2.27) at tuning to the maximal increment (i.e. at ¢ = Cr) is also a
universal function of the space charge parameter f\g Graphs of these functions
are shown in Figs.2.6 — 2.8. It is seen from Fig.2.8 that preexponential factor
A achieves the value of 1/4 in the asymptotic of a large value of the space
charge parameter. As an illustration, in Fig.2.9 we show the curve describing
the dependence of the increment on the detuning for several values of the
space charge parameter A2 .

The analysis of the initial-value problem presented in this section refers to the
case when unmodulated electron beam and electromagnetic wave are fed to
the FEL amplifier input. In Appendix B we present more general approach to
the solution of the initial-value problem for the FEL amplifier with a “cold”
electron beam. '

2.3.2 Lorentzian energy spread

Let us consider the case of an electron beam whose energy distribution function
is given by a Lorentzian distribution

1 q
P& = e ar+e

The expression for the reduced distribution function F is of the form

The relation between the parameters g and ¢ is given by

§ = wq/(v2c&ol).

28



1.0
0.8
< [ \
0.6 \
o -
E:/ | \\
S 0.4 E—
g
0.2}
0.0 L :
0 2 4 6 10
Rz

Fig. 2.6. Dependence of the maximal reduced increment maxRe(A) on the space

charge parameter f\g. Here f\?r =0.
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Fig. 2.7. Dependence of the optimal value of the detuning parameter C,, on the

space charge parameter Ag. Here AZ = 0.

Substituting Lorentzian distribution into eq. (2.19), we find that the function
D in the entire complex A plane is given by

~

D=i(A+¢+iC)".
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Fig. 2.8. Dependence of the preexponential factor A entering eq. (2.27) on the space

charge parameter A2. Here C = Cy, and Az =0.
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Fig. 2.9. Dependence of the reduced increment Re(f\) on the detuning parameter
C for several values of the space charge parameter Af, Curve (1): f\g = 0, curve
(2): f\g = 1, curve (3): f\g = 4 and curve (4): Ag = 9. Solid curves are calculated
with exact solution of the eigenvalue eq. (2.22) and crosses are results of numerical
simulations with egs. (3.6) and (3.16). Here Az =0.
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The coeflicient of exp(Az) in the integrand in eq. (2.18) in this case is equal
to

1 1
-—D A
A 1-iAZD (A++iC ) +A2

and obviously satisfies the conditions of Jordan’s lemma. Therefore, eq. (2.20)
is applicable:

- exp();2)
E(z) = Eex . A ’
‘121_22(A+@+20)A§

where ); are the roots of the cubic equation
1

)\:i[()\+(j+z’(:’)2+[\§]_ .

Therefore, in the case of the Lorentzian energy spread the electromagnetic
wave in the undulator can be represented as the sum of three partial waves.

2.3.3 Gaussian energy spread

We conclude the analysis of the initial-value problem by considering the case
of a Gaussian energy distribution:

F(€ - &)= (2r < (88 >) exp (2—%’)%) (2.29a)

The corresponding distribution in the reduced canonical momentum P has
the form

F(P) = (QWA%)_1/2 exp (—132/(2A?r)) . (2.29b)

The energy spread parameter A% is related to the rms energy spread < (A€)? >
as

A} = w? < (AE)? > [(7APT2ED). (2.29¢)

31



We begin the calculation of the function D with the case Re()) > 0. From eq.
(2.19) we have

~ T Fr(e) T 1363
D= [d——> _—; [ d : Re()\) > 0 (2.30
/ éA+z(£+ C) _Zo §(A+i(5+c‘*))2 (A)>0 (230)

Substituting the equation

1 o0
(A+i(5+c‘>)2:0/mxp{ prie+C)rhdr Re(h) >0

into eq. (2.30) and integrating over {, we obtain

o0

o e .
D= z/Texp ——5 = (/\ +zC) T ¢ dT, Re(A) > 0 (2.31)

0

In the left half-plane, using eq. (2.19) and the expression

(/\+z,(€1+é))2 :/Texp{[)\+i(§+é)] rhdr,  Re(}) <0,

the expression for the function D can be brought to the form

A

.7 Air? A
D=z/7‘exp — 3 +()\+ZC>T dr—

0

A +iC)
AQT” (A +iC) exp {(——;—A%l} ., Re(\) <0 (2.32)

We note that the expression for D in the left half-plane contains a term pro-
portional to exp(A?). Therefore, the function Dhas a singularity at infinity. In
this case, as follows from the Picard theorem, the integrand in eq. (2.18)has an
infinite number of poles in the left half-plane, which bunch up at infinity and
are located near the lines arg(A) = £37/4. According to Jordan’s lemma, the
calculation of the linear integral (2.18) by closing the integration contour with
an infinite semicircle in the left-hand plane is possible if the function E())
tends to zero for | A |— oo uniformly in the argument of A. This condition is
not satisfied for the Gaussian distribution function. In this case the Laplace
transform method does not lead to an analytic solution of the initial-value
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problem in a closed form. However, it is important to note that there is often
no need of a complete solution to the initial-value problem, since it is sufficient
to consider only the case of high gain. Below we show that for the Gaussian
distribution function the Laplace transform method can be used to obtain an

asymptotic expression for the amplification of an FEL amplifier in a closed
form.

We shall use the following mathematical trick. Shifting the integration path

in (2.18) to the left half-plane, we use the residue theorem to transform the
linear integral to the form

' +ico —a'+ic0

/d)\E'()\)exp(/\é): / AAE(\) exp(A3) +

~!' =00 —a'—i00
> Res E())exp()3), (2.33)
—~a’'<Re \

where the summation runs over the roots of eq. (2.21) lying to the right of the
line (-a' — ic0, —a’ + i00). Here o is a real positive number, and Res E();)
is the residue of the function E()) at the pole ). Using equations (2.30) and
(2.31), it can easily be checked that there is only one root of eq. (2.21) in
the right half-plane, and for any finite value of o’ the number of roots in the
interval —o’ < Re(}) < 0 is always finite. If the undulator is sufficiently long,
the contribution to eq. (2.33) from the term proportional to exp(A¢3) with
Re(Xs) > 0 will be greater than all the others, and the contribution of the
latter can be neglected. Then for the amplitude E(z) we can write down an
asymptotic expression of the form

- exp(Az
E(Z) = EextLb,)’

(-iA3D)

(2.34)

where A is the growing root of eq. (2.21) and the values of D and D’ at A = A
can be found from eq. (2.31). The next step is to write down expression (2.34)
in the form convenient for numerical calculations.

We express the function D’()) in terms of the function D()). From integral
tables we find the expression for Re(A) > 0:

A2 .2

D =i7‘rexp{—AT2T — ()\+ié’) T} dr =
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AN 2
; 14/7 /2 . A+C 10
S A/ (/\+iC)exp ( - ) [l—erf(ﬂ)J,
A% A% A% V2A1
\ r AZr2 , i (A +1C
D'=—i/72exp{—ATT —</\+2'C)T}d'r:——( — )—
0 2 At
AN A
i/2m Az R (A +:iC) A+iC
2[\% [()\‘}—ZC) +AT] eXp —2ATT—— —erf ‘\7_57\: s

Here erf(() denotes the error function of complex argument:

¢
erf(¢) = 2%’1/2/exp(—u2)du.
0

In the end we obtain

D- L) (2.35)

Using eq. (2.21), the value of function D for A = A can be expressed in terms
of the root A:

~1-1

D(A)=A[1+iA2A]". (2.36)

Using eqs. (2.34) - (2.36), we easily obtain an asymptotic expression for the
gain in a form convenient for numerical calculations:

P T
- A ~ A -1
(A 1 A+Aj-zC) A—AHC]} ’ (2.37)
A+iC " A% At

A particularly simple expression is obtained when the space charge effect is

34



absent. In the limit Ag — 0, form eq. (2.37) we have

~

. AZ[A+iC .
TChie1—Afhs é}zEextexp(Az), (2.38)

o~
[S——]

where A is the growing root of the eigenvalue equation

~

A= i7exp [—A3r?/2 = (A+iC) 7| rdr,  Re(A) >0 (2.39)
0

Let us illustrate the obtained results with calculations of the FEL amplifier
characteristics. At a sufficiently long undulator, the power gain G can be
written as

G=|E*|E}, = Aexp 2Re(A)2],

where in the general case A and A are functions of the detuning C, space
charge parameter A2 and energy spread parameter A2 In Fig.2.10 we show

the dependence of the field amplitude gain on detuning €' when there is a
strong influence of the space charge field and energy spread (2 =8.5, A2 =1,

A% = 0.1, maximal field gain is equal to 40 dB). Calculations have been
performed using asymptotic formula (2.37).

For the parameter region where the space charge effect can be neglected (A2

0), the increment can be found by solving the eigenvalue equation (2.39). For
a small energy spread, when A < 1, the maximal increment is attained for
the detuning Ce, ~ 3AT and is equal to

ﬁ A2
2

max (Re(A) ) ~ (1—A%).

In the opposite case, when A2 > 1, the energy spread significantly affects the
increment, the maximum of which is attained at Cp, ~ A1 and is equal to
0.76

max ( Re(A) ) ~ 7
T

The preexponential factor (see formula (2.27)) is close to the unity, A ~ 1.

When the energy spread parameter A% is of the order of unity, the increment
can be found by solving the eigenvalue equation (2.39). It follows from this
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Fig. 2.10. Dependence of the field gain E/FE,,; on the detuning parameter C. Solid
curve is calculated with analytical formula (2.37) and crosses are results of numerical

simulations with eqs. (3.6) and (3.16). Here the reduced length of the undulator is
3 = 8.5, A2:1andA%_Ol

equation that the value of maximal increment and the value of the detuning
parameter Cr at which it is achieved are universal functions of the energy
spread parameter A2 The pre-exponential factor A at the value of C=Chnis
also universal function of A2 . Graphs oh these functions are given in Figs.2.11
- 2.13. For illustration, in Fig.2.14 we show the curve describing the depen-

dence of the increment on the detuning for several values of the energy spread
parameter A%.

It is interesting to compare asymptotic analytical results with the results of
numerical solution of integro-differential equation (2.14). This equation has
been integrated with Runge Kutta method and in Fig.2.13 we present the
results of these calculations. It is seen that in the high gain limit analytical
formulae provide sufficiently high accuracy.

2.4 Linear theory of the FEL amplifier with a planar undulator

We have considered above the operation of the FEL amplifier with the helical
undulator. In the helical undulator the electrons move along helical trajecto-
ries and longitudinal component of the electron velocity is constant. Another
popular undulator configuration is a planar one. Constrained motion of the
electron in the planar undulator differs from that in the helical one. The main
peculiar feature of this motion is that longitudinal velocity of the electron v,
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Fig. 2.11. Dependence of the maximal reduced increment max Re(A) on the energy
spread parameter AZ. Here Ag = 0.
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Fig. 2.12. Dependence of the optimal value of the detuning parameter C,, on the
energy spread parameter A%. Here A2 = 0.

oscillates along the undulator axis. This results in some novel features of the
FEL amplifier. For instance, there is a possibility to amplify electromagnetic
wave with a frequency multiple to the main resonance frequency [16] - [18].

Theoretical problems of the FEL amplifier with the planar undulator have
been studied by many authors [19] - [24]. The early studies have been per-
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Fig. 2.13. Dependence of the preexponential factor A entering eq. (2.27) on the
energy spread parameter A2 Here ¢ = C,, and A2 = 0. Solid curve is calculated
with analytical formula (2.37) and circles - with the numenca,l solution of eq. (2.14).

Re A

Fig. 2.14. Dependence of the reduced increment Re(A) on the detuning parameter
C for several values of the energy spread parameter A2 Curve (1): A = 0, curve
(2): A2 = 1 and curve (3): AZ = 4. Solid curves are calculated with exact solution
of the eigenvalue eq. (2.39) and crosses are results of numerical simulations with
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formed without taking into account the space charge field. For the first time
this problem has been studied in refs. [21]. Not all the aspects of the prob-
lem have been considered correctly in this paper and finally they have been
resolved in papers [23,24].

2.4.1 Self-consistent field equation
Magnetic field of the planar undulator is of the form:

Hi(z) = €.H cos(Kyz),

where €, is the unit vector directed along the z axis of the Cartesian coordinate
system (z, y, z). We assume the electron to move along identical sinusoidal
trajectories parallel to the z axis:

—

Uy(2) = —€ychs sin(ky2).

The oscillation amplitude of the transverse velocity of electrons is considered
as a small value and the longitudinal velocity of electrons v, is close to the
velocity of light (v, ~ ¢).

In the FEL amplifier with the planar undulator only a linearly polarized plane
electromagnetic wave may be amplified. In the frame of the one-dimensional
model, the electric field vector of amplified wave may be represented as

E = &E,(z)exp[iw(z/c — t)] + C.C.

where w is the frequency of the amplified wave. It is assumed that the field
complex amplitude of the amplified wave Ey is the slowly changing function
of the coordinate z in the sense that | dE, /32 |< &y | Ey |.

The Hamiltonian of the particle is given with the expression (2.1). In the same
way as it has been done above, we choose the coordinate z as a new time and
the phase

Y =kuyz+w(z/c—1t)

as new generalized coordinate. The form of the Hamiltonian of new variables
coincides with that of expression (2.3). In the first order of A, and at small

deviations of the electron energy £ from nominal energy &, the Hamiltonian
takes the form:
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w
2e7f &

e + Ume¥] - / dpeE,, (2.40)

P? —

— wb}f
H(P,v¢,z)=|C + —4;—cos(2nwz) P+

where P = € — &, C = ky —w/(2¢4}) is the average detuning of the electron
with the energy £ = & from the resonance (we assume here that C' < &y ),

U= —[1—exp(—2iryz)] ebFy(z)/2

is the complex amplitude of the effective potential of interaction,

b= cH/(Eorn), W27/, 7= Eof(medd).

The evolution of the distribution function f(P,, z) is governed by the kinetic
equation (2.6). We linearize variables in the following way:

f= f0+f1€iw+ff€_i¢, E, = Ezei’/’—}-E;‘e‘iw.

We consider the case when the beam is modulated neither in velocity nor in
density at the entrance into the undulator, i.e.

fil:mo =0, folizo = noF(P), / F(P)dP = 1. (2.41)

In the frame of the one-dimensional model, from~the Maxw~ell’s equation, F,
satisfies to the eq. (2.7) which leads to relation E, = —i4rj;(2)/w. Complex
amplitudes j;(2) and f;(P, z) are connected by the relation j; ~ —ec [ f1dP.

According to egs. (2.6) and (2.40), the evolution of complex amplitude fi is
described with

J - . wb} N
Efl + [C + i cos(2kwz) + c71280P] h+
: -~ a
i [U + dmeji(z) fw] 5ofo=0. (2.42)

The solution of eq. (2.42) has the form:
J1(z) = ijO/dz' {— [1 — exp(—2ikw2')] e By (2")]2 + 47re§1(z')/w} X
0
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/dP (dF(P)/dP)exp{i [C +wP/(c'?&0)] (+ — 2) +

w [sin(2kwz") — sin(2ky 2)] }, (2.43)

where jo >~ ecng and v = 6w/ (8cky ).

One more relation connecting complex amplitudes j;(z) and Ey(z) follows
from the wave equation

82A)82* — 20 A)01® = —(4m)c)] .,

where j, is the density of the transverse current:

71 = —&bisin(kwz) (J1€™¥ + C.C.).

It follows from relation cE, = —9A,/dt that

Ed—E’y = —inbic! [exp(2iky2) — 1] 1(2). (2.44)
z

It is convenient for the further consideration to rewrite the expression for
amplitude j1(2) in the form:

71(2) = Ja(z) exp [—iv sin(2ky )] . (2.45)
Using expression (2.45) and expansion
n=+o0o

exp [iv sin(2ky2)] Z Jn(v) exp(2inky z),

n=—oco

we rewrite eqs. (2.43) and (2.44) as follows

n=—oo

. - z ) 691 n=+oo
Ja(2) =z]0/dz ——E N YD Ja(v) {exp [2inky ') —
0

exp [2i(n — Diwz]} + 5u() | x

/ dP (dF(P)/dP)exp [i (wP/(cx?&) +C) (' = 2)],  (2.46)

— 00
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n=+4o00

g—E =—irhicT Ja(2) D (=1)"Ja(v) x

Nn=-—00

{exp [2i(n + 1)ky2] — exp [2ink, 2]} . (2.47)

2.4.2  Analytic treatment of the FEL amplifier with the planar undulator

The system of two coupled equations (2.46) and (2.47) can be solved with
Laplace transformation techniques. The Laplace transforms of eqs. (2.46) and

(2.47) have the form:

- tjowD(p eby "
Ja(p) = ']7127{ - H_X_:oo In( [ (p— 2inky ) —
E(p—2i(n - Dmw )] + =55(0)}, (2.48)
_ imf) eroe
PE(p) — Eext,=——ce1 2 (=1)"Jn(v) x
Ua (p = 2i(n + 1)kw ) — Ja (p — 2inkw )], (2.49)

where notations are introduced (Re(p) > 0): Eey, = Ey(0),

i) = [dei, )= [ dsem By,

o0

D(p) = [ de(dF(€)/de) o +i€ +iC)

— o0

If eq. (2.48) is solved, we get the formula

= Wijow D(p)

7lp)= " 2924151 iAZD(p)
n=+oo
_X_: Jn(v) [E( —2inky ) — E(p—2i(n — 1)Ky )]

where Aé = 4njo/(IarE7y) and In = mec®/e ~ 17 kA. Substituting the expres-
sion for y,(p) into eq. (2.49) we have
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_ : 702 jow "I
E - Eex = - ! -1)" n
PE(p) = B = —g "5 (1)1, (0)
D(p — 2i(n + 1)ky)
1 —1AZD(p — 2i(n + 1)Kkw)

m=+00 B
_2: Jm(v) [E(p—2z'(m+n+l)nw)—E(p—Qi(m+n),¢w)] -
D(p — 2inky)

1= iA2D(p — 2inky)

k=—o00

k=40
f_j Je(v) [E (p = 2i(k + n)kw) — E (p — 2i(k +n — 1)5y)] } . (2.50)

The inverse Laplace transform is defined with the integral:

1 ~'+ico
By(z) = 5~ / AAE(\)e. (2.51)

7 J
¥ —too

The constant 4’ is a real positive number which is greater than real parts of
all the singularities of function E()). As it is difficult to analyze eq. (2.50) in
the general form, it seems interesting to consider the important case of the
high gain limit. In this case the expression for the wave field (2.51) reduces to

the single residue of the integrand taken in the pole located at the point with
the most positive real part

E,(z) = Res E(A)exp(Az), Re(A) > 0. (2.52)

We consider the energy spread in the beam to be a Gaussian with the distri-
bution function (2.29a) and the function D()) given by the expression

D) =i [exp [-A3r*/2 = (A +iC)r] rdr,  Red>0 (2.53)
0

where A% = w? < (AE)? > [(c?{€R) is the energy spread parameter.
Within the scope of accepted limitations the typical scale of length (where the

amplitude and the phase of the wave change significantly) is much more than
the undulator period, i.e.

| A l7 Apa ATa ‘ C |<< Kw. (254)

43



Using formula (2.53) and relation (2.54) it is easy to show that at | n [> 0 the
following inequality takes place

| D(A) |>| D(A — 2ink,) | (2nky )2

Therefore, in the right-hand part of eq. (2.50) when A — A all terms of
D(A—2inky) type may be neglected with respect to term D()). Besides, as A
is the pole of function E()), all terms of E(A — 2ink,) type, except of E()),
may be omitted in the right-hand part of eq. (2.50) at A — A. As a result, it
follows from eq. (2.50) that near the pole A ~ A integrand in eq. (2.51) takes
the form:

E()) ~ Eey [A - 1—_@,’%@)} o (2.55)

Thus, according to expression (2.55), the eigenvalue equation of the FEL am-
plifier with the planar undulator is reduced to

A

A D

S a— (2.56)
1-— zAgD

where A = A/T, A2 = A2/T2, AZ = AZ/T?, ¢ = /T,
D= i/exp [—[\%7'2/2 —(A+ zC')T] rdT,
0

r— [ T0F jow

1/3
V) — (3.
e | o) - ()

If A% — 0, then D — (A + :C)~2 and the eigenvalue equation (2.56) may be
rewritten as

[(R+ic)"+ A2 A= (2.57)

Let us derive now the asymptotic formula for the gain. Using egs. (2.52) and
(2.55), the asymptotic expression for the amplitude of field £,(z) may be
written as

R -1
Ey = Eqexp(Az) {1 - ——I?-A—)z} , (2.58)



where 2 = 'z and D' = dD/dA.

It is evident from egs. (2.20), (2.21), (2.31), (2.53) and (2.56) - (2.58) that in all
the cases the eigenvalue equations and asymptotic formula for the gain of the
FEL amplifier with the planar undulator written down in the reduced form
fully agrees with the corresponding reduced relations for the FEL amplifier
with the helical undulator (see section 2.3).
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3 Saturation effects in the FEL amplifier

In section 2 we have studied the linear mode of the FEL amplifier operation
when an increase of the input power Wy, leads to proportional increase of
the output power W;. When input power is increased further, the operation
of the amplifier becomes to be nonlinear: output power increases more slowly
than input one, and at a certain value of W,y the output power reaches a
maximum. To find the FEL characteristics at saturation, it is necessary to
solve the equations of the nonlinear theory of the FEL amplifier. Analytical
methods are of limited usefulness in the study of the nonlinear regime, and
numerical simulations must be used. The first numerical simulations of the
nonlinear mode of the FEL amplifier operation have been carried out in ref.
[25], and they were developed further in the later studies of refs. [26,27].

The similarity techniques are known to play a dominant role in numerical
simulation of processes observed in the FEL. Within the scope of the one-
dimensional approximation the output characteristics of the amplifier are con-
trolled by 8 dimensional parameters of both beam and undulator:

lw» Kw, W, gOa jOa HW7 < (Ag)2 >a Eexta

where [, &, and H,, are, respectively, the length, the wavenumber and the
magnetic field of the undulator; w and E.y, are, respectively, the input signal
frequency and amplitude; &, jo and < (A&)? > are, respectively, the energy,
the density of the beam current and the energy spread in the electron beam.

The system of self-consistent field equations describing a phenomenon of the
beam-wave interaction in the undulator may be formulated as a relation be-
tween dimensionless quantities. The equations show that a family of the sim-
ilar modes of operation of the FEL amplifier is controlled by the values of 5
dimensionless parameters

Tlw, C, A2, A%, E.p/Eo,

where T is the gain parameter, C is the detuning parameter, [\;"; is the space

charge parameter, A% is the energy spread parameter and F.,/E, is reduced
value of the input signal (here Eq is new normalization factor appearing in the
nonlinear theory). Therefore, in the general case we can write for the value of
the output signal F:

Ei/Eo = D(Tly,C, A2, A, oo/ Ey).

In a high-gain mode (i.e. at Eex;/Fo < 1) and when the dimensionless undu-
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lator length is rather large, the field output amplitude in a saturation mode
is independent of both undulator length and input signal amplitude. In this
practically prominent case the maximal amplifier efficiency is a function of
only 3 dimensionless parameters: detuning C, space charge Ag and energy

spread A?r

In the general case the universal function D should be calculated numerically
solving the reduced self-consistent field equations.

The authors of ref. [28] were the first to write the working equations in the
reduced form. Detailed study of application of similarity techniques in the
FEL amplifier theory has been presented in refs. [14,23,24].

3.1 Self-consistent equations

The equation describing the change of the particle energy £ as a function of the
coordinate z along the undulator axis can be obtained from the Hamiltonian
H written in the variables £ and canonically conjugate phase ¥ = ky2z +
w(z/c —t). In the first order in the expansion in the vector potential of the
wave A, and neglecting the space charge field, the Hamiltonian (2.4) can be
written as

£

WwH(E, Y, 2)=H = / [K,w —w (vz'l(é') - c'})'] d€ — usin(y + 1), (3.1)

where v,(£) is the longitudinal component of the electron velocity, v and vy
are, respectively, the amplitude and phase of the effective potential which are
connected with the complex amplitude of the electric field E by the relation
(u > 0):

(u/2) exp(ith) = —e*H E/(26ky) = —eb,E/2 = iU.
The equations of motion corresponding to the Hamiltonian (3.1) are as follows:

d€/dz=—0H[0y = ucos(v) + o)
dip/dz=OH/OE = ky — w (v = ¢™') — Qu/OE sin( + o). (3.2)

From equation (2.13) we find that the amplitude and phase of the effective
potential are governed with the equations:
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7re3H2

du/dz = Y - J1 cos(vo — ¥1),
H2 .
dd)o/dz = —7;62 2 4 J~l sm(1/10 - ¢1) (33)

where j; and 1, are, respectively, the amplitude and phase of the first harmonic
of the longitudinal component of the beam current density j,:

2T
) 1 )
J1Costpy = — /]z cos Ppdi,
T 0
1 2
jisingy=—— [ j,sinypdy,
T
0

Equations (3.2) and (3.3) form a system of self-consistent equations for the
FEL amplifier in the one-dimensional approximation.

For small deviations of the energy from the initial value, the Hamiltonian (3.1)
takes the form

H =CP+wP?/(292&c) — usin(¢ + o), (3.4)

where P = £ — &, and C is the detuning from the resonance for a particle of
nominal energy &:

C=kytwfc—wlv,(&) ~ Ky —w/(2cy2).

It is convenient to perform the normalization procedure replacmg physical
variables z, P, u, C and j; by £ =Tz, P = wP/(cy26T), & = wu/(ey2&?),
¢ = C/T and j; = j;/jo. As a result, egs. (3.2) and (3.3) can be written as

df’/dé =t cos(¥Y + o),
dip/ds =P + C + Bisin(yh + o), (3.5)

di/dz = j cos(vpo — 1),
dipo/ds = —(51/4) sin(vo — ¥1), (3.6)

where 8 = ¢y2T'/w. The efficiency parameter 3 is inversly proportional to
the number of the undulator periods per the gain length 1/T’ and is always
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small. We perform the study of the nonlinear regime of the FEL amplifier
with untapered undulator neglecting the term proportional to 8 in the second
equation of the system (3.5). Applicability region of such an approximation
may be estimated on the base of the obtained solutions. Simulations show that
the maximal value of the reduced amplitude of the field ty., is of the order
of unity, so the neglected term is always much less than unity.

3.2 Numerical simulation algorithm

We simulate the electron beam with N macroparticles per interval (0, 27) over
phase . The beam current density 3, = j,/jo is periodical in phase % and is
calculated as

\ or &
o= = 288 —v) (3.7)
=1

where ;) are phases of the particles and & (3 — 1(; ) is the delta function.
It follows from eq. (3.7) that j, has the following normalization:

2m
/ Gudtp = —27.
0

The amplitude j; and phase 3; of the first harmonic of the beam current
density are given with the expressions:

N
ZCOS I/J(j),

J=1

=

2T
. 1 7.
) COS¢1=‘/]zCOS¢d¢ = -
m
0

27
- 1 7. . 2 X .
71 siny =——/]z singhdy = =3 " sin ).
7r0 NJ:I

Equations of motion (3.5) for N particles together with the field equations
(3.6) compose the system of 2N + 2 equations describing the amplification
process in the FEL amplifier.

We consider the initial conditions when the electron beam is neither modulated

in velocity nor in density and there is electromagnetic wave of amplitude Fey
at the undulator entrance at z=0 (j =1,...,N):

Pip(0)=0,  51(0)=0,  (0) = fext = Eext/Eo,
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where Ey = (ey2&?)/(ewbs).

The plot in Fig.3.1 presents the dependence of the reduced field amplitude
u on the reduced undulator length % at C = 0 and text = 0.01. The field
stops growing in the saturation regime when the beam is overmodulated and
a significant fraction of the electrons fall into the accelerating phase of the

effective potential. The maximal value of the reduced field amplitude at ¢’ = 0
is

ﬁmax = max/EO =234 (38)

and in a high gain limit, i.e. at Eexi/Eo < 1 does not depend on the field
amplitude at the amplifier input.

ST ATTA
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0.0

0 2 4 6 8 10 12 14

z
Fig. 3.1. Dependence of the reduced field amplitude @ on the reduced undulator
length 2. Here C' = 0, Al =0, A% = 0 and ey = 0.01.

To analyze the dynamics of the particles in the undulator, it is convenient
to study their distribution on the phase plane (P,Az[)), where Ay = ¢ +
%o. Fig.3.2 presents such a distribution when FEL amplifier operates in a
saturation mode (it corresponds to the point 2 = 8.4 of the plot in Fig.3.1)

3.3 Energy conservation law

In the framework of the one-dimensional model and in the high gain limit the
efficiency of the FEL amplifier is usually defined as the ratio of the output
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Fig. 3.2. Phase space distribution of the particles at the FEL amplifier exit at
saturation. Here the reduced undulator length is 2; = 8.4, C = 0, Af, =0,A2=0
and i, = 0.01.

radiation power flux to the flux density of the electron beam power. The
average power flux transported by the electromagnetic wave is given by

I = cE?/(47).

Therefore, the efficiency of the amplifier in the limit of G > 1 is given by

n = ell/(&jo) = Bi*/A. (3.9)

It 1s convenient to normalize the value of physical efficiency by the efficiency
parameter 8 and introduce the notion of the reduced efficiency

i =n/8=1a"/4.

The electromagnetic power radiated by the electron beam must be equal to
the electron beam energy losses, i.e. [ = — < P > jp/e, where < P > is the
mean energy losses in the beam. Therefore, using the power conservation law,
we can define the amplifier efficiency as the ratio of the average energy losses
< P > to the nominal energy &: n = — < P > /&, Now we go over to the
reduced energy losses < P >. Then the expression for the efficiency takes the
formp=n/f=-< P >.In the macroparticle model we have

N
<dP/dz >= ﬁN_IZCOS(¢(j)+1/)0).

i=1

Here we have used the first canonical equation of motion (3.5). The sum in the
latter expression can be expressed in the terms of the amplitude and phase of
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the first harmeonic of the beam density:

N
NAXF“WM+¢M=—§WWWVWM.

i=1

Using the first equation of the system (3.6), we obtain

< dP/ds >= —%&d&/dé.

From this it follows that
f=—<P>=a2/4.
Comparison of the obtained result with the expression (3.9) shows that the

power conservation law takes place.

In the special case of tuning to the exact resonance (' = 0), from relations
(3.8) and (3.9) we obtain the value of the reduced efficiency

ﬁmax = 1.37. (310)

3.4 Saturation in the high-gain FEL amplifier

When the FEL amplifier is tuned to the exact resonance, C = 0, and when
the reduced length of the amplifier Z > 4, the power gain at saturation can be
calculated with the simple formula

Ginax = %exp (V32), (3.11)

or, in decibels,

Grmax(dB) = 101g Grmax = 7.5 — 15.8.

The field amplitude at the amplifier input E.,; at which the saturation regime
is reached can be found from the expression:

Eexl:/EO - '&ext = 234/\/ GmaXa (312)

with the value of G given by eq. (3.11). These simple formulae provide an
accuracy about of several per cent with respect to the results of the numerical
simulations.
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It should be noted that the graph presented in Fig.3.1 enables one to calculate
the growth of the field amplitude for any amplifier tuned to the exact resonance
C = 0 and having the reduced length Z > 4. It is seen from this plot and
relations (3.11) and (3.12) that saturation point of the amplifier 2y, is given
by the relation:

2max = 3.1 + —=In (4, (3.13)

\/_

The field amplitude at the point 2 = 2, — Az is equal to the field amplitude
corresponding to that at Z = 8.4 — AZ presented by the plot in Fig.3.1. When
AZ > 4, the linear approximation becomes applicable, and the field amplitude
E can be found using expression (2.25) where Fey; should be calculate using
expressions (3.11) and (3.12).
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Fig. 3.3. Dependence of the field gain /i, on the detuning parameter C. At
exact resonance, C = 0, the FEL amplifier operates at saturation regime. Here the
reduced undulator length is % = 7.4, A2 =0, AT = 0 and @y = 0.0234.

An important characteristic of the FEL amplifier is the amplification band-
width at the saturation. Let us consider a specific example. Let the reduced
length of the amplifier be 2 = 7.4. Then, according egs. (3.11) and (3.12),
exactly on resonance the saturation regime is reached for the input amplitude
liext = 2.34 x 1072 and the gain is G = 40 dB. The dependence of the gain
on the detuning of such an amplifier is _presented in Fig.3.3. In this case the
amplification bandwidth is equal to AC = 1.54. The graph in Fig.3.4 can be
used to find AC for an amplifier operating in the saturation regime for C=0
and having a different value of the gain G (i.e. a different reduced length).
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Fig. 3.4. The dependence of the amplification bandwidth AC on the maximum
power gain. At exact resonance, C' = 0, the FEL amplifier operates at saturation
regime. Here A = 0 and A% = 0.
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Fig. 3.5. Dependence of the maximal reduced efficiency fmayx of the FEL amplifier
on the detuning parameter C. Here AZ = 0 and A% = 0.

In the general case, for any value of the detuning parameter C' < 1.89, there
exists a value of the input amplitude @y for which the output amplitude
reaches a maximum. The maximal efficiency of the amplifier fiyax is a universal
function of the detuning parameter C. A graph of this function is shown
in Fig.3.5. We see that the maximal efficiency is a growing function of the
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detuning parameter. This phenomenon is a simple consequence of the fact
that when the detuning parameter is increased, the electrons interact with
the wave for a longer distance.

The power gain in the saturation regime is also a universal function of the
detuning C:

Gmax = Am(C) exp [2Re(A)z] . (3.14)
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Fig. 3.6. Dependence of the preexponential factor A entering eq. (3.14) on the
detuning parameter C.

N

A graph of the function Ay (C) is shown in Fig.3.6. The values of the reduced
increment can be found with the help of the plot in Fig.2.2. The amplitude of
the input signal at which the saturation regime is reached can be determined
using the graphs in Figs.2.2, 3.5 and 3.6 and the expression

'&ext =2 ( ﬁmax/Gmax )1/2 .

Another important characteristic of the amplifier is amplitude characteristic
describing the dependence of the output signal on input one. The dependence
of @ on ey for an amplifier operating in the saturation regime for C =0is
shown in Fig.3.7. It should be noted that in the high gain limit the amplitude
characteristic of the amplifier is independent of the gain value.

The admissible deviations of the beam current from a nominal value can be
determined using Fig.3.8, where we give the graphs of the dependence of the

field amplitude at the amplifier output on the beam current for different values
of the gain G.
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Fig. 3.7. Dependence of the output field amplitude @ on the input field amplitude

uext At Gy = gy, the FEL amplifier operates at saturation regime. Here ¢ = 0,
A2 =0 and A% = 0.
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Fig. 3.8. Dependence of the field amplitude at the amplifier exit on the beam current
for different values of the gain G. At I = I, amplifier operates in the saturation
regime and reduced parameters are calculated at I = I;. Curve (1): G = 20 dB,
curve (2): G = 40 dB and curve (3): G = 60 dB. Here C = 0, f\f, =0 and AZ = 0.
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As a rule, the number of macroparticles for numerical simulations has been
chosen to be N = 100...200. In this case the results of simulations are inde-
pendent of the actual value of N to within the error of 0.1 %. The simulation
code has been tested by means of simulation of the linear mode of operation.
In Fig.2.1 we compare results of the calculations of the linear stage of the
FEL amplifier operation obtained with the analytical formulae and with the
numerical simulation algorithm. In Fig.2.2 we compare the values of the in-
crement obtained by numerical simulations with the values of the increment
obtained by solving the eigenvalue equation (2.26). In Fig.2.5 we compare the
amplitude-frequency characteristics obtained by numerical simulations and by
analytic solution of the initial-value problem using eq. (2.23). We see that there
is good agreement between the numerical and analytical results. For N = 200
macroparticles the discrepancy is less than 0.1 %.

3.5 Space charge effects

To carry out a comprehensive numerical simulations of the processes occurring
in the FEL amplifiers, the equation of motion (3.5) must be supplemented by
the corresponding term determining the action of the space charge field. In
the framework of the one-dimensional model there is a possibility to present
one visual method of calculation the space charge field which is equivalent to
the use of Green’s function method (not expanded in a Fourier series) [24].

In the nonlinear regime the beam current j, is a periodical function of phase
¥ and may be expanded in a Fourier series:

o0

jz = Z]n(z) eXp(Zn'gb) + C.C.

1

In the framework of the one-dimensional approximation we get from Maxwell
equation

E, = 4rw™? i n~ja(2) sin(ny + ¢n), (3.15)
1

where j, and ¢, are given with the expression

i cos(ty) 2173,2 cos(ny)

di.
sin(y,) T — sin(ny) v

When performing simulations, we represent the electron beam with N layers
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per interval (0, 27) of phase 1. Then the beam current j, may be presented
in the form

. 2
=——J§1026¢ ¥,

where 6(1 — 1/(;)) is the delta function and Y(;) 1s the phase of the j th layer.
The amplitude j, and phase v, of the beam current Fourier harmonic are
given with the following expression:

.| cos(¢n) 2 M| —cos(nyy)
Jn . = N]O Z .
sin(tn) s=1 | sin(nyy)
Substituting this expression into eq. (3.15) for E, and using formula

in sin(n€) = (7 — £)/2, (0 <& < 2m),
1

we get the expression for the field acting on the ith layer:

EY) = 4N7ri0 ; [W sgn (I/J(i) - 1/’(1’)) - (‘/’(i) - 1/’(1'))] '
751

where

sgn (Y — Yy ) = 1 at (Y — b)) >0,
sgn (g — () ) = —1 at (Y — ) <0,

Using the expression for the Hamiltonian (2.5), we find that the inclusion
of the space charge field in this case is reduced to the addition of the term
—eE,(, 2) to the right-hand side of equation (3.5). Finally, the equations of
motion of the : th layer can be written in the following reduced form:

dPy
—dé—)=UCOS(¢(z‘)+¢o)+

f\g {-jlvz [71' sgn (1/)(,') - ¢(j)) - (1/’(1') - 1/’(1'))] }

i

= P(,') + C' . (3.16)

38



When the space charge field is taken into account, the maximal efficiency of
the amplifier in the high gain limit is a universal function of two parameters,
the detuning parameter C and the space charge parameter A2 In the special
case when the amplifier is tuned to the maximal increment in the linear mode
of operation, the amplifier efficiency in the saturation regime is a universal
function of the only space charge parameter Ag This dependence is shown in
Fig.3.9. We see from this figure that the maximal efficiency of the amplifier
is a growing function of the space charge parameter. This is the consequence
of the fact that the space charge fields prevent the beam overmodulation near
the saturation point, so, the interaction of the modulated electron beam with
the wave is prolonged. It should be noted, however, that the undulator length

is increased in this case, too.
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Fig. 3.9. Dependence of the maximal reduced efficiency 7. of the FEL amplifier

on the space charge parameter f&i Here A?r = 0 and the value of the detuning

parameter C = Cm(Af)) corresponds to the maximum gain in the linear mode of
operation (see Fig.2.7).

Numerical code has been tested using the results of linear theory. Fig.2.8
presents comparative results of simulations and analytical calculations. At
the number of macroparticles N = 200 the both results coincides with an
accuracy better than 0.1 %.

3.6 Energy spread effects

When the beam has a Gaussian energy spread, the maximal efficiency of the
amplifier in the high gain limit is a universal function of three parameters, the
detuning C, the space charge parameter A2 and the energy spread parameter
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A2 In the speeial case when the space charge field can be neglected, at A2 — 0,
and when the amplifier is tuned to the maximum of increment in the hnear
mode of operation, the amplifier efficiency is a universal function of the only
energy spread parameter A2 A graph of this function is presented in Fig.3.10.
From this plot we see that the energy spread leads to a sharp drop in the
amplifier efficiency.
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Fig. 3.10. Dependence of the maximal reduced efficiency #ay of the FEL amplifier
on the energy spread parameter A2 Here A2 = 0 and the value of the detuning

parameter C' = Cp,(AZ) corresponds to the maximum gain in the linear mode of
operation (see Fig.2.12).

The energy spread of the beam has been included in the simulation algorithm
by dividing all the macroparticles in the phase interval 0 < ¢ < 27 for 2 =0
into a small even number N, of groups. The macroparticles in each group have
identical phases 9 for 2 = 0. The initial values of the reduced momentums
P(i) of the particles in each group (i = 1... N,) are described by a Gaussian
distribution with the rms deviation < (A}A))2 >= A?r The phases of the groups
of particles for 2 = 0 were distributed in the interval from 0 to 27 in such a
way that the amplitude of the first harmonic of the macroparticle density was
equal to zero. It should be noted that at a small number of groups N, such
a technique provides good results only in the case of the absence of the space
charge field. In the opposite case, the presence of the even harmonics of density
in the initial distribution may lead to a significant inaccuracy of simulations.
To avoid this problem, we have used the following trick. After preparing the
initial ensemble as it has been described above, we introduce a fictitious “drift
space” of a length l to let the particles to distribute more homogeneously in
the phase . It results In a strong suppression of the parasitic harmonics of
density while the energy distribution remains to be a Gaussian. Optimal value
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of the length of such a drift space is given with the expression:

. 018N,
j=22
At Ny

The use of such a technique for preparation of the initial macroparticle en-
semble enables one to simulate rather well an unmodulated electron beam at
the number of divisions Ny, = 4 and N, = 100.

The simulation code has been tested at the linear stage. Figs.2.9 and 2.12
present comparative results obtained by means of numerical simulations (the
crosses) and analytical results (solid curves calculated with egs. (2.37) and
(2.38)). The number of groups in the phase ¢ was equal to Ny = 4 and
the number of particles in each group was equal to N, = 200. It is seen from

these plots that there is good agreement between the numerical and analytical
results.
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4 FEL amplifier with a tapered undulator

The operation of the FEL amplifier is based on the prolonged (resonance) in-
teraction of the electron beam with the electromagnetic wave in the undulator.
Amplification process may be divided into two stages, linear and nonlinear.
At the linear stage of amplification, exponential growth of the electromagnetic
field amplitude and of the beam modulation amplitude takes place. Neverthe-
less, the beam modulation in the linear regime is much less than unity, so
the most fraction of the radiation power is produced at the nonlinear stage
of operation, when the beam modulation becomes to be of about unity. In
the case of untapered undulator, the bunched beam effectively interacts with
the electromagnetic wave along the length which is of the order of the gain
length [y ~ I'~'. At this stage of amplification electrons lose a visual fraction
of their energy which results in the violation of the resonance condition. As
a result, the beam is overmodulated, the most fraction of electrons fall into
the accelerating phase of effective potential and the electron beam becomes
to take off the power from the electromagnetic wave. Remembering that the
field amplitude at the saturation is of the order of E, = (ey2E0T%)/ (ewb,), we
estimate the saturation efficiency of the FEL amplifier to be of the order of
n ~ eEols/ET = eyl /w ~ T'/2k,. So, we see that the efficiency of the FEL
amplifier with untapered undulator is limited by the value of the efficiency
parameter § = I'/2x,, which is always much less than unity.

So, the next problem to be solved is that how to prolong interaction of the
bunched electron beam with the electromagnetic wave. A reliable method to
increase the FEL amplifier efficiency was proposed more than ten years ago
in ref. [29]. It was proposed to increase the FEL efficiency by an adiabatic
change of the undulator parameters (or, in other words, by the use of, so
called, undulator tapering). Nevertheless, that paper contained only an idea,
because all the calculations has been performed in the approximation of the
given radiation field, while the problem requires solution of the self-consistent
field equations. Later this idea has been confirmed by the results of numerical
simulations with the self-consistent field equations [27,30] and finally has been
verified experimentally, an efficiency n ~ 34 % was achieved [2].

For the first time the universal relations for finding optimal characteristics of
the undulator tapering and output characteristics of the FEL amplifier with
the tapered undulator have been obtained in ref. [14] by means of application
the similarity techniques.

To make our exposure more clear, we study at first the case of a low efficiency
approximation, when the FEL amplifier efficiency increases significantly with
respect to the case of untapered undulator but still remains much less than
unity. Then we study the most complex case of the high efficiency FEL ampli-
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fier. All the results are obtained by means of similarity techniques and possess
a high degree of generality.

4.1 Low efficiency approximation

4.1.1 Optimization of undulator parameters

According to the system of equations (3.5), the particle motion is determined
by the detuning parameter

w w(l+ K?)

= Ky — PR

C =&y

T 202 2¢y

which is a function of undulator period A, = 27 /&, and of the undulator pa-
rameter K = eH, /(m.c’k, ). The change of the undulator parameters causes
the detuning parameter to be a function of the coordinate z. In this section
we consider one of the possible ways to change the undulator parameters (or,
in other words, the way of the undulator tapering), namely that of a change
of the undulator period A\, and the undulator field H,, for constant undulator
parameter K = const. It assumes the magnetic field of the undulator to be
changed inversely proportional to the undulator period, H, o A71.

According to refs. [14,31], in the case of a helical undulator with bifilar wind-
ing, the field at the undulator axis is

Hy o LE™ [(5wR)*Ko(kwR) + (5w R)K: (5w R)|

where I, and R are, respectively, the current and radius of the winding and K
and K, are modified Bessel functions. At the constant current in the winding,
the undulator parameter K for such an undulator is a universal function of the
parameter «, R. Therefore, the undulator tapering in this case is organized in

a simple way by shaping the windings radius proportionally to the undulator
period, R o< Ay.

In this section we consider the case of a low efficiency approximation, when
the FEL amplifier efficiency increases significantly with respect to the case of
untapered undulator but still remains much less than unity. Such an approx-
imation is not only of methodological interest but also of practical interest,
since the amplifier length grows considerably with increasing efficiency, and
under real conditions in many cases it is sufficient to increase the value of the
efficiency, for instance, from n = 1 % to 7 = 10 %. The condition of the small
value of the efliciency 7 enables one to use for the simulations the system of
equations (3.5) and (3.6) which was used in section 3 for simulations of the

63



amplifier with-untapered undulator. The only difference is that the detuning
parameter C in the second equation of (3.5) becomes to be a given function
of coordinate z and is expressed for K = const in terms of the undulator
wavenumber &, change as C = C(0) + Aky/T.

Let us consider the case when the detuning is constant in the initial section
and then, beginning at some distance, grows as a quadratic polynomial:

C(z) =C(0) + Arw(z) = a0+ a1(z — ) + as(z — )3,

where z; is the coordinate of the tapering beginning. The detuning parameter
C in the egs. (3.5) can be written in the reduced form as

C=ko+ki(3— 5) + k(5 — )2,
?:’i = PZi, ko = QO/F, kl = al/Fz, kz = ag/FB. (41)

The choice of the quadratic law of the tapering can be easily understood when
analyzing a simple model situation. Let us consider the case of a completely
bunched electron beam. It follows from the first equation of (3.6) that the
field amplitude is growing proportionally to the undulator length. Then, it
follows form the first equation of (3.5) that the change of the particle energy
1s proportional to the squared length of the undulator. Finally, from the sec-
ond equation of (3.5) we find, that the resonance condition takes place when
the detuning parameter C is changed quadratically, too. This qualitative con-
sideration allows one to find an asymptotic behaviour of the detuning ¢ (2).

To find optimal values of the tapering parameters ko, k;, k2 and 2;, we have
performed a set of calculation to maximize the output amplitude at

(2—-%)>1

and obtained the following values:

ko = 0, kl = 144, k2 = 036 (42)

The optimal length of untapered undulator section can be found from the
relation:

2% =17+ —25 In(dagy). (4.3)

7

Comparison of relations (3.13) and (4.3) shows that the undulator tapering
must start at distance of AZ = 1.4 before the saturation point of untapered
undulator.
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Phase analysis shows that at optimal parameters of the tapering (4.2) and
(4.3), 65 % of the particles are trapped in the regime of coherent deceleration.
The trapping factor depends strongly on the value of coefficient k;. At k2 > 0.4,
particles do not trap in the regime of coherent deceleration. At k; < 0.36,
the trapping process is stable and the fraction of the trapped fraction is even
increased. However, the equilibrium decelerating phase in this case shifts closer
to 90° which results in a more slow increase of the field amplitude than in the

case of k; = 0.36.

4.1.2  Calculation technique of the optimized FEL amplifier characteristics

In Fig.4.1 we show a graph of the reduced field amplitude @(2) for the value
of the input amplitude dex, = 0.01. Undulator tapering begins at 2, = 7 and
follows the law

C =1.44(3 - 7) +0.36(3 — 7)*.

At the same figure we present the dependence of @(2) on 2 for untapered
undulator. Fig.4.2 presents the phase distributions of the macroparticles at
different coordinates of the tapered section.
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Fig. 4.1. Dependencg of the reduced field amplitude @ on the reduced undula-
tor length Z. Here Ag = 0, A2 = 0 and e,y = 0.01. Curve 1 corresponds to
the case of the undulator tapering according to the law ¢ = 0 at # < 7 and

C=144x(2-7)+0.36 x (£ - 7)* at 2 > 7. Curve 2 corresponds to the case of
untapered undulator at C = 0.

The plot in Fig.4.1 can be used to calculate the dependence of the field ampli-
tude on the undulator length for an arbitrary value of input signal @ey,. Indeed,
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Fig. 4.2. Phase space distribution of the particles in the case of the undulator taper-
ing according to thelaw C =0 at 2 < 7and C = 1.44 x (3 = 7)40.36 x (£—7) at
2>7.(a):2=17,(b): £=10 and (c): 2 = 15. Here Ag =0, A2 = 0 and 4, = 0.01.

up to the value 2 = % given by eq. (4.3), the function (%) can be calculated
using technique described in section 3.4. Then the point with coordinate % is
put in the correspondence with the point in Fig.4.1 at 5 = 7, and the value of
the reduced field amplitude at the point with coordinate 2 = 3 + A3 is equal
to the value 4(7 + AZ) in Fig.4.1.
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In the general case when undulator parameters are tapered according to rela-
tions (4.1) - (4.3), the field amplitude at (2 — 2;) > 3 can be calculated with
the following approximate formula:

a(5) ~ 2 — —=In(aZ}). (4.4)

Here it should be noted once more that this formula is valid in the low efficiency

approximation only, i.e. when the output efficiency at the amplifier exit at
z = z; 1s small:

n=laf S <L

In Fig.4.3 we present the plots of the dependence of the output field amplitude
on the detuning C at different lengths of the undulator. The gain G in the
untapered section is equal to G = 40 dB. Initial detuning C is equal to

C = kw(0) — w(l + K?)/24%¢,

where k,(0) is the wavenumber of the undulator at its entrance. We see from
Fig.4.3 that the bandwidth of the amplifier with the tapered undulator is
close to that of the amplifier with untapered undulator. It means that the
requirements on the admissible electron energy deviations remains the same.

Limitations on the deviation of the beam current from a nominal value can be
obtained with the help of Fig.4.4 presenting the plots of the dependencies of
the output field amplitude on the beam current deviation Al = I — Iy. When
calculating these plots, we have performed the normalization procedure at the
nominal value of the beam current I,. It is seen from these plots that the
regime of coherent deceleration remains stable with the increase of the beam
current with respect to nominal value. It can be understood from relation
(4.1). It follows from this relation that at the increase of the beam current at
all the other parameters fixed, the actual value of the tapering coeflicient k,

is decreased which, as we discussed above, does not destroy the process of the
coherent deceleration.

Amplitude characteristics of the amplifier with tapered undulator are pre-
sented in Fig.4.5. It is seen from these plots that there is no significant depen-
dence of the output amplitude on the value of the input signal amplitude.

Another important characteristic of the amplifier is the energy spread of the
electrons at the undulator exit. When the value of the efficiency 7 is increased
significantly with respect to untapered case, the average energy of the trapped
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Fig. 4.3. Dependence of the field amplitude at the amplifier exit on the detuning
parameter C for several values of the length of the tapered section. Here A2 =0,
A?F = 0 and @y = 0.01. The _detuning parameter C changes according to the law
C=Coats< 3 and C = C'0+144x(z——zl)+036x(z—z,)2 at 2 > %. The
values of the variation beginning % are given with eq. (4.3). Curve (1): 2 — 3 = 3,
curve (2): 2 — 2 = 8 and curve (3): 3 — 3 = 13.
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Fig. 4.4. Dependence of the field amplitude at the amplifier exit on the beam cur-
rent for different values of the tapered section length. The reduced parameters are
calculated at I = I,. Here A2 =0, AT = 0 and deyx = 0.01. The detuning parameter
¢ changes according to eq. (4 1) with coefficients given with egs. (4.2) and (4.3).
Curve (1): 2 — % = 3, curve (2): 2 — % = 8 and curve (3): 5 — % = 13.
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Fig. 4.5. Dependence of the output field amplitude @ on the input field amplitude
Uexe for different values of the tapered section length. Here A2 = 0, A% = 0 and
fexs = 0.01. The detuning parameter C changes according to eq. (4.1) with coeffi-
cients given with eqs. (4.2) and (4.3). The values of the variation beginning 3; are
calculated with eq. (4.3) at & = 42,. Curve (1): 2— % = 3, curve (2): 2~ 3, = 8 and
curve (3): 2 — 3 = 13.

particles is

£ = &(1 —0.38842).

The rms energy spread of the trapped particles oscillates with the undulator
length. It is connected with the fact that the phase density of the particles
is inhomogeneous inside the separatrix. As the particles perform slow energy
oscillations with respect to the equilibrium energy, these result in slow oscil-
lations of the rms energy spread. Numerical simulations show that maximal

value of the reduced rms energy spread < (AP)? > is less or of the order of
unity. Remembering that

< (AE/&)? > = B2 < (AP)? >,

we write the following expression for the rms energy spread of the trapped
particles:

< (AE)&)? >V < B
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The rms energy spread and average energy of untrapped particles are almost
independent on the length of the undulator and are equal to

<(AE/&)? > 2B, €~ E(1—-0.68).

4.1.3  Space charge and energy spread effects

Now we complicate our study with the inclusion of the space charge field. In
this case the detuning should change as

. Co. at 2 < 3,
C={" (4.5)
C=Cn+ki(2—5)+ k(5 — 3)? at 2> 3,

where Cy, is the detuning corresponding to the maximal value of the increment
in the linear mode of operation. Optimization to the maximal field at 2->1
of the tapering coefficients k,, k; and 3; has been performed using the systems
of the self-consistent equations (3.6) and (3.16) and have obtained a set of
optimal values of the tapering coefficients as functions of the space charge
parameter. Fig.4.6 illustrates the dependence of the trapping factor as the
function of the space charge parameter.
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Fig. 4.6. Dependence of the trapping factor on the space charge parameter Ag The
undulator tapering is performed according to eq. (4.5). Here A2 = 0.

Using equations (3.5) and (3.6) we have performed also the similar study of the
energy spread influence on the trapping efficiency. These results are presented

in Fig.4.7.
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Fig. 4.7. Dependence of the trapping factor on the energy spread parameter A?r
The undulator tapering is performed according to eq. (4.5). Here Ag = 0.

It is seen from Figs.4.6 and 4.7 that the space charge field and energy spread

limit significantly a possibility to increase the FEL amplifier efficiency by
means of the undulator tapering.

4.1.4 Applicability region of the low efficiency approximation

We have described above the motion of the particles by the Hamiltonian (3.4)
obtained from the Hamiltonian (3.1) by expansion in the small energy devia-
tion P = £ — &. This approximation may be violated in the case of a tapered
undulator, so in the high efficiency case it is necessary to use equations (3.2)
and (3.3), obtained from the original Hamiltonian (3.1).

We normalize egs. (3.2) and (3.3) in the usual manner with the only refine-
ment that all the normalization factors are calculated using the initial values
of the beam and undulator parameters. We consider the case of the undula-
tor tapering at the constant undulator parameter K = const. The electron
rotation angle may be written in the form:

0 =0,/(1+AE/E) = 06,/(1 + BP).
As a result, we obtain the following equation of motion:

dP i
d: 14 8P cos(¥ + o),
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dp P(1+B8PJ2) . i
_’L{):_(——E’H—A/_)_*_C’_Fﬂﬂim_(lb_’-—}bo). (4.6)
iz~ (14 8Py (1+BP)
Here, as before, the detuning parameter is
C = ku(2)/T - w(l+ K?)/2+*cT
Field equations for 4 and 1 have the form:
di N_cos (1(;) + to)
_U Z (7) Y
dz o 1+48Py
%zl_g sin (%) + vo) (4.7)
¢ 4NiZ  1+48P; .

Let us at first consider the case of quadratic law of the undulator tapering
with parameters given by relations (4.1) and (4.2), i.e. at 2 > %; we have

C = 1.44(3 — 3) + 0.36(3 — %)

The results of numerical simulations for several values of the efficiency param-
eter B are presented in Fig.4.8. At a sufficiently short undulator length the
energy losses of the trapped particle are small, AE/& = P < 1. In this case
the system of equations (4.6) and (4.7) transits to the systems of equations
(3.5) and (3.6), which is illustrated by the plots in Fig.4.8. In this initial section
the average energy of the trapped particles decreases quadratically with the
undulator length, compensating for the quadratic increase of the parameter
C in the equation for phase 3 of the system (4.6). The average change of the
phase of the trapped particles is zero, < di)/d? >= 0, and their motion corre-
sponds to phase oscillations about the equilibrium decelerating phase . +
= const (according to the second equation of the system (4.7), at & > 1 the
change of the phase of effective potential 1o can be neglected). As the length
of the undulator is increased, the difference between the approximate system
of equations (3.5) and (3.6) and the original system (4.6) and (4.7) becomes
to be significant. It is seen from the equation for the phase

dp  P(1+BP/2) .
dz (14 8P)2 e

that compensation of the quadratic growth of the detuning parameter C will
take place at a smaller decelerating rate of the trapped particles. Numeri-
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Fig. 4.8. Dependence of the reduced field amplitude % on the reduced undulator
length 2 for different values of the saturation parameter 3. Here f\f, =0, Az =
and ey = 0.01. The detuning parameter changes according to the law C =0 at
2<7and C =144 x (3 - 7)+0.36 x (2 -7)% at 2 > 7. Curve (1): 8 = 0, curve
(2): 8 = 0.003, curve (3): 3 = 0.01, and curve (4): 8 = 0.03.

cal simulations show that at the final stage of deceleration, the number of
the trapped particles does not change and they perform phase oscillations
about the equilibrium decelerating phase v, + 1, which, in turn, is decreased
adiabatically approaching to the value of 90°. As a result, the growth of the
field amplitude is slowed and further increase of the undulator length becomes
to be ineffective. The plots in Fig.4.8 give a notion of the validity region of
the low efficiency approximation considered in the previous section. For in-
stance, from this figure we see that in the range of the efficiency parameter
0.003 < B < 0.03, the use of the results obtained with the approximate system
of the self-consistent equations (3.5) and (3.6) is correct if the final amplifier
efficiency does not exceed the value of 10 %.

4.2 The high efficiency FEL amplifier

We have obtained above that the quadratic law of the undulator tapering,
which is optimal in the low efficiency case, does not provide a possibility
to achieve the high efficiency of the amplifier compared with the unity. To
achieve this goal, the undulator parameters must be changed more faster than
quadratic polynomial (4.1). Analyzing the form of the equation (4.6) for the
phase, we see that the linear law of the field amplitude change will take place
also in the high efficiency case when at 3 > % = 3, — 1.4 the detuning
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parameter will be changed as

¢

T(2)[1 = BT(2)/2][1 — BT(3)]"7,
T(2)=1.44(% —

1.44(2 — ) + 0.36(2 — 3,)2 (4.8)

The results of numerical simulations confirm this assumption. In fact, when

the detuning parameter is changed as in eq. (4.8), the field amplitude changes
according to the linear law (4.4)

W(2,8) = 04(5) ~ 5 — 3, + 3

even in the region where the amplifier efficiency becomes comparable to unity.
The motion of the trapped particles in the deeply decelerating regime pro-
ceeds as follows. The trapped particles execute phase oscillations about the
equilibrium decelerating phase v, + 1o, which nevertheless is decreased, ap-
proaching to 90°. On the other hand, the rotation angle of the trapped elec-
trons is increased while the trapped particles lose their energy. These two
effects compensate each other and effective interaction of the beam with the
electromagnetic wave takes place up to the amplifier efficiency about of unity.

Using relations (3.9) and (4.4) we can calculate the total length 3 of the
undulator required to attain the efficiency 7#:

. = 2 R :
2= 2\/; + ﬁln (o) (4.9)

It is evident that efficiency 7 must obviously to be less than the trapping
efficiency which is equal to 65 %. According to eq. (4.8), the total change of
the undulator wavenumber is equal to

C = Akry(z) =2 [A;l(zf) - A;l(zi)] =
LT (z)[1 - BT (2)/2] 1 - BT (2)) 7,

where T'(%) and % are calculated from eqgs. (4.8) and (4.9).

The output characteristics of the amplifier with 40 % efficiency are presented
in Figs.4.9 and 4.10. We see from these plots that the characteristics of the high
efficiency amplifier do not differ significantly from those of the low efhiciency
amplifier. Analyzing the dependence of the field amplitude at the amplifier
output on the beam current, presented in Fig.4.11, we obtain that even for
a significant increase of the current, the output field amplitude is practically

74



YT N
| NS

0 i i i " . . i — . i . A i i
-1.2 -0.6 0.0 0.6 1.2

Co

Fig. 4.9. Dependence of the field amplitude at the amplifier exit on the detuning
parameter C in a high efficiency case. Here A2 = 0 and A2 = 0. The detuning
parameter C changes according to the law C = Co at < 3 and € =Gy + Ctap at
Z > %. The values of the variation beginning 2 are given with eq. (4.3). The change
of the detuning C.,, is given with eq. (4.8). At Cy = 0 the FEL amplifier efficiency
is equal to 40 % and the power gain at the end of untapered section (at £ = %) is
equal to 40 dB.

unchanged, and the amplifier efficiency is decreased only due to the increase
of the beam power. For example, when the beam current is increased by the

factor of 1.5 with the other parameters fixed, the efficiency is decreased from
40 % to 33 %.

4.3 Some generalizations

4.3.1 Tapering at a fized undulator period

We have studied above the undulator tapering at a fixed undulator param-
eter ' = const. Another popular way of the tapering is tapering at a fixed
undulator period A, = const. From the theoretical point of view this method
seems to be more complicated, so the obtained results, as we will show below,
are not so general than those obtained above for the tapering at K = const.

It follows from the definition of the detuning C that in order to preserve the

synchronism, at the tapering with the fixed undulator period Ay, the undulator
field Hy must be decreased. The simplest law of the magnetic field change is
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Fig. 4.10. Dependence of the output field amplitude @ on the input field amphtude
lUexe in a high efficiency case. Here A2 = 0 and A?r = 0. The detuning parameter ¢
changes according to eq. (4.8) where the beginning of the tapering Z; corresponds to
the nominal value of the input signal 4%,. At fiey, = %, the FEL amplifier efficiency
is equal to 40 % and the power gain at the end of untapered section (at 2= %) is
equal to 40 dB.
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Fig. 4.11. Dependence of the field amplitude at the amplifier exit on the beam
current for a high efficiency case. Here A2 =0and A2 = 0. The detuning parameter

¢ changes according to eq. (4.8). The reduced parameters are calculated at I = I,.
At I = I; the FEL amplifier efficiency is equal to 40 % and the power gain at the
end of untapered section (at 2 = %) is equal to 40 dB.
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a quadratic one:

H(

zi) — Hy(z
z}wui) B oot ealz = 2) + eale — m)” (4.10)
The normalization procedure is performed in a usual way. We calculate nor-

malization factors from the initial values of the beam and the undulator pa-

rameters. In accordance with egs. (3.2) and (3.3) the corresponding system of
the reduced self-consistent equations has the form

b 1 [1_1+
dz = 14 8P

dyp 1 , pP sl Lts
Eg_——(l+ﬂp)2{P[l 2]+T()[l = ﬂT()J+

. 1+s
1—
-

s BT(;})J & cos(vh + o),

S

ﬂT(ff)] sin(y + ¢o)} : (4.11)

du 1+ s . 2 N cos(thi +
—Az—[1— ﬂT(z)] —Z——(‘/’“) + o)
dz s NiZ 1+ 8F;

dpg 1 1+ A1 | 2 & sin(dg) + Yo
_0=5[1_ SgT(z)} ZW

, (4.12)

dz s

The coefficients s = K? and § = ¢y2T'/w are calculated using the initial values
of the beam and undulator parameters. The function T'(3) is

T(2)=ko+ k1(2 — ) + ko(2 — 3)?
S € s e S €2

:1+s_ﬂ_’ lzl-{—sﬁf7 2=1+5W'

?

0

(4.13)

At the initial part of the tapered section, when the change of the energy of the
trapped particles is small, we can expand eqgs. (4.11) and (4.12) in the small

parameter 3P and obtain the system of equation describing the low efficiency
approximation:

dP

= = teos(y + 9o), = P+ T(3),

&&

di d 7o
d—z = j; cos(¥o — 1), % = —% sin(¥o — ¥1),
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This system coincides with the system of equations (3.5) and (3.6) describing
the low efficiency approximation of the undulator tapering at a fixed undulator
parameter K = const. The detuning parameter C (2) in this case is equal to
T'(2). Therefore, we can conclude that in the low efficiency approximation, at
n < 1, the both tapering methods are equivalent.

The coefficients ko, k1, k2 and %; have been optimized to the field maximum at
(2 - %) > 1 using the system of equations (4.11) and (4.12). It was assumed
that s ~ 1 and B ~ 10~2. The following values have been obtained:

2
ko =0, ky, = 1.44, ky = 0.3, 2i=1.7+%1n(ﬁ;x1t).

Phase analysis has shown that 68 % of the particles are trapped in the regime
of coherent deceleration.

The fact that the value of the coefficient k, is slightly less than that of the
undulator tapering at a fixed undulator parameter, requires some explanation.
Numerical simulations performed with the initial equations (4.6), (4.7), (4.11)
and (4.12) shows that as the undulator field is decreased, the phase motion of
the particles becomes less stable with respect to that calculated with egs. (3.5)
and (3.6). The main losses of the trapped particles occur within the first period
of phase oscillation, at

when the particles come quite close to the boundary of the stability region.
For parameters of practical interest s ~ 1 and 8 ~ 1072, the difference in
the simulation results obtained with the initial and approximate equations
becomes to be visible, and for k; = 0.36 it causes the number of trapped
particles to decrease visibly in passing through the critical point. Therefore,
the more stable regime becomes possible at k, = 0.3.

The length of the tapering section (2; — 2;) obviously can not exceed the
distance over which the undulator field H,, decreases to zero as in eq. (4.10)
and can be found from the equation:

1
T8 5= 5)? + 1.448
S S

1
s —1=0. (4.14)

0.38

To be strict, the minimal value of the undulator field is limited from below
not by zero but by the condition H, > E/(2y?). This is one of the basic
assumptions of the theory which means that the transverse constrained motion
of the electrons in the undulator is defined by magnetic field of the undulator
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but not the radiation field. Using egs. (4.10) and (4.13), this condition may
be written in the following reduced form:

1+s

S

1+s

S

B%(3) < [ ﬂT(é)] . (4.15)

However, for parameters of practical interest

0.1 <s, 8 < 0.03

the length of the tapered section obtained with eq. (4.15) does not differ
significantly from that obtained with eq. (4.14).
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Fig. 4.12. Dependence of the reduced field amp]jtudeﬂﬂ on the reduced undulator
length 2 for different values of the parameter s. Here Az =0,A%=0,8=0.01and
lexy = 0.01. The undulator field changes according to egs. (4.10), (4.13) and (4.16).

The length of the tapered section is given with eq. (4.15). Curve (1): s = oo, curve
(2): s = 5, curve (3): s = 1 and curve (4): s = 0.5.

In Fig.4.12 we show graphs of the field amplitude 4(2, s, B) for s = 0.5, 1 and
5 and at 3 = 0.01. The reduced function 7'(3) of the undulator field tapering
was as follows:

T(2)= 1442 - %)+ 03(: — 5, 5=17+ In(al). (416)

V3

For comparison, in the same figure we show the graph of the field amplitude
4(£) calculated with the system of approximate equations (3.5) and (3.6). It
1s seen from these plots that the larger the parameter s, the less the field
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amplitude (2, s, B) deviates from the linear behaviour in the final part of the
tapered section. The dependence of the maximal efficiency of the amplifier on
the values of parameter s for 3 = 0.01 is shown in Fig.4.13. It is seen that
at s > 1 the undulator tapering at a constant undulator period gives the
same results as the tapering at a constant undulator parameter, and a high
efficiency can be achieved.
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Fig. 4.13. Dependence of the efficiency of the amplifier on the parameter s. Here
A2 =0, A =0, 8 = 0.01 and @ey = 0.01. The undulator field changes according
to eqs. (4.10), (4.13) and (4.16). The length of the tapered section is given with eq.
(4.15).

The results of numerical simulations show that the maximal efficiency of the
amplifier does not depend significantly on the value of the efficiency parameter
B when it changes in the limits 0.003 < 8 < 0.03. So, in many practical
situations the plot in Fig.4.13 is of use to obtain the maximal efficiency of the
amplifier.

4.4 FEL amplifier with a planar undulator

When performing the study of the FEL amplifier we assumed for simplicity
the undulator to be a helical one and the radiation to be circularly polarized.
All the results and plots obtained above refer also to the case of the linearly
polarized radiation and the planar undulator with the field

H, =0, H, = H cos(ky2),
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by the following redefinition of the parameters:

1/3

I'-T"= [WjoafWAgJ’)’_l’h_z-’Zl(20)_1] ;
Eo — E§{ =267 (I7)2c/(ebFwAyy),
C—-C =k, — (.‘)(26)_1’)11_27 B—p = c7l2rlw_1,

L1 —9.-111/2
Ap — Al = [47r]07 T 2IA1]

b

At — AT = Tl (< (AE)? > )2 g5

Here, as it was done in section 2, we have introduced the following notations:

6 = eH/(Eokw), =97+ 6}/2.

Factor A;; is given by the formula

Ayy = [Jo(v) = L(v)],

where v = 0fw/(8cky), Jo and J; are the Bessel functions. The field of the
amplified wave is described by the expression

E, =0, Ey = Ey(z)cos [w(z/c — t) + Yo(2)].

It should be noted however that the study of the undulator tapering at a fixed
undulator period can not be interpreted in this way. Indeed, in this case factor
Ajs is a function of coordinate z. As a result, egs. (4.11) and (4.12) should

be written taking into account this dependence and the problem should study
separately.

Let us demonstrate the way of calculation the saturation characteristics of the
amplifier with a planar undulator. Using eq. (3.13) we find that in the exact
resonance (' = 0 and in the absence of the space charge field and the energy
spread,

(/)" =0, (ar/T) o,
the field saturation is reached at the undulator length

2
Zm = (I')™! [3.1 + —=1In ( E}/E*)

V3
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where Ef™ is the field amplitude at the undulator entrance. The value of the
radiation field at the saturation is (E))max = 2.34E).

4.5 Applicability region of the one-dimensional theory of the FEL amplifier

In sections 2 — 4 we have presented one-dimensional theory of the FEL am-
plifier. Due to the simplicity of the basic approximations of this model, it
provides the most clear way to understand the physical mechanism of the
FEL amplifier operation, to study the influence of the space charge fields and
the energy spread of the electrons in the beam on the FEL operation. It pro-
vides also a reliable way to study undulator tapering technique to increase the
FEL amplifier efficiency.

The validity region of the one-dimensional model is limited with the condition
that the radiation does not expand in outer space outside the electron beam.
In many practical situations diffraction effects influence significantly on the
process of the field formation in the FEL. For instance, at a fast growing of the
optical field amplitude along the undulator axis, the radiation field eigenmode
with complicated transverse distribution of the radiation field is formed by
the electron beam (in other words, the so called “optical guiding” effect takes
place). In essentially three-dimensional case the analysis of the FEL amplifier
must be performed by simultaneous solution of the equations of motion of
the beam electrons and the field equations under corresponding boundary
conditions for the electromagnetic field. In sections 9 — 11 we present such
an extension of the FEL amplifier theory and present rigorous analysis of the
applicability region of the one-dimensional approximation.

It should be noticed that the one-dimensional model is not only of method-
ological significance. For instance, calculations of the FEL amplifiers of X-ray
wavelength can be performed in the framework of one-dimensional model [4].
It provides also a reliable way for calculation of a novel FEL amplifier con-
figuration, namely of an FEL amplifier with diaphragm line. Such an FEL
amplifier scheme has been proposed in ref. [32] and can be used in perspec-
tive FEL amplifier schemes for inertial confinement fusion. In this scheme a
periodic diaphragm line is used for focusing and confinement of the radia-
tion in the amplifier. It has a form of a sequence of totally absorbing screens
with holes. At a large value of the Fresnel number, eigenmodes of diaphragm
line have rather small diffraction losses. For instance, in a visible wavelength
range, at the radius of the hole 1 cm and the distance between the screens
1 m, diffraction losses of the ground eigenmode are about of 0.01 % per one
diaphragm.

At a relatively small gain of the radiation field amplitude along the undulator
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axis, the electron beam does not affect significantly on the transverse distri-
bution of the radiation field and the latter is defined mainly by the diaphragm
line. The transverse field distribution of the ground TEMgo eigenmode of the
diaphragm line is of the form:

| E |x Jo(verr/R),

where r is transverse coordinate, R is the radius of the diaphragm line holes,
Jo is the Bessel function and vg; is the first root of the Bessel function of zero
order. When the transverse size of the electron beam is much less than aperture
of diaphragm line (which usually takes place in practice), the radiation field
change over the electron beam can be neglected which reveals a possibility to
use one-dimensional approximation. In this case an “effective” beam current
density can be substituted into the equations of the one-dimensional FEL
amplifier theory:

jo=1[mR2J?(vo1) ] ~ 3.7/ (7 R?),

where I is the total beam current. In addition, the distinction between the
phase velocity of TEMgo mode and the velocity of light ¢ should be taken into
account in the FEL resonance condition.

In some cases such an approach can provide correct description of the pro-
cesses in the FEL amplifier with diaphragm line [32]. As a result, all universal
formulae and plots presented in sections 2 - 4 can be used directly for calcu-
lations.
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5 Linear theory of the FEL oscillator

In sections 5-8 we exposure a one-dimensional theory of an FEL oscillator. In
some sense this device is a more complicated object with respect to the FEL
amplifier. In the case of the FEL amplifier, the frequency, of the amplified
wave is determined by a master oscillator, the amplitude and the phase of the
electromagnetic wave do not depend on time and depend on the space coordi-
nates only (in the one-dimensional approximation — on the only longitudinal
coordinate z). The dependence of the electromagnetic field on the longitu-
dinal coordinate is obtained by self-consistent solution of Maxwell equations

and equations of electron motion at definite initial conditions at the undulator
entrance.

The FEL oscillator consists of a resonator with an “active medium” — electron
beam in an undulator. During the lasing process several longitudinal modes
with different frequencies can be excited in the resonator. A rigorous solution
of the lasing problem consists in integration of the self-consistent field equa-
tions at given initial and boundary conditions and evolution of all the modes
should be obtained. This problem can be solved only in a limited number of
special cases. In the small signal approximation the problem can be reduced
to an eigenvalue problem, i.e. to finding eigenvalues and eigenfunctions of the
modes. For instance, such an approach made it possible to develop three-
dimensional theory of the FEL oscillator with plane Fabry-Perot resonator
(see refs. [33,34]). Peculiar feature of these papers is application of impedance
boundary conditions of resonance type, which makes it possible to reduce the
problem of the open resonator to a closed one. In Appendix C we use a similar
approach to exposure the linear one-dimensional theory of the FEL oscillator.

In the general case the problem of the FEL oscillator in the rigorous formu-
lation can not be solved due to significant difficulties in the calculations. So,
the most researches in the FEL oscillator theory have been performed using
phenomenological approach consisting in the study of the FEL oscillator as
the FEL amplifier with a feedback. In sections 5-8 we use this approach to the
analysis of the FEL oscillator. The main idea of this approach is that inter-
action of the electron beam with the electromagnetic wave during their pass
in the undulator is treated in the same way as for the FEL amplifier. Then
the losses in the mirrors are taken into account and the wave interacts with a
fresh electron beam at the next undulator pass. In this way the evolution of
the field amplitude in the resonator is obtained. One can imagine a visual pic-
ture of this process. Let us consider a semi-infinite sequence of plane-parallel
equidistantly placed semi-transparent plates. In each second period the un-
dulator is placed between the plates. The travelling electromagnetic wave is
fed to the system input. When the wave propagates in the first undulator, the
amplification process takes place. After transmission of the wave through the
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first pair of plates, its amplitude is multiplied by a transmission factor (which
is equal to the reflection coefficient of the mirrors) and is fed to the input of
the second undulator, etc.

This approach enables one to study a single-mode approximation as well as
a multi-mode approximation. To simulate the latter case, several waves with
different frequencies (corresponding to longitudinal modes of the resonator)
are fed to the undulator entrance. Each mode modulates the electron beam
at its own frequency. In the linear mode of operation all the modes grow in
time independently according to the increments which are defined by the gain
curve. In the nonlinear mode of operation, due to nonlinear modulation of
the electron beam density, the mode competition effect becomes to play a
significant role. For instance, an important effect of sideband instability can
be described in this way [35,44].

In the present study we use the single-mode approximation which assume that
the mode selection takes place and after the linear mode of the FEL oscillator
operation, a single mode is settled corresponding to the maximum of the gain
curve. Besides, we assume the field gain per one resonator pass to be small
(the case of a large field gain is discussed in section 6.6). Similarly to the
study of the FEL amplifier, we do not take into account the slippage effects.
Nevertheless, such a relatively simple model enables one to take into account
almost all main effects influencing the FEL oscillator operation and in many
cases provides adequate description of the processes in the FEL oscillator.

5.1 Basic relations

We consider a plane Fabry-Perot resonator equipped with two plane parallel
mirrors placed at distance L between them. A helical undulator having length
lw is placed inside the resonator and its axis coincides with the resonator axis.
Magnetic field at the undulator axis is given with the expression:

Ho(z) = &H, cos(kwz) — €y Hy sin(ky 2),

where €, are the unit vectors directed along the z and y coordinates of
the Cartesian coordinate system (z,y,z). The beginning of the undulator is
placed at z = 0. We neglect the transverse variations of the undulator field
and assume the electrons to move along the constrained helical trajectories in
parallel with the z axis (in average over the undulator period). The electron
rotation angle 6, is considered to be small and longitudinal electron velocity
v, is close to the velocity of light (v, ~ c).
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We suppose the electromagnetic field in the resonator to be circularly polarized
because of the helical magnetic system of the undulator. Using the complex
representation, we can write the expression for the electrical field of the wave
synchronous with the electron beam:

Ex+1iEy = E(z)expliw(z/c — t)].

It is assumed that the field gain per one undulator pass is small, i.e.

| E(le) = E(0) | /] E0) |« 1. (5.1)

The power gain coefficient is defined as

G=|E() /1 E@©) ] -1.

Introducing notation

Z = E(l)/E(0) - 1,

we rewrite condition (5.1) in the following form:

G ~ 2Re(2).

In the amplification process the phase of the electromagnetic wave changes,

too. Taking into account that arg{E(0)} = v, and arg{ E(1,)} = vo + A,

we may write:

In the small signal approximation, the values of G and A do not depend on
the value of the field £(0) stored in the resonator. We denote the power gain
coefficient for the small signal gain as Gi. It is function of the frequency and
parameters of the electron beam and the undulator. After reflection from the
both mirrors the radiation is fed to the undulator entrance and is amplified
in the undulator, etc. The lasing condition is formulated as follows:

max(Gs) > a,

where a is the relative power losses per one resonator round-trip. If (T, T)
and (T3,T';) are the transmission and absorption coefficients of the first and
the second resonator mirror, respectively, then a = Ty + T + I’y + Ty.
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To find the gain, we use the approach presented in section 2. Expression for
the complex amplitude of the first harmonic of the beam current density (2.11)
have the form:

31(z)=ij0/dz' [U +47re}1(z')/w] X

/ dPAF(P)/dP exp {i [C +wP/(cv20)] (< — 2)} .
The change of the field amplitude in the resonator is described with expression
(2.13):
dE/dz = —270,5,(z)/c.
Here 1s a place to remember notations introduced in section 2: P = £—&; is the
deviation of the electron energy £ from the nominal value &, C = ky, —w/2c7?

is the detuning of the electron with the nominal energy &, U = —ef, E(z)/2i
is the complex amplitude of the particle-wave interaction,

0, = eHy /Eokiw, 7;2 =’y_2+052, 7:50/mec2

Using these relation we can find the gain and the change of the phase of the
wave in the small signal regime.

5.2 Small-signal gain

5.2.1 Cold electron beam

Let us find the gain coefficient in the absence of the space charge field and
energy spread. The distribution function of a monoenergetic electron beam is
given by the delta function F(P) = §(P). From eq. (2.11) we obtain:

71(2) = ijobsew(2E72c /dz (2" — z)E(2") exp[:C(2' — 2)].

Integrating eq. (2.13) over z under condition (5.1), we obtain the expression
for the function Z:

Iw z

Z = —imjoflew(Epylc?) ! /dz/dz'(z' — z)exp[tC(Z — 2)].

0 0
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It is convenient to rewrite this expression in the following form:

Z =1

[N

1 ¢
[ de [ de¢ exp(-ice), (5:2)
0 0

where 7 = 271'03wjolfv(c7:71,4)‘1 is the gain parameter, 4 = mc®/e ~ 17 kA
is Alfven’s current and C' = C1,, is the detuning parameter. Introducing no-
tations G, = Gs/7 and Z = 2Z/r and integrating eq. (5.2), we reduce the
function Z to the algebraic expression:

Z =2C [2C) sin(C/2) - cos(C'/2)] exp(—iC/2). (5.3a)

The gain and the field phase increment per one undulator pass are expressed
in terms of the function Z as

~

G.=Re(Z),  Ago/7 = (1/2)Im(2). (5.3b)

In the case under study (in the absence of the space charge field and energy
spread), the maximal gain is the functiqn of the only detuning parameter C.
The gain reaches its maximum at C = C,, = 2.6:

max(Gs) =0.135.

The dependence of the G on the detuning C is presented in Fig.5.1 (note that
the gain curve is antisymmetric with respect to ¢' = 0).

5.2.2 Gaussian energy spread

Let us consider the electron beam with a Gaussian energy spread with the
distribution function given by eq. (2.29a). In the case of negligibly small space
charge field, we obtain:

1 13
Z=i 0/ de 0/ de'€’ exp [—iCE - A%(€)/2] (5.4)

where AZ = W < (AE)? > /(&Y = (47 Ny)? < (AE)? > /€2 is the
energy spread parameter and N, is the number of undulator periods. Ac-
cording to eq. (5.4), maximal gain max(G) = max(Re Z) and the detuning
C corresponding to this maximal gain are universal functions of the energy

spread parameter A?r . The plots of these functions are presented in Figs.5.2
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Fig. 5.1. The reduced small-signal gain G, versus the reduced detuning C at Ax =0
and A, = 0. The full curve is calculated with the analytical formulae (5.3) and

the crosses are the results of the numerical simulations with the formulae (6.1) and
(6.2).

and 5.3. For illustration, the gain curves for several values of A% are presented
in Fig.5.4. At large values of the energy spread parameter, A% > 1, we have
asymptotically:

~

Con ~ A, max(Gy) ~ 7 /2eAs? ~ 0.76&;2,
where e = 2.71828 is the base of natural logarithm.

5.2.83 Space charge influence

Let us study the space charge field influence on the gain for a monoenergetic
electron beam which distribution function is F(P) = §(P). Complex ampli-
tude j;(2) of the first harmonic of the beam current density can be found by
the Laplace transform. Multiplying eq. (2.11) by exp(—pz) and integrating
over z from 0 to oo, we obtain:

h(p) = / e ji(2)dz = —wjoUr; 265 {p [(p +iC)? + AZ] }'l ,
0

where Af, = 4mjo/(v2v14). To obtain j;, we must perform the inverse Laplace
transform of the function j;(p). The complex function j;(p) is satisfied to the
Jordan’s lemma, so, using the residue theory we obtain:
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Fig. 5.2. The maximal reduced small-signal gain G, versus the energy spread pa-
rameter AT at Ap = 0. The calculations have been performed with the formulae
(5.3b) and (5.4).

5.0

- -

I 7
ol pd
/

31)% e

0 5 10 15 20
Az

2.5

Fig. 5.3. The optimal reduced detuning C, versus the energy spread parameter A%
at A, = 0. The calculations have been performed with the formulae (5.3b) and (5.4).

() = i Ewebjo 1 + &P [—i(C + Ap)z] _exp[=i(C = Ap)2]
M= o282 2A,(C + Ap) 2A,(C —A,) |-

Substituting this expression into eq. (2.13) and integrating over z, we find
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Fig. 5.4. The reduced small-signal gain G versus the reduced detuning C at Ap =0.
The full curves are calculated with the analytic formulae (5.3b) and (5.4) and the
crosses are the results of numerical simulations with formulae (6.1) and (6.2). Curve
(1): A2 = 0, curve (2): AZ = 4, curve (3): AZ = 16.

Z=1 (6'2 - A;‘;) - {Af) —C? = 2iC (1 - cos(A,) exp(—iC)) —
A;l C? + Ag) sin(Ap) exp(—ié')} , (5.5)

where A, = Apl, is the space charge parameter. It follows from eq. (5.5) that
maximal gain max(G;) = max(Re(Z)) and the detuning Cp, corresponding to
this maximum are universal functions of the space charge parameter Ap. The
plots of these functions for several values of Ap are presented in Figs.5.5 and
5.6. The gain curves for several values of Ap are presented in Fig.5.7. At large
values of the space charge parameter, Ap > 1, maximal gain is achieved at

Cm >~ Ap and is equal

~

max(G,) ~ (4A,)71.

The lasing condition, written down for the reduced parameters, is of the form:

~

max(Gs) > &,

where & = a/7 is the parameter of resonator losses.

In conclusion of this section we compare the results obtained above with the
results obtained in Appendix C, where the problem of the FEL oscillator
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Fig. 5.5. The maximal reduced small-signal gain G, versus the space charge param-
eter A, at AZ = 0. The calculations have been performed with the formulae (5.3b)
and (5.5).
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Fig. 5.6. The optimal reduced detuning C,, versus the space charge parameter f&p at

AZ = 0. The calculations have been performed with the formulae (5.3b) and (5.5).

is formulated as an eigenvalue problem. In the latter case the field in the
resonator is represented as a superposition of the oscillations with different
longitudinal wavenumbers and time-dependent amplitudes:

E +iBy =Y Eun(t) exp(—iwmt) sin(kmz + 6),
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Fig. 5.7. The reduced small-signal gain G, versus the reduced detuning C at [\?r =0.
The full curves are calculated with the analytical formulae (5.3b) and (5.5) and the
crosses are the results of numerical simulations with formulae (6.2) and (6.6) Curve
(1): A, = 0, curve (2): A, = 2, curve (3): Ap = 4, curve (4): A, = 8.

where ky, = mn /L — 22/n'L, Wm = m7rc/L, 8§ = 1/n', n’ is refractive index of
material of the mirrors (| n’ [ 1) and m is integer number (m > 1). In the
small signal approximation, solution for the amplitudes of longitudinal modes
is seeking in the form E, = const x exp(et). The obtained eigenvalue is of the
form:

€ =2Lefer +4/n'T.

It was shown in Appendix C that é = Z/2, so the lasing condition should be
written as:

max(Re(€)) > Re(4/n'7).

In the case of different values of refractive indexes of the mirrors, the value of
2/n’ should be substituted by

2/n" = 1/n] + 1/n},.

The both approaches are similar at the following interpretation:

G, =2Re(?),  Ago/r =Im(é), & =8/n'r.
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6 Saturation effects in the FEL oscillator

All the results obtained in the previous section refer to the initial stage of
the FEL oscillator operation: in this case the radiation output power grows
exponentially in time while the radiation field phase increases linearly in time.
Near the saturation point the electrons motion becomes nonlinear, the beam
is overmodulated and the radiation output power achieves asymptotically its
saturation level. To find the saturation power of the FEL oscillator one should
solve equations of the nonlinear FEL oscillator theory. Analytical methods
have very limited possibilities in the nonlinear theory, numerical simulations
algorithms are more preferable. The most convenient way to calculate the non-
linear mode of the FEL oscillator operation consists in the use of a macropar-
ticle method when one solves the equations of particle motion simultaneously
with the Maxwell’s equations (see e.g. refs. [37] - [39] and references therein).
Another approach is based on the assumption that the FEL oscillator output
characteristics at saturation may be interpreted in the same way as a conven-
tional laser output characteristics [40]. Using approach of the bunched beam,
the authors of refs. [41,42] have obtained simple formulae describing the sat-
uration effects in the FEL oscillator. In the presented paper we will use the
conventional macroparticle method to analyze the nonlinear mode of the FEL
oscillator operation.

In the framework of the one-dimensional theory the FEL oscillator output
characteristics are determined with 8 parameters:

£, Jo» <(AEY?>, kw, Hy, L., L a

Using the similarity techniques when writing down the FEL equations, one can
find that all FEL oscillator characteristics at the saturation are determined
with three reduced parameters: & = a/7, Ap and AT, where « is attenuation
coeflicient of the radiation power at one resonator round-trip. The similarity
law for the FEL oscillator efficiency 7 may be written as:

n=n/8=F(,

~

p’AT)a

>

where 8 = (47 N,,)~! and N, is the number of undulator periods. The universal
function F is calculated in this section with the self-consistent FEL oscillator
equations.

In the same way as it was described in the previous section, we find the change
of the field amplitude after undulator pass and, after taking into account
reflections on the mirrors, the process of amplification is calculated again, etc.
As the field in the resonator is growing, the gain factor G is decreased and
approaches asymptotically to the value of the resonator losses c.
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In this paper we have limited the analysis of the nonlinear processes in the
FEL oscillator with the following assumptions:

i) we study the case of infinitely long electron beam pulse and do not consider
the effects connected with the finite pulse duration:

i1) the lasing frequency w corresponds to the maximum of the gain in the linear
stage, i.e. the value of the detuning parameter C is assumed to be equal to
C'm, when increment achieves its maximum at the linear stage;

iii) we do not consider such physical effects as the longitudinal modes compe-
tition, sideband instabilities etc. (see e.g. refs. [43,44]).

6.1 Self-consistent equations

In the considered model of the FEL oscillator the plane electromagnetic wave
reflects by turns from the resonator mirrors. This process can be illustrated
with the following simple picture. Let us consider a semi-infinite sequence of
plane-parallel equidistantly placed semi-transparent plates. The period of this
system is equal to L, where L is the resonator base. In each second period the
undulator is placed between the plates. The travelling electromagnetic wave
is fed to the system input:

Ex+1iE, = Eexpliw(z/c — t)].

When the wave transmits through the pair of plates, its complex amplitude
is multiplied by a factor of (1 — @/2) and when the wave propagates in the
undulator, the amplification process takes place. Hence, we should find out
the FEL amplifier self-consistent equations.

The self-consistent equations describing amplification process of the wave in
the undulator are similar to egs. (3.2) and (3.3) describing amplification pro-
cess in the FEL amplifier. Nevertheless, it is convenient to renormalize these
equations to the form:

dP/d3 =1 cos(y + o),
dy/dz =P + C + Bisin(y + 1), (6.1)

di/ds = (771/2) cos(o — 1),
dio/ds = —(7]1/24) sin(vo — 1), (6.2)

where 2 = 2/l,, 4 = wwl?/(cy2&) is effective potential of interaction of
the particle with the electromagnetic wave, (u/2)exp(ity) = iU = —ebE /2,
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P =wPl,/(cy26), P =€ — £ and § = ¢y fwly = (47 Ny)~" is the efficiency
parameter. Definition of the detuning parameter ' and the gain parameter 7
have been introduced in section 5. Parameter f3 is inversely proportional to the
number of the undulator periods N, and is always small. Hence, we neglect
the summand proportional to 4 in the second equation (6.1).

When performing numerical simulations, the value of the detuning C is set to
be Cr corresponding to the maximum of the small signal gain calculated in
section 5. The amplitude and phase of the first harmonic of the beam current
density, j; and 4;, are calculated as in:

2
. 1 7.
J1COsth; = — /]z cos Pdip,
T
0

2
.. L r. .
Jisinyy =—— /]z sin Pdy.
T
6.2 Nonlinear simulation algorithm

We simulate the electron beam with N macroparticles per interval (0, 27) over
phase ¢. The beam current density j, = Jz/jo is calculated as:

. o
Jz=—ﬁ7rkz=:15(¢-¢(k)),

where ¢ ;) are the phases of the particles and § (% — %) ) is the delta function.

In accordance with its definition the function J. has the following normaliza-
tion:

2r
0/ Gudip = —21

The amplitude and phase of the first harmonic of the beam current density
are given with the expressions:

N

27T
N 1 7. 2
Jreosty = = [, cos e = —< 3" cos yyu,
™y N

=1

27
- 17 2 X .
Jisinyy = ——/]z sinypdyp = — Z sin ().
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The simulation is performed as follows. At the moment of time t; we have at the
undulator entrance the unmodulated electron beam and the electromagnetic
field with amplitude E¢) =| E(t;) | and phase 1/)((,1), ie. at z = 0 we have
(k=1,...,N):

P(k) = 0’ .;1 = Oa U= &(]) = E(j)/an "/)O = (()j)v

where Ey = (¢72&)/(ewmbsl?). The equation of motion (6.1) and the field
equations (6.2) are solved numerically with the Runge-Kutta scheme. After
one undulator )pass we calculate the increase of the field amplitude A% and
its phase A’([)(()] - Then, after the radiation round-trip in the resonator, i.e. at
the moment of time ¢;,, = ¢;+2L/c, we obtain the following initial conditions
at the undulator entrance:

Pyy =0, h =0, 4 =4Vt = [1 — /2] [Aﬁ(i) + 4]

vo =95 + v,

We do not take into account the phase change after the reflection from the
resonator mirrors because this effect does not influence the FEL oscillator
operation in the one-dimensional approximation. The multiple using of this
procedure under the given initial conditions for the radiation field at the mo-
ment of time ¢, enables one to obtain the field evolution in time.

6.3 The resonator losses and efficiency optimization

At the linear stage of lasing, when @ < 1, the field amplitude grows in time
exponentially. Near the saturation, when % ~ 1, the electron beam is over-
modulated which leads to the slower growing of the field amplitude. When
the power gain becomes equal to the resonator losses, the field amplitude @
achieves asymptotically its maximal value (). So, field amplitude at satura-
tion 4(*) depends on the value of the resonator losses and a problem of the
FEL efficiency optimization is arisen.

When the field amplification per one resonator pass is small, the saturation
condition may be written down as:

AL = ai(*) /2, (6.3)

Let us consider now equations (6.1) and (6.2) more thoroughly. First, the value
of A4 is proportional to the gain parameter 7. Further, the amplitude j;
and the phase (¥; — vq) of the first harmonic of the beam current density are
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the functions of the only parameter @ — the field amplitude in the resonator at
the given moment. As a result, at the saturation the field amplitude increase
AG(>) may be represented as:

AQ) = 7 f () (6.4)

Hence, it follows from egs. (6.3) and (6.4) that in the case of the negligibly
small space charge field and energy spread the field amplitude at the saturation

1s the function of the only parameter, namely the reduced damping factor
&=alr:

4 = f(a&).

The FEL efficiency at the saturation is defined usually as the ratio of the
radiation power losses in the resonator to the electron beam power. In the

case under consideration the density of the radiation power losses is given
with expression:

II= cE(°°)AE(°°)/(27r),

so we have for the FEL efficiency

n = ell/(£jo) = Bal®Aa(>)/r,

where § is introduced above the efficiency parameter which is inversely pro-
portional to the number of the undulator periods N,:

B =cylfwly = (47N,)" L.

It is convenient for the further consideration to introduce the reduced efficiency
i = n/B. Using relation (6.3) we get

i =n/8 = &(a>)?/2. (6.5)

Now let us show that the conservation energy law takes place in the considered
FEL oscillator model. We have introduced above the FEL efficiency in terms of
the radiation power. On the other hand, the FEL efficiency may be expressed
in terms of the electron energy losses: n = — < P > /&, where P = (£—&), &
is the nominal electron energy at the undulator entrance and symbol < ... >
means the averaging over beam electrons. Using the definition of the reduced
energy deviation P, we find that the reduced efficiency is expressed as 7 =
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— < P >. One can find from the system of canonical equations (6.1) that the
energy losses of the electron beam are equal

N
<dP/d? >=aN~! Z cos (k) + o).

k=1
Remembering that

N
N7 cos(¥y + o) = —%51 cos(¥1 — o),
k=1

and using the first equation of the system (6.2) we get

< dP/d: >= —(4/7)di/d5.

It follows from this relation that in the limit of small gain per one resonator
pass, the reduced efficiency at the saturation is given by

h=—<P>=a®Aa=) /7 = &(a))2/2.

Comparing this expression with eq. (6.5) we find that the total energy of the
electron beam and radiation conserves.

Using the approach presented above we have calculated the universal charac-
teristics of the FEL oscillator at saturation. In all cases we have assumed that
the FEL lasing frequency w corresponds to the maximum increment (i.e. to
the value of the detuning parameter €' = C’m)

The plot of the reduced FEL efficiency versus the reduced damping factor &
is presented in Fig.6.1. It is clearly seen that there is the optimum value of &
when the FEL efficiency achieves its maximum. The existence of this maximum
may be easily explained as follows. When the value of radiation losses in the
resonator is increased (i.e. & is increased), the ratio of the radiation losses to
the radiation power stored in the resonator is increased, too. But at the same
time the value of the radiation power stored in the resonator is decreased.
When the value of & is rather large, near the lasing threshold, the radiation
field amplitude in the resonator becomes small which leads to the weak energy
exchange between the radiation field and the electron beam. Using the plot in
Fig.6.1 one may find the universal values of the maximum reduced efficiency
and the optimum value of the reduced damping factor [39]:

ﬁmax = 362, &opt = (.028.
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Fig. 6.1. The reduced efficiency versus the reduced damping factgr. The FEL oscil-
lator operates at the saturation. It is assumed that Ap = 0 and A, =0.
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Fig. 6.2. The reduced field amplitude in the resonator versus the number of the
resonator round-trips at optimal value of the reduced damping factor & = 0.028.
Here A2 =0,A, =0, 7 =1 and 4Y = 0.01.

The value of the FEL efficiency is calculated with the relation Tmax = 0.29/Ny,.
The plot in Fig.6.2 illustrates the time evolution of the field stored in the
resonator at optimal value of the resonator losses ap..

Another practically important characteristic of the FEL oscillator at the sat-
uration is the electron energy distribution at the undulator output. Fig.6.3
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Fig. 6.3. Phase space distribution of the particles at the undulator exit. The FEL
oscillator operates at the saturation. Here Al =0, Ay, =0 and é,p = 0.028.
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Fig. 6.4. The reduced rms energy spread of the particles at the undulator exit versus
the reduced damping factor. The FEL oscillator operates at the saturation. Here
A3 =0and A, = 0.

presents the phase distributions of electrons at the undulator output when
the FEL oscillator operates at the saturation. Fig.6.4 illustrates the reduced
energy spread of electrons at the undulator output as a function of the reduced
damping factor &. It is seen from this plot that near the lasing threshold, when
& 1s decreasing, the energy spread is increased. Then, after achieving maxi-
mum, it begins to decrease. At the value of & = &qp = 0.028 the energy spread
< (AP)? >= f(&) achieves its minimum. The energy spread < (A£)? > /&2
and the reduced energy spread < (AP)2 > are connected with the following
relation:
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<(AE?S [E2=N 1522 —<E>)

BIN1 Z(P(k)— <P>)?=p<(AP)? >,
k=1

where the value of < (AP)? > may be found with the help of Fig.6.4. At the
optimal value of the resonator losses, at & = Gopy = 0.028, the energy spread
of electrons at the undulator output is given with the simple formula:

V< (AE/&)? > ~ 0.26/N,,.

The number of macroparticles during the simulations has been chosen usually
equal to N =100...200. In this case the simulation results do not depend on
the value of V with an accuracy better than 10~3. The testing runs have been
performed at the small signal regime. In Fig.5.1 we compare the results of the
increment calculations obtained with the analytical formula (5.3) and with the
numerical simulations. There is good agreement between the numerical and
analytical results.

6.4 Space charge and the FEL efficiency

Let us now study the influence of the Spéce charge field on the nonlinear regime
of the FEL oscillator operation. This requires to include the corresponding
corrections in the equation of motion (6.1) which are similar to those of the
FEL amplifier equations (3.16):

dP,
—dE—)=UCOS(¢(k)+¢0)+

A 1

Ay {N 3 [msen (v = vi) — (0 — )] }
1tk

——=Fi+C (6.6)

Here the normalization procedure has been performed in the same way as it

was done in section 5: 3 = z/l,,, C = Cl,, P = wPlI, /(ev2&), A2 A2 =
4ol /(¥;v14), and & = uwly, /(ev; o).

When the space charge fields are taken into account, the reduced efficiency is
the universal function of two parameters: the radiation damping factor & and
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Fig. 6.5. The maximal reduced efficiency versus the space charge parameter Ap. The
FEL oscillator operates at the saturation. Here AZ = 0.

space charge parameter Ap. At each value of the space parameter Ap there
is the value of the optimal value of &,p, when the FEL efficiency achieves its
maximum. This maximal efficiency and éop¢ are universal functions of the only
parameter, namely Ap. The dependence of the maximal FEL efficiency on the
space charge parameter Ap is presented in Fig.6.5. It is seen that efficiency
of the FEL oscillator grows with Ap. Fig.6.6 illustrates the dependence of
the optimal value of the radiation damping factor ., on the space charge
parameter [\p and the plots in Fig.6.7 show the dependence of the efficiency
on the radiation damping factor & at several values of Ap.

The simulations have been tested at the linear stage of the FEL oscillator
operation and Fig.5.7 illustrates this. At the number of macroparticles N =

200 the divergence of the analytical and simulation results does not exceed
1073,

6.5 Energy spread and the FEL efficiency

In the presence of the initial energy spread in the electron beam the FEL
reduced efficiency is the universal function of three parameters: &, A, and A2
(we assume here the energy spread to be the Gaussian). Let us consider the
case of negligibly small space charge field (/A\;‘; — 0). In this case the maximal
reduced FEL efficiency and the optimal value of the radiation damping fac-
tor Gopt are the universal functions of the energy spread parameter A2. The
plots of these functions are presented in Figs.6.8 and 6.9, and in Fig.6.10 the
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Fig. 6.7. The reduced efficiency versus the reduced damping factor for several values
of the space charge parameter A,. The FEL oscillator operates at the saturation.
Here A% = 0. Curve (1): A, = 0, curve (2): A, = 2, curve (3): A, = 4 and curve

(4): A, = 8.

dependencies of the FEL efficiency versus the radiation damping factor are

plotted.

The code for simulation of the energy spread effects operates in the same way
as it was described in section 3. The testing of the code has been performed
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Fig. 6.9. The optimal reduced damping factor versus the energy spread parameter
A2 The FEL oscillator operates at the saturation. Here A = 0.

at the linear stage and Fig.5.4 illustrates this. The macroparticle ensemble for
these simulation runs has been prepared as follows. First, we have prepared
the micro-ensemble of 200 particles corresponding to the Gaussian energy
distribution. Then we have distributed 4 micro-ensembles evenly over phase ¥
from 0 to 27. It is seen from the plots that there is good agreement between
the simulation and analytical results.
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Fig. 6.10. The reduced efficiency versus reduced damping factor. The FEL oscillator
operates at the saturation. Here A, = 0. Curve (1): A} = 0, curve (2): A3 =4 and
curve (3): AZ = 16.

6.6 Some generalizations

Let us generalize the results obtained in this section. First, we show the method
of finding the optimal relation between the transmission and absorption coeffi-
cients of the.mirrors. The radiation damping factor o appearing in expressions
(6.3) and (6.5) may be presented in the form:

a=T+T,+T1 + 7T,

where (T1,T1) and (T3,T'y) are the transmission and absorption coefficients of
the first and the second resonator mirror, respectively. Let us also introduce the
practical FEL efficiency 7.4 given with the ratio of the output FEL radiation
power to the electron beam power and the reduced practical efficiency fou:

ﬁout = nout//B = T(T + F)-lﬁ

where T'=T; 4+ T; and ' = I'; + I',. Calculating & = (T' + I')/7 one can find
with the help of Fig.6.1 the reduced efficiency 7. The practical efficiency fout
can be optimized, for example, by the appropriate choice of the transmission
coefficient T' of the mirror at the constant value of the absorption coefficient I'.
The plots in Figs.6.11 and 6.12 show the dependence of this maximal practical
efficiency max(fout) and the corresponding optimal value of the transmission
coefficient Topt = T/7 on the absorption coefficient I' = I'/7. Fig.6.13 illus-
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trates the practical efficiency dependence on the transmission coefficient for
several values of the absorption coefficient I".
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Fig. 6.11. The maximal reduced practical efficiency versus the reduced absorptlon
coefficient I'. The FEL oscillator operates at the saturation. Here A = 0 and
A =0.
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Fig. 6.12. The optimal reduced transmission coefficient T versus the reduced ab-
sorption coefficient I'. The FEL oscillator operates at the saturation. Here AT =0
and Ap =0.

All the results presented above refer to the case of the small radiation field
amplification per one resonator pass. Let us consider now the FEL oscillator
with the field gain per one resonator pass about of unity. The analysis of the
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Fig. 6.13. The reduced practical efficiency versus the reduced transmission coefficient
T at several values of the absorption coefficient . The FEL oscillator operates at
the saturation. Here AZ = 0 and A, = 0. Curve (1): I' = 0, curve (2): I = 0.01,
curve (3): T = 0.03 and curve (4): I‘ = 0.06.

obtained results will allow us to obtain the validity region of the approximation
of the small amplification.

For simplicity we consider the resonator equipped with two mirrors: one per-
fectly reflecting and another with the transmission coefficient T and absorption
coeflicient T' =~ 0.

According to the self-consistent equations (6.1) and (6.2), the approximate
criterion of the small field amplification is given with the small value of the
gain parameter 7, while the equations itself are valid in the case of the high field
gain. Formula (6.4) remains to be valid in the case of the high amplification,
while the condition (6.3) should be changed to:

T (3 4+ AG(®)? = 26 AG) 4 (Aa(=))2, (6.7)

The FEL reduced efficiency at the arbitrary value of the gain parameter 7 is
given with the following expression:

= /8 = T (4 + AaN?/(27). (6.8)

Substituting (6.4) into (6.7), we obtain that the field amplitude 4(*) at the
saturation and the reduced efliciency (in accordance with eq. (6.8)) are func-
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tions of two parameters, namely 7 and 7:

,&(oo) - fl(TﬂT)’ 77 = fQ(TvT)'

The comparative results of the strict and asymptotical calculations are pre-
sented in Fig.6.14. The dependence of the optimal value of the reduced detun-
ing Cp on parameter 7 has been taken into account in this calculations. The
curves 2 and 3 are simulation results with the formulae (6.4) and (6.8). The
curve 1 is calculated with the approximation of the small amplification (see
Fig.6.1). It is seen that in the region of practical interest, at 7' = T/7 ~0.03,
the values of the reduced efficiency # is close to the asymptotical ones even
when parameter 7 ~ 5. Therefore, all the plots presented in this section for
the case of the small signal amplification can be used in practice, even when
the field amplification per one resonator pass has an order of several tens of

percents.
31—

\
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Fig. 6.14. The reduced efficiency versus the reduced transmission coefficient T* for
several values of the gain parameter 7. The FEL oscillator operates in the saturation.
Here A2 =0, A, =0and ' = 0. Curve (1): 7 — 0, curve (2): 7 = 2 and curve (3):
T =0,

All the results presented above in sections 5 and 6 refer to the case of circularly
polarized radiation and helical undulator. They may be simply transferred
to the case of the linearly polarized radiation and a planar undulator with
magnetic field

H, =0, Hy = Hycos(kyz),
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by the following redetermination of the parameters:
T = 7' = wwbjoly AT y(eviya) 7,
Eo — Ej = 280y c(ebwl? Ass) 7L,
6 = 0" = (R — w207 ) L,
B— B = crf(wh)™ = (47 Ny) 7,

~

!

p A =1 [47rj07"171_2];1

Ar — Ap = Ly 265 /< (AE)? > = 4n N,y /< (AE)? > /€2,

>

Y

]1/2

Here the following notations have been introduced: 6, = eHy/(Eokw), 12 =
Y2402, Ay = [Jo(v) = Ji(v)], v = 02w/ (8cky) and Jp and J; are Bessel

functions.

To illustrate the calculation of the output characteristics of the FEL oscillator
with the planar undulator let us consider, for example, the saturation regime.
With the plot in Fig.6.1 we find, that in the case of negligibly small space
charge fields and energy spread

A

AL = ALl — 0, A = Al — 0,

the FEL oscillator efliciency achieves its maximum fmay = 3.62 x 3 when the
field damping factor is equal to: a = 0.028 x 7'.

In conclusion of this section it should be noted that the one-dimensional theory
is widely used for calculations of practical devices. The main reason for this
is that it provides the most simple way for taking into account diffraction
effects. As a rule, optical resonators with spherical mirrors are used in the real
systems. At small field gain, the electron beam does not affect significantly
the field eigenmode in the resonator and it remains to be close to that of the
empty resonator. As a result, the motion of electrons can be calculated in the
approximation of the given field. To take into account the field distribution
in the resonator, the notion of the filling factor is introduced. For instance,
when the field eigenmode in the resonator is a Gaussian TEMgg one, the field
distribution in the waist is of the form:

| E o< exp(—r®/w}),

where r is the transverse coordinate and wg is the size of the waist. When
transverse size of the electron beam is much less than wg and when we can
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neglect the change of the Gaussian mode along the undulator, we substitute
in the one-dimensional equations the value of the beam current density jo by
effective value

(Jo)ess = 200/ mw},

where Iy is the total beam current. In many practical situation such an ap-
proach provides adequate way for calculation the FEL oscillator parameters.
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7 FEL oscillator with a tapered undulator

Tapering of the undulator parameters, for the first time proposed in ref. [29],
is widely used now to increase the efficiency of a free electron laser. In section
4 we have performed detailed analysis of application of the undulator tapering
to increase the FEL amplifier efficiency and have shown that the efficiency in-
crease is achieved by the adiabatic change of the resonant energy, for instance,
with the undulator field decrease at a fixed undulator period.

In the case of the FEL amplifier all the parameters influencing the resonance
condition (the undulator field and period, the frequency of the amplified wave
and the initial electron energy), are defined by experimenters. In comparison
with the FEL amplifier, the situation with the FEL oscillator is more compli-
cated because the lasing frequency is defined by the condition of the maximum
amplification in the small-signal regime (it takes place when one can neglect
the longitudinal mode competition and the sideband instabilities). The posi-
tion of the amplification maximum depends on the depth of the tapering (see
e.g. ref. [45]). Detailed analysis of this effect has been performed in ref. [46].
It was shown that the lasing frequency shift due to the tapering may lead
to the situation when the particles are far from the exact resonance at the
undulator entrance. At some values of the depth of the tapering this effect
leads to the significant decrease of the FEL oscillator efficiency when the un-
dulator parameters are tapered in the same way as in the FEL amplifier (for
instance, by decreasing the undulator field at fixed period). It was shown in
ref. [46] that in some cases quite a different way of tapering is more preferable,
for instance, with the undulator field increase at the fixed period (so called
“negative tapering”).

In this section we consider the one-dimensional theory of the FEL oscillator
with a linear law of undulator tapering. The simplest case is under study:
we do not take into account the space charge fields and energy spread in the
beam. The field amplification per one resonator pass is assumed to be small,
the electron pulse length is infinitely long and we do not take into account the
longitudinal mode competition.

7.1 Small-signal mode of operation

To calculate small signal mode of the FEL oscillator operation, we use the
approach similar to that used in section 5.

The electron beam moves along the axis of the helical undulator with the
length I, (the case of a planar undulator is discussed in the end of this section).
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The magnetic field at the undulator axis is of the form:

Hy +iH, = Hy(z)exp [—z’/nw(z)dz] .

The electric field of the synchronous with the electron beam wave is presented
in the complex form:

Ex +1iE, = Eexp[iw(z/c — t)].

To describe the electron motion we use the Hamiltonian formalism with the
“energy-phase” variables. In this representation the electron energy £ is canon-
ical momentum conjugated with the phase

P = /nw(z)dz +w(z/c—t)

as canonical coordinate. When the electron energy deviation from the nominal
value & is small, we can write the following expression for Hamiltonian (we
neglect the space charge fields here)

H(P,4,2) = C(2)P +wP*[2e7}& — [Ue¥ + C.C] (1 - P/&),  (1.])

where C(2) = kw(2) — [1 + K2(z)]<.u/20'y2 is the detuning of the particle with
the nominal energy &, v = &/mc?, 7% = 472462, K(2) = eHy(2)/kw(2)mc?
is the undulator parameter, m and —e are, respectively the mass and charge
of the electron, U = —ef F /2t is the complex amplitude of effective potential
and 6, = K(0)/v is the electron rotation angle at the undulator entrance.
We assume relative change of the undulator parameters to be a small value,
| AHw/Hw(0) |, | Akw/kw(0) |< 1), so we neglect these changes in the ampli-
tude factors and keep them only in the detuning.

The evolution of the electron beam distribution function f is described by the
kinetic equation:

of (OHOf 0HOf .
9z " 9P 9y 3¢ 9P

In the linear approximation we shall seek the solution for f in the form:

f=fo+ fi(P,2)e? +C.C.

and then we have for the complex amplitude f; the following equation:

0f1/0z +i[C(2) + Pw/ex?€) J +iUd /0P = 0. (7.2)
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When one ha~s an unmodulated electron beam at the undulator entrance, the
solution for f; has the form:

fi = exp[—iF ()] / dz'iUdfs/dP exp [iF(#')] (7.3)

where F(z) = fz[C(s) + Pw/cy2&y) ds. Further on we shall consider only the
0

case of the linear tapering when the detuning changes according to the law:
C(z) = Cop + bz. The longitudinal component of the beam current is equal to:

jz = —jo +;16iw -+ CC, jo ~ ecny, 31 o~ —CC/fldP,

where ng is the beam density at z = 0. In the framework of the one-dimensional
model, from Maxwell’s equations we get the following equation for the slowly
changing amplitudes E(z) and j;(z):

dE[dz = —27i0.c7 71 (2). (7.4)

In this paper we consider the case of the “cold” electron beam when the initial
distribution function of the electron beam is fo = noé(P), where §(...) is the
delta-function. Substituting this expression into eq. (7.3) and after integrating
over P we get the expression for 7;(z). Then we substitute the obtained result
into eq. (7.4) and after integration over z we get the following expression for
the field amplification per one undulator pass (we assume here a small change
of field E per one pass):

E(1,)/E(0) = 1 = Z = —inf2ejow(c*y2E) j dz / dC(¢ — 2)8(C, ),

where ®((,z) = exp [1Co({ — z) + 1b(¢? — 22)/2]. After performing the nor-

malization procedure, we obtain the expression for the function Z = 2Z/T
1 ¢

=i f de / de'€’ exp {~i [Cot' + b’ — b(e'7/2]}. (7.5)
0o 0

In the same way as it was done in the previous sections, we define the reduced
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gain coefficient as G, = G,/ = Re (Z). Then, from eq. (7.5) we have:

1 ¢
G, = 0/ de 0/ de'e’ sin [Cot’ + b€’ — be? /2] (7.6)

where Cp = Colw, b= biZ and 7 = 2702 jowl2 /I1442~c is the gain parameter
introduced in section 5.

Let us express the tapering parameter b in terms of the undulator parameters.
At the linear change of the undulator period A, = 27/« and fixed undulator
parameter K, we get:

b =21 Ny () — A (0)] /A (0),

where N, is the number of undulator periods. At the linear change of the
undulator field and fixed period we get:

b {—ar NoK2(0)/ [1 + K*(0)] } [Hu (lu) — Hu(0)] / Ha (0).

It should be noted that these expressions for b are valid for the both: positive
and negative signs of b.

In the case of untapered undulator, integration of expression (7.6) is performed
analytically and we get the well known result of eq. (5.3).

Figs.7.1 and 7.2 show the gain profiles for two different positive values of the
tapering parameter b. It is clearly seen that the curves are antisymmetric
with respect to the line Co = —b/2. The value of G, at the first maximum
(dominating at b= 0) is decreasing rapidly when parameter b is increasing and
at b ~ 26 the first maximum becomes less than the second one. Further, the
second maximum dominates till b ~ 38, and so on. We limit our consideration
only with these two maxima, i.e. with the region 0 <| b |< 38. The position
of the maxima is given approximately with the formula C™ ~ Cm|b -0 —b/2
which is valid for the both positive and negative values of parameter b. For
instance, at the positive values of b, maxima shift in the direction of the smaller
values of the detuning parameter C’o (i.e. the lasing frequency increases with
respect to the case b = 0). A more precise formula for the first maximum
has the form: Cr = 2.6 — b/2 — y1(| b |), and for the second maximum:
Cg" =10.6— b/ 2—yo| b 1), where y; and y; are the positively valued functions
of the absolute value of b giving a small contribution to the change of Cr (ie.
Y12 <] b |). The values of the maximal gain G’" do not depend on the sign
of b and are universal functions of the absolute value of b. The plots of these
functions for two maxima under consideration are presented in Fig.7.3.
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Fig. 7.1. The reduced small-signal gain G, versus the reduced detuning C, at the
undulator entrance. Here b = 20, (1) is the first maximum and (2) is the second
maximum. The full curve is calculated with formula (7.6) and the crosses are the
results of numerical calculations with formulae (6.1) and (6.2).
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Fig. 7.2. The reduced small-signal gain G, versus the reduced detuning C, at the
undulator entrance. Here b = 30, ( 1) is the first maximum and (2) is the second
maximum.
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parameter. Here (1) is the first maximum and (2) is the second maximum.

7.2 Efficiency optimization

We use egs. (6.1) and (6.2) for numerical simulation of the nonlinear mode of
operation of the FEL oscillator with tapered undulator. The only distinction is
that now the detuning parameter is the function of the longitudinal coordinate,

¢ (2) = Gy + bz, where C, corresponds to the maximum of the small signal
gain, Co = C.

In the stationary regime of the FEL oscillator operation, the reduced efficiency

= n/B is given by the relation i = &(u(*)?/2, where & = /7 is the
parameter of resonator losses. In the case of untapered undulator, the field
amplitude 4(*) at the saturation depends only on &, so the FEL efficiency 7
at the saturation is the universal function of the only parameter & and achieves
1ts Maximum fmax = 3.62 at dpe = 0.028 (see section 6).

In the case of the linear law of the undulator parameter tapering, the FEL
efficiency 7 at the saturation is universal function of two parameters: 7 =

F(é,b). At ‘each value of the tapering parameter b there is always the optimal
value aopt(b) when efficiency achieves its maximum nmax(b) In Figs.7.4 and
7.5 we present the plots of the maximal FEL efficiency nmax(b) and aopt(b) in
the range 0 <| b |< 25 when the lasing takes place at the first maximum of the
gain curve. The complicated behaviour of these plots at the positive values of
parameter b needs some explanations. The rapid decrease of the efficiency at
b~ 20is explained as follows. Let us consider the field amplification coefficient
G as the function of the field amplitude @ in the resonator. When the field
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Fig. 7.4. The maximal reduced efficiency at the saturation as a function of the
tapering parameter for the first maximum. Curve (a): b > 0, and curve (b): b < 0.
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Fig. 7.5. The optimal reduced damping factor as a function of the tapering param-
eter for the first maximum. Curve (a): > 0 and curve (b): b < 0.

amplitude is increasing, coefficient G achieves its minimum at first, and at
large values of 4 it achieves the maximal value. The dependencies of G(u) and

(%) at the value of b =15 are presented in Fig.7.6. It is seen from the plot
of G(4) that the transition from the range of the small field to the range of
the strong field (where efficiency achieves its maximum) is possible only at
a < Gmm At b = 15 the maximal FEL efficiency is achieved at dop = 58

and conditions & < Gmm and & = G(uopt) are fulfilled simultaneously at
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Fig. 7.6. The reduced gain G (curve 1) and the reduced efficiency (curve 2) versus
the reduced field amplitude for b = 15.

& = Gopy = 3.8 x 1072, Thus, at the given value of the undulator tapering
parameter b, there is always the optimal value of the field damping factor &
when the FEL efficiency achieves its absolute maximum. Then, if parameter
bis increasing, the value of Gy, is decreasing and at b > 17 the equilibrium
state in the region of the strong field is possible only at @ > uopt and the FEL
efficiency is decreasing rapidly. At b ~ 21 the decrease of Gmm leads to the
leap of the function Gop:(d) and the break of the function fimax(). The further
increase of parameter b leads to the situation when the FEL saturation is
achieved at the small field and low efficiency. Thus, in the region 0 <| b |< 25,
the tapering with the positive value of b (i.e., for instance, at the decreasing
of the undulator field and fixed undulator perlod) becomes ineffective. This
1s explained by the shift of the lasing detuning C’{,” to the region of negative
values. As a result, at the initial part of the undulator the particles are bunched
at the accelerating phase of the effective potential and take away the energy
from the radiation field, and only then the field amplification process takes
place. So, in this case the undulator tapering with b < 0, when the field
amphﬁcatlon is performed from the very beginning of the undulator, has an
advantage against the tapering with b > 0.

Figs.7.7 and 7.8 show the dependencies of nmax(b) and aopt(b) in the range
26 <| b |< 38 when the lasing takes place at the second maximum of the gain
curve. In this case the maximal FEL efficiency increases significantly but is
achieved at small values of the parameter & (which corresponds to very strong

fields).
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Fig. 7.8. The optimal reduced dumping factor as a function of the tapering param-
eter for the second maximum. Curve (a): b > 0 and curve (b): b < 0.

With the help of the plots in Figs.7.4, 7.5, 7.7 and 7.8 one can find the optimal
value of the resonator ()-quality and maximal FEL efficiency corresponding
to the given value of the tapering parameter b. In many practical situations,
the problem arises how to find the optimal value of the tapering parameter
and maximal FEL efficiency at the given value of the resonator losses. In
Figs.7.9 an 7.10 we show the dependencies of the efficiency % on the value of
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Fig. 7.9. The reduced efficiency at the saturation as a function of the tapering
parameter. Here & = 0.005 and b > 0.
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Fig. 7.10. The reduced efficiency at the saturation as a function of the tapering

parameter. Here & = 0.005 and b < 0.

the tapering parameter b for the value of @ = 5 x 10~2 and in Figs.7.11 and
7.12 we present the phase distributions of the particles at the undulator exit
when the FEL oscillator operates in the saturation regime.

Table 1 presents optimal values of b and the corresponding values of the effi-

ciency for different values of &. It is seen from Table 1 that in the wide region
of the reduced damping factor values, good results may be achieved using the
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Fig. 7.11. Phase space distribution of the particles at the undulator exit. The FEL
oscillator operates at the saturation. Here & = 0.005 and b = 29.
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Fig. 7.12. Phase space distribution of the particles at the undulator exit. The FEL
oscillator operates at the saturation. Here & = 0.005 and b = —23.

tapering within b = 26 + 30. In this region of the tapering parameter i), the
lasing happens at the second maximum of the gain curve which is only slightly
shifted to the negative values of the detuning parameter. Almost the same re-
sults (the increase of the efficiency by the factor of 2 + 3.5 with respect to the
case of untapered undulator) can be achieved using the “negative tapering”
in the region of the tapering parameter b = (—20) + (—25).

All the results obtained above may be generalized to the case of a linearly
polarized radiation and a planar undulator having magnetic field:

Hy =0,Hy = H(z)cos ( f kw(2)dz)

by the following redetermination of the problem parameters:

T = W@lzjowl‘avAgJ(c'Vf'YIA)_l’
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Table 1
Optimal parameters of the FEL oscillator with tapered undulator

102xéa |b/|b]| |b] 7

0.1-0.15 -1 26 - 38| 20- 27
0.15-0.2 -1 26-29| 17-23
0.2-0.3 +1 26-32| 9-12
0.3-0.5 +1 26-32| 10-13
0.3-0.5 -1 23-25| 10-13
0.5-0.7 +1 26-30| 12-13
0.5-0.7 -1 20-25|10-125
0.7-1.0 +1 26-28  8-12.5
0.7-1.0 -1 18-25| 8-10.5
1.0-1.3 +1 26-28| 6-10
1.0- 1.3 -1 18-25| 7-85

Ey — E(’, = 2680’712(60](4)13,{4.].])_1

B— B =c(wly)™ = (47N,)7,

C(z) = C'(2) = ku(2) —w [1 + I€l2(z)/2] /2¢v?,
where Ki(z) = eH\(2)/ [ku(2)mc?], 6 = Ki(0)/y, %2 = v~ 2 + 60?/2, Ay =
[Jo(v) — J1(v)] and v = 6}w/(8cky ). When the undulator period is tapered by

a linear law at the constant undulator parameter Kj, the tapering parameter b

is equal to: At the linear tapering of the undulator period and fixed undulator
field we have:

b =27 Ny A (le) = Aw(0)] /2w (0),

where A, = 27/k,. At the linear tapering of the undulator field and fixed
undulator period we have:

b {—27er1(12(0)/ [1 + Kf(O)/2]} [H(Ly) — H(0)] /H,(0).
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8 FEL oscillator with multicomponent undulator

We assume a multicomponent undulator to be composed of two undulators
separated by drift space or dispersion section. There are two popular config-
uration of the multicomponent undulator. The first one uses two identical (or
almost identical) sections. The first undulator modulates electron beam in the
energy. After passing the dispersion section, the energy modulation transforms
into the density modulation and bunched electron beam radiates electromag-
netic radiation in the second undulator. Such an FEL oscillator configuration
provides the small signal gain which is much more than that of the homoge-
neous undulator of the same total length. This device has been proposed in
ref. [47,48] and was named “optical klystron”. Application of this scheme is
necessary when the gain parameter is small and there is a need to reach the
lasing threshold.

Another popular scheme of the multicomponent undulator is named as un-
dulator with a prebuncher [49]. The length of the prebuncher is much less
than the length of the main undulator section. As a rule, the main undulator
is a tapered one. The length of the drift space is much less than that of the
optical klystron and does not influence significantly on the beam bunching at
the linear mode of operation. On the other hand, its parameters are chosen in
such a way, that it optimally enhanced the beam bunching when operating at
the nonlinear mode of operation. As a result, the bunched beam is fed to the
input of the main undulator with tapered parameters, and the FEL oscillator

efficiency can be increased significantly with respect to the case considered in
section 7.

As a rule, the main emphasis in the theory of the optical klystron is put
on the small signal analysis (see refs. [47,48], [50] - [55]). The small signal
gain is usually obtained either via derivation of spontaneous spectrum (Madey
theorem [56]), or by using kinetic equation. In this paper we present a universal
study of the small signal gain of the FEL oscillator with multicomponent
undulator taking into account energy spread in the beam, the difference of
the undulator section lengths, tapering of the second undulator section and
phase shift of the wave in the drift space. As for nonlinear analysis, using
similarity techniques we present for the first time simple analytical relations
for the maximal FEL efficiency and optimal value of the resonator losses.

We should note that the presented results of the nonlinear theory can not be
used directly for calculation of the optical klystron installed in the storage ring.
In this case the radiation in the resonator interacts with the single electron
beam circulating in the storage ring which complicates considerations because
the beam dynamics in the storage ring should be taken into account. Special
studies of this problem have shown that these effects significantly reduce the
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output power of the optical klystron [57] - [60]. In this section we consider the
simplest formulation of the problem when the driving electron beam of the
FEL oscillator is modulated neither in velocity nor in density at the undulator
entrance and its parameters do not depend on time.

8.1 Small-signal mode of operation

The multicomponent undulator consists of two undulators of length [, and I,
respectively, and the drift space of length d. To find the small signal gain, we
use the approach developed in the previous sections using the Hamiltonian
(7.1), kinetic equation (7.2) and electrodynamic equation (7.4).

We begin with the case of untapered undulators. Evolution of the complex
amplitude f1 of the first harmonic of the distribution function is described by
the equation

0f1/0z+i(C +wPlcy2Es) fy +iUBf,/OP = 0, (8.1)

where fo = noF'(P). The general form of the solution for fl is

fi = —ing / d2'UOF[8Pexpli (C +wP/cy?&) (2 — 2)] +
. 0

f1(0) exp [=i (C + wP[cr2& ) 2]. (8.2)

We study the case of the electron beam which is modulated neither in velocity
nor in density at the entrance into the undulator, so we let f,(0) = 0 at z = 0.

There is no beam-wave interaction in the drift space and longitudinal relativis-
tic factor v, is equal to the total one +. The evolution of the function f1 in the
drift space results in the multiplying by the phase factor exp[—iw(z/c — t)].
We denote the value of the function f; (see eq. (8.1) at z = I; as fl(c), and

the value of this function at the end of the drift space as fl(:). These values
are related with each other as

A7) = 719 expliny),

where ¢y > (wd/c)[1 —v(€)/c]. In the same way as it was done in the previous
sections, we denote 7 as the relativistic factor, 4, as the longitudinal relativistic
factor in the undulators, C' as detuning of the particle in the undulators and
P =& — & as the deviation of the electron energy from nominal value. The
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values of 7, 7, and C refer to the particle with the nominal energy &. So, the
latter expressions can be written as

Yt = —(72/7*)d(C + wP[cy2E — Ky )

and

ly
F&) = —ing expli(v2/7*)kwd] /dz'U(?F/@P X

exp [i (C +wP[er20) [ = 1y = (42/7)d)] (8:3)

As there is no beam-wave interaction in the drift space, it is convenient for
calculations to let the total length of the system to be equal to I, = I; + {,.
The change of the distribution function f; in the drift space is introduced as
a leap at z = [;. The solution of eq. (8.1) in the interval l; < z < I,, with the
initial condition (8.3) is

fi = ~ing {exp(i&,[)) / dz2'UdF 9P x
exp |1 [ (C+wP[cy &) |2 — 2 — (722/72)d]] +

/ dz'UBF|8Pexpli (C + wPey2Es ) (2 — z)]} , (8.4)
]

where 81 = (v2/7?) k. d.

Let us consider the case of “cold” electron beam with F(P) = 0(P). Using
relation

51 = —ec/fldp,

we find expressions for the first harmonic of the beam current density

1= (jow/go'yfc)/dz'(z’ — 2)Uexp[iC(z' — 2)] at 0 < z < [y,
0
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: !
i1 = (ow/ €07 {expuw) [z [ = = = (32 /2*)d] U
0
exp [iC[2' = z — (v2/+*)d]] +
/dz'(z' —2)Uexp[iC(z — z)]} at I <z <l
To find the function Z = 2Z/r, where Z is defined as Z = E(,)/E(0) —

and 7 is the gain parameter, we integrate eq. (7.4) in the limits from 0 to I,
and perform the normalization to the total undulator length I:

iy ¢ 1= ¢
=i 0/ de 0/ de'¢ exp(—iCE') + / de 0/ de'¢ exp(—iCE') +

0

1-0 E+h+d )
i exp(i6y) / de / de'¢ exp(—iCE'), (8.5)
0 e+d

where ¢ = Cly, L =1/lyand d = (v2/4*)(d/l%). In a special case of a helical
undulator d = d/(1 + K?)l,, and for a planar undulator d = d/(1 + K?/2)l,,.
Expression of the phase shift of the wave in the drift space with respect to
the electron beam is written in the form: §y = 27er<2, where N, is the total
number of the undulator periods in the both sections.

8.1.1 Optical klystron

Integrating eq. (8.5) for the case of I; = 1/2 and ¢ = 27k (k=1,2,...), we
obtain

=52 [C+ 4 2R (/) + F(ED + F(CW+ 1)~

2F(C(d+1/2))] (8.6)

where F'({) = (2¢ — {) exp(—i(). One can easy find that at d — 0 expression
(8.6) transforms to the corresponding expression (5.3) for untapered undula-
tor. The reduced small signal gain G, = G, /7 is written as

G = Re(2) = = 210 [ + 7(0)

C(d+1)
C(d+1/2) Q)

C(d+1/2)
S (s)
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where f({) = 2cos({) + (sin(¢) and

FQ) e = £(8) = f(a).

0.8

s o.o;\, v V v/\vm
- ARV

-0.8 :
—-12 -6

0 6 12
¢
Fig. 8.1. The reduced small-signal gainG, versus the reduced detuning C. Here

oy = 0, d =2 and ll = 1/2. The solid curve is calculated with analytical formula
(8.7) and the crosses are the results of calculations with nonlinear simulation code.

Fig.8.1 presents the gain curve for specific value of parameter d. At large values
of the parameter d maxima of the gain curve are separated approximately by
27/ d. It is explained as follows. The maximum of the gain curve corresponds to
an optimal value of the beam-wave phase shift at the entrance of the second
undulator. At the exact resonance (C' = 0), the beam-wave phase shift in
the drift space is equal to some value §1. At a finite value of the detuning,
an additional phase shift appears equal to C'd. Maximum of the gain curve
corresponds to the optimal beam-phase shift at the entrance to the second
section. Additional beam-wave phase shift equal to 27 caused by the change
of the detuning by the value 27/ d corresponds to the next maximum. When
6 = 27k (k = 1,2,...), the gain curve is antisymmetric with respect to
C = 0. When o is changed smoothly, the maximums are shifted inside the
envelope of the gain curve and the picture is repeated each time when oY
changes by 2r.

Though 6% depends on d, its change by the value of unity is achieved at a small
relative change of parameter d when the latter is greater or of an oreder of
unity. For instance, 63 changes by 2r at Ad/d = 1/Nyd < 1 because N,, > 1.

It means, that when d 2 1, 6 and d can be considered as independent
parameters.
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It is convenient to introduce nonmultiple beam-wave phase shift

8% = 2r {Nod — [N.d)}.

where [...] denotes integer fraction of the number.

Let us consider the case 69 = 0 and /; = 1/2 which corresponds to that of the
optical klystron. Maximum of the small signal gain max(G,) and the detuning
Cen corresponding to this maximum are universal functions of parameter d. In
Figs.8.2 and 8.3 we presents these functions calculated with eq. (8.7). The cir-
cles in these figures correspond to the values calculated with the asymptotical
formulae

= —AW—, max(Gy) = d+1/2 (8.8)
2(d +1/2) 4

which are valid in the limit d > 1. It is seen that even at d ~ 1, asymptotical
formulae (8.8) provide a good approximation.

3.0

2.5 =

2.0 A

R %
Ny

0.0

max (Gyg)

0 2 4 6 8 10
d
Fig. 8.2. The maximal reduced small-signal gain G, versus the reduced length of the

drift section. Here 83 = 0 and I, = 1/2. The full curve is the result of calculations

with formula (8.7) and the circles are the result of calculations with asymptotic
formula (8.8).

Let us now consider a more general case when the second undulator is tapered
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Fig. 8.3. The optimal reduced detuning Com versus the reduced length of the drift
section. Here 61) = 0 and [; = 1/2. The full curve is the result of calculations with

formula (8.7) and the circles are the result of calculations with asymptotic formula
(8.8).

by a linear law:

Co at 0<z< ]
Co+b(2—-ll) at . ll<Z<lw.

C(z) =

Besides, we take into account the energy spread in the beam assuming it to be
a Gaussian with the distribution function F(P) given by eq. (2.29a). In this
case we obtain:

I 13 1-h 13
Z =i/d§/d§'§'exp [~iCog’ — A%(€)2 /2] + / dg/dg’g’ x
0 0 0 0
exp [~iCof’ +ibe'(€'/2 - €) — A3(€)?/2] +
1-i ) E+i+d A
iexp(isy) [ deexp(—ibe*/2) [ dg'¢ exp [~iCot - A€V}, (8:9)
0 e+d

where C, = Coly, b = b2 and Ar = 47er\/< (AE/&)? > is the energy
spread parameter.

First, we study the influence of the energy spread on the operation of the
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Fig. 8.4. The maximal reduced small-signal gain G, versus the energy spread pa-
rameter AZ for several values of the reduced length of the drift section. Here 6% = 0,
=1 /2 and b = 0. The full curves are the result of calculations with formula (8.9)
and the circles are the result of calculations with asymptotic formula (8.10). Curve
(1): d = 1, curve (2): d = 3 and curve (3):d =5.

optical klystron (in this case the second undulator is untapered and b = 0).
We assume also that 63 = 0. The maximal small signal gain rnax(Gs) is a
function of two parameters, d and A2 In Fig.8.4 we present the plots of this
function for several fixed values of d. The circles in these plots are calculated
with asymptotical formula

d+1/2

max(G,) = 1

exp —%A§(J+ 1/2)? (8.10)

which is valid for d > 1. It follows from this formula that at each value of the
energy spread parameter there is an optimal value of the parameter d

A

1 1
dopt = — — —, 8.11
pt AT 9 ( a‘)
when the maximal value of the gain
max(G,) = 0'}52 (8.11b)
At

1s achieved. Figs. 8.5 and 8.6 present the corresponding dependencies (solid
curves are calculated with exact formula (8.9) and circles - with the asymptotic
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Fig. 8.5.AThe maxima} reduced small-signal gain G, versus the A parameter. Here
09 =0,1; = 1/2 and b = 0. The full curves is the result of calculations with formula
(8.9) and the circles are the result of calculations with asymptotic formula (8.11b).
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Fig. 8.6. The optimal reduced length of the drift section Jopt versus the At param-
eter. Here 8¢ = 0, Zl = 1/2 and b = 0. The full curves is the result of calculations
with formula (8.9) and the circles are the result of calculations with asymptotic
formula (8.11a).
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formulae (8.11). Analyzing the obtained relations and plots we can conclude
that the optical klystron has a benefit in the small signal gain with respect
to the conventional FEL oscillator scheme (see section 5) only in the case of
small energy spread, Ar < 1.

8.1.2 FEL oscillator with a prebuncher

Let us now consider another popular configuration of the FEL oscillator with
multicomponent undulator, namely that of the FEL oscillator with a pre-
buncher. In this case the first undulator (prebuncher) is short, ; < 1, and
the second undulator (main undulator) is tapered by a linear law (b 0). As
a rule, in this case parameter d is small, d<1.In Figs.8.7 and 8.8 we present
the curves of the small signal gain for [, = 0.05,d = 0.3, b= 30 and A2 =0
calculated with eq. (8.9). It is seen from these plots that the shape of the gain
curves and positions of maximums depend strongly on the value of the beam-
wave phase shift parameter 61 (in the presented plots its values are equal to
0 and 7). It reveals a possibility to optimize the position of the main maxi-
mum in order to achieve maximal efficiency at saturation. F 1g.8.9 presents the
dependence on the beam-wave phase shift §¢ of the detuning parameter C’é”
corresponding to position of the main maximum of the small signal gain. To
be strict, at small values of d < 1, parameters 89 and d are not independent.
Nevertheless, at the number of the undulator periods of about several tens
(which usually takes place in practice), relative change of the parameter d is
small when 8% changes from 0 to 2~.

For simplicity, we have assumed above that undulators are separated with the
drift space. When the length of the drift space d becomes to be too large, it
is replaced by equivalent dispersion section. Let, for instance, the magnetic
field in the dispersion section to be H = &,H (2) and the length to be d. Then
parameter d is calculated as follows:

d z 2
d=do |14 e2(m?ctd)™! / ( / H(§)d§) dz| |
0 0

where (io 1s calculated in the same way as d for the drift space. When the main
undulator is a planar one with the undulator parameter equal to K and the
dispersion section has a form of nonresonant plane undulator of length d and
undulator parameter K, then

i 1+ K3/2] d
1+ K2/2| 0,
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Fig. 8.7. The reduced small-signal gain G, versus the reduced detuning Cy at the
undulator entrance. Here §% = 0, d = 0.3, {; = 0.05, 5 = 30 and A2 0. The
calculations have been performed with formula (8.9).
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Fig. 8.8. The reduced small- 1l-signal gain G, versus the reduced detuning C, at the
undulator entrance. Here 8¢ = 7, d = 0.3, {; = 0.05, b = 30 and A"’ = 0. The
calculations have been performed with formula (8.9).

8.2 Saturation effects

Nonlinear simulations of the FEL oscillator with multicomponent undulator
are performed in the same way as it was described in section 6. For conve-
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Fig. 8.9. Optimal reduced detuning Cg" versus the 6¢ parameter. Here d = 0. 3,

I =o. 05, b= 30 and A?r = 0. The calculations have been performed with formula
(8.9).

nience, we rewrite the system of the self-consistent equations:

dP/d3 = 4 cos(h + o) (8.12)
dp)ds = P+ C ’ |
di/d: = (751/2) cos(4po — 1)

/ , (8.13)
dl/)o/dé’ = —-(T]l/Zﬁ) Sin(lﬁ() —_ 1/11)

Notations and simulation algorithm are almost identical to those described in
section 6 with the following exceptions. Integration of egs. (8.12) and (8.13)
1s performed in the limits from 2 = to # = 1. To take into account the action
of the drift space, we change the phases of the particles by a leap at 3 = [

W& =& 4 [P+ C]d -39 (8.14)

Parameter 8% has been defined above, the detuning parameter corresponds to
the maximum of the small signal gain and P is the reduced energy deviation at
the prebuncher exit. When the case of the tapered main undulator is simulated,
the detuning changes linearly at 5 > [;.

In Fig.8.1 we present the testing results of the simulation code (crosses) at the
linear stage.
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8.2.1 Optical klystron

Numerical simulations show that the nonlinear stage in the optical klystron
differs significantly from that of the conventional FEL oscillator. In the lat-
ter case nonlinear processes becomes to be significant when the value of the
reduced field amplitude in the resonator becomes to be @ ~ 1. At the op-
timal choice of the FEL oscillator parameters, rather high value of the field
can be achieved, & > 1. Contrary to this, in the optical klystron with a large
value of parameter d (or, in other words, with a high value of the small signal
gain), the decrease of the gain occurs at small value of the radiation field, at
u < 1. In this case there is almost no phase motion of the particles in the
undulators and saturation effects are defined by nonlinear dynamics of the
particles in the dispersion section. This process can be well described using
analytical techniques developed for calculation of microwave klystrons. First,
we consider a situation when process of the beam bunching in the undulators
can be neglected. In the first undulator the beam is modulated in the energy,
in the dispersion section the beam is modulated in density and in the second
undulator the bunched beam amplifies the wave. The detuning parameter in
this case should be chosen to be close to zero. Amplitude of the energy modu-
lation after the first undulator is AP = 4l;. In the same way as in the theory
of microwave klystron, we introduce the bunching parameter X:

It follows from the theory of klystron that the first harmonic of the beam
current, appearing in egs. (8.13), is

.;1 = 2J1(X)a

where J; is Bessel function.

The increment of the field in the second undulator is equal to

Ad = lrJy(X),

where iz =1- il. The power gain coefficient is
G =2A4/a = 2(1 — I)7Jy(X)/a. (8.15)
In the saturation regime the gain must be equal to the resonator losses, G = a.

The reduced efficiency (see section 6) is 7 = &4%/2, where & = a/r. Using
these relations, we obtain

(1 = L)y (adyd). (8.16)

7
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Thus, using eq. (8.15) and the saturation condition G = «, we can find the
value of the resonator field at saturation, and then, using eq. (8.16), obtain the
maximal efficiency at the saturation. However, to find the saturation efficiency
and the optimal value of the parameter of resonator losses &, there is no need to
solve a transcendental equation. Indeed, we can find maximum of the efficiency
in @ by setting its derivative with respect to 4 to be zero, Jo(tlyd) = 0, where
Jo is Bessel function. We see that the optimal value of the bunching parameter
X is equal to the root of the Bessel function J; :

Xopt = fiopthid = 2.405. (8.17)
Using egs. (8.15) - (8.17) and remembering that J;(2.405) = 0.519, we find:

fimax = 1.25(1 — 1) /(dl}),
Giope = 0.432d1 (1 — 1), (8.18)

We see that the dependence of the maximal efficiency fmax on the length of the
first undulator il 1s more strong that the corresponding dependency of Qopt.-
For instance, when il is decreased from 0.5 to 0.2, the efficiency is increased
by a factor of four while parameter Gopt is decreased by 30 %. So, we may
conclude that if there is a possibility to reduce the parameter of resonator
losses, the first undulator should be done shorter than the second undulator
and a significant benefit in the efficiency can be achieved at the same total
length of the undulators.

More precise formulae, valid even when d ~ 1, can be obtained taking into
account the beam bunching not only in the dispersion section but also in the
undulators. Let us consider a special case of [; = 1 /2. One can obtain that in
this case the bunching parameter is

a32/2 at  5<1/2
X =1{a/8+0d/2 at the entrance into the second section,

(@/2)(d + 2~ 1/4) at 3> 1/2.

The first harmonic of the current j; as well as the bunching parameter are
now functions of z. So, for the field increment we have:

1
Ad =7 / dzJ1(X).

1/2
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Integration of -this expression can be performed analytically which allows us
to write analytical formula for the efficiency:

71 =2[Jo ((&/2)(d +1/4)) — Jo ((&/2)(d + 3/4))].

We perform the optimization procedure and obtain

fmax = 1.25/(d +1/2),  &opy = 0.108(d + 1/2). (8.19)
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Fig. 8.10. Maximal reduced efficiency at the saturation versus the reduced length of
the drift section d. Here 8¢ = 0, {, = 1/2,b =0 and AZ = 0. The full curve is the
result of calculations with formulae (8.12) and (8.13) and the circles are the result
of calculations with asymptotic formula (8.19).

In Figs.8.10 and 8.11 we present the corresponding dependencies calculated
as with approximate formulae (8.19) as with numerical simulations with eqs.
(8.12) - (8.14). We see that approximate formulae (8.19) provide a high accu-
racy of calculations even at d ~ 1. For illustration, in Fig.8.12 we present the
phase distribution of the particles at the exit of magnetic system when the
optical klystron operates in the saturation.

Let us now study the influence of the energy spread on the characteristics of
the optical klystron at saturation. When {; = 1 /2 and 69 = 0, the values of the
maximal efficiency nmax and parameter of resonator losses Gopt are functions
of two parameters, d and Ar. When the length of the drift space is chosen to
provide maximum of the small signal gain (it can be obtained from Fig.8.6),
then fmay and dopy are functions of the only energy spread parameter At. The
plots of these functions are presented in Figs.8.13 and 8.14.
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Fig. 8.11. Optimal value of the reduced damping factor versus the reduced length
of the drift section d. Here §¢ = 0, [, = 1/2,b=0and A% = 0. The full curve is the
result of calculations with formulae (8.12) and (8.13) and the circles are the result
of calculations with asymptotic formula (8.19).

8.2.2 FEL oscillator with a prebuncher

Let us present some results of numerical simulations of the FEL oscillator with
a prebuncher and tapered main undulator. Parameters of the oscillator are the
same as those used for numerical example for the linear mode of operation (see
Figs.8.7 - 8.9). The parameter of resonator losses is chosen to be & = 5 x 10~3
and initial detuning corresponds to the maximum of the small signal gain in
Fig.8.9. The dependence of the reduced efficiency on the beam-wave phase
shift parameter 6% is presented in Fig.8.15. It is seen that there is a strong
dependence of the efficiency on the value of the phase shift in the drift space.
Comparing these results with those presented in Fig.7.10 we conclude that the
use of the prebuncher increases the efficiency by a factor of two with respect
to the scheme with the tapered undulator without prebuncher (see section 7).

8.3 Perspectives of the efficiency increase

In conclusion of this section we should make some remarks on the problem
of the FEL oscillator efficiency. The efficiency of the FEL oscillator with a
homogeneous undulator is rather small, 5 ~ 0.29/N,,, where Ny, is the num-
ber of the undulator periods (see section 6). Usually N, is about several tens
which results in the FEL efficiency 7 less than one percent. Second, undu-
lator tapering does not give such excellent results with respect to the FEL
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Fig. 8.12. Phase space distribution of the particles in the optical klystron operating
at the saturation. Here & = 0.594, 6¢ = 0, d = 5, [, = 1/2, b = 0 and AZ = 0. (a):
distribution after the first undulator section, (b): distribution after the drift section
and (c): distribution after the second undulator section.

amplifier, it enables one to increase the FEL oscillator efficiency by a factor
of 2 or 3. Using additional possibilities, such as a prebuncher, one increases
the efficiency additionally by a factor of two. In any case the maximal FEL
oscillator efliciency does not exceed a value of several per cent.
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Fig. 8.13. The maximal reduced efficiency of the optical klystron at saturation versus
the At parameter. Here §v=0,d= dopt, I, = 1/2, b= 0. The value of d = dopt(AT)
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On the other hand, the efficiency of the FEL amplifier with tapered undulator
can be done about of unity (see section 4). Such a significant difference in the
efficiency between the FEL amplifier and FEL oscillator configurations is con-
nected with principal difference between these two FEL configurations when
undulator tapering is used. In the case of the FEL amplifier, the frequency
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of the amplified wave is determined by a master oscillator, the initial condi-
tions at the undulator entrance are fixed, the process of the field amplification
develops in space, and, as a result, spatial tapering of the undulator param-
eters enables one to trap a significant fraction of the electrons in the regime
of coherent deceleration. Contrary to this, the lasing frequency of the FEL
oscillator depends on the value of the undulator tapering depth and is defined
by the condition of the maximum of the small-signal gain in the linear mode
of operation. Another difference is that the initial conditions at the undulator
entrance depend on time due to the dependence on time of the field stored
in the resonator. As a result, the dependence of the FEL oscillator efficiency
on the tapering depth is nonmonotonous and breaking and the final FEL os-
cillator efficiency does not increase significantly with respect to the case of
homogeneous undulator (see section 7).

So, it seems impossible to achieve a high efficiency in the FEL oscillator using
the conventional approach of undulator tapering. On the other hand, one
should remember the history of the acceleration technique development. In
the mid-1940s it was an idea by McMillan and Veksler to use the principle of
phase stability of the particle motion in time-dependent electromagnetic fields,
which has led to the invention of synchrotron and opened a way to attain
superhigh energies [61,62]. It is evident now that only an approach similar to
that proposed by McMillan and Veksler may solve the problem to construct
the high-efficiency FEL oscillators. For the first time such an approach to
increase the FEL oscillator efficiency was proposed in ref. [63]. It is based on
a natural feature of the FEL oscillator, namely the dependence on time of
the radiation field stored in the resonator. It was proposed to introduce time-
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dependent accelerating fields into the interaction region (which is equivalent
in its action to the undulator tapering). As a result, this makes it possible
to trap electrons into the ponderomotive well and perform conversion of the
microwave energy to the optical one. To increase number of trapped electrons
(which results in higher efficiency), the authors of ref. [63] proposed to use a
prebuncher together with a homogeneous undulator. Numerical estimations,
presented in refs. [63,64] have shown that an efficiency of about several tens
per cent can be achieved in such modification of the FEL oscillator. Later
this idea has been developed in ref. [65] where several alternative technical
solutions have been proposed totally based on a well developed conventional
RF structure and undulator technology.

There is another way to realize the idea of time-dependent variation of the
FEL oscillator parameters to increase the efficiency. It was proposed to change
in time the magnetic field of the undulator rather than to introduce the accel-
erating field into the interaction region [66,67]. The feasibility of this method
has been confirmed by the results of numerical simulations. It was shown that
the high efficiency (n ~ 20%) FEL oscillator operating in the continuous or
quasi-continuous mode may be constructed at the present level of accelerator

technique R&D [67].
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9 An introduction to analysis of diffraction effects

In the preceding sections we have studied the processes in the FEL in the
framework of one-dimensional model. Due to the simplicity of the basic ap-
proximations of this model, it provides the most clear way to understand the
physical mechanism of the FEL operation, the influence of the space charge
fields and the energy spread of the electrons in the beam on the FEL opera-
tion. It provides also a reliable way to study undulator tapering technique to
increase the FEL efficiency.

The validity region of the one-dimensional model is limited with the condition
that the radiation does not expand in outer space outside the electron beam.
In many practical situations diffraction effects influence significantly on the
process of the field formation in the FEL, so the problem is arisen of the FEL
description taking into account diffraction effects. A theoretical analysis of the
processes in the FEL boils down to a simultaneous solution of field equations
and equations of motion of beam electrons under corresponding boundary
conditions for the electromagnetic field. It should be noticed that in such
a general formulation, this problem can not be solved and usually the FEL
models are constructed which in some way simplify the processes occurring
in the FEL. However, with the simple calculated relations given these models
allow to reveal main factors influencing the operation of practical systems.
Therefore, in a number of cases solutions of model problems may be suitable
for FEL designers, especially at the design stage of an experiment.

Nowadays there is a perceptible progress in the development of analytical
techniques in the linear theory of the FEL amplifier. In particular, during last
years almost all the rigorous results of the FEL amplifier mode theory were ob-
tained. The first rigorous results of the eigenvalue problem solution, taking into
account diffraction effects, were obtained in ref. [68] in the framework of the
FEL amplifier with “open” axisymmetric electron beam with a stepped profile
of the beam current density. It has been shown that in the linear high-gain
limit the radiation of the electron beam in the undulator can be represented
as a set of modes. When amplification takes place, the mode configuration in
the transverse plane remains unchanged while the amplitude grows with the
undulator length exponentially. Each mode is characterized with the incre-
ment eigenvalue and the field distribution eigenfunction in terms of transverse
coordinates. The mode with the highest increment has the advantage over
all other modes. Following the gain process along the undulator axis one can
find that the field distribution is settled corresponding to the mode with the
maximal increment. This effect has been named “optical guiding”.

Mode consideration of ref. [68] was restricted with the ground symmetrical
TEMoo mode. In ref. [69] this approach was generalized to the case of the
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higher order TEM,,, modes. Besides, in ref. [69] the influence on the FEL
amplifier operation of the energy spread of electrons in the beam and space
charge fields, were taken into account. The complete analytical description
of the FEL amplifier with the “open” sheet electron beam was presented in
ref. [70]. First rigorous results of the mode theory of the FEL amplifier with
gradient profile of electron beam were presented in ref. [71] for the case of
sheet electron beam with Epstein profile of current density. Another gradient
profile allowing rigorous solutions, is the bounded parabolic one. Solutions
for this profile were obtained in ref. [72]. When considering axially symmetric
geometry, there exists the only profile allowing analytical solutions, namely
the bounded parabolic profile. Mode theory of the FEL amplifier describing
this case was developed in ref. [69].

There are many different approaches to description of the linear mode of op-
eration of the FEL amplifier with the “open” electron beam. For example, the
method based on the operational techniques and expansion of the radiation
fields in terms of Hermite-gaussian modes is used to solve the initial prob-
lem for electron beams with an arbitrary gradient profile of current density
[73]. Some different approaches are used to take into account betatron oscil-
lation effects, namely the variational method [74] and method of orthogonal
expansion of the electron distribution function [75].

Physical approximations of the FEL amplifier model with the “open” electron
beam assume the waveguide or vacuum chamber walls to be placed far enough
from the electron beam, formally at infinity. Such a model gives a possibility
to simplify significantly the FEL amplifier description. The approximation of
the “open” beam describes rather well the operation of the FEL amplifiers of
short-wave infrared, visible and VUV wavelength ranges, but it is not appro-
priate enough for describing the FEL amplifiers of microwave and millimeter
wavelength ranges. To obtain a correct description of the latter case it is nec-
essary to take into account the influence of the waveguide walls on the FEL
amplifier operation. Besides, the analysis of the general case makes it possible
to obtain the applicability region of the FEL amplifier model with the “open”
beam.

It should be noted that the generalized approach does not help someone very
much in the construction of the theory of the FEL amplifier with a waveg-
uide: there are some peculiarities in each specific situation. In particular, the
structure of self-consistent field equations strongly depends on the type of
undulator. Recently some analytical results of the FEL amplifier theory with
planar waveguide were obtained [72]. These investigations were stimulated by
the proposal to design perspective microwave FEL amplifier with a planar
geometry [76]. Paper [72] is devoted to the quasi-optical theory of the FEL
amplifier with the sheet electron beam, planar undulator and planar waveg-
uide. Rigorous solutions were obtained for electron beams with the stepped
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and bounded parabolic profiles. This model may be considered as a limitary
transition of the FEL amplifier model with the rectangular waveguide. The
analytical solutions obtained for the planar geometry may serve as a reliable
test base for simulation codes (as far as we know, it is impossible to obtain
analytical solutions for rectangular geometry).

The first results of the mode theory of the FEL amplifier with axisymmet-
ric electron beam, overmoded circular waveguide and helical undulator has
been presented in ref. [77]. It should be noted that this case is more compli-
cated than the case of the planar geometry. In particular, it was found that
azimuthal symmetry of the electron beam current density modulation does
not lead to the azimuthal symmetry of the radiation fields and vice versa.
Physically it means that azimuthal symmetry is violated by the helicity of
the undulator. Indeed, the electron beam moving in the helical magnetic field
may be considered as a gyrothrope active medium. In the case of the open
beam it results in the circular polarization of the radiation field. The presence
of the walls of the circular waveguide significantly complicates the situation
because boundary conditions on the waveguide walls are different for radial
and azimuthal components of the electric field of the amplified wave. As a
result, double degeneration of azimuthal modes is eliminated and it leads to
the mentioned above difference between the azimuthal dependencies of the
electron beam density modulation and radiation field.

As far as we know, there are no other beam profiles except the above men-
tioned profiles (stepped, bounded parabolic, Epstein and annular) which admit
analytical solutions. To find the radiation modes for electron beam with an
arbitrary gradient profile, one should use approximate methods and the mul-
tilayer approximation method is one of them [71]. It may be used when one
can perform the separation of variables.

Unfortunately, due a complexity of the problem, there are no significant achieve-
ments in the development of analytical techniques for the FEL oscillators. As
far as we know, there exists only two papers [33,34] where a novel analytical
method to solve the eigenvalue problem for active open plane Fabry-Perot
resonator has been developed. The base concept of this approach is the ap-
plication of rigorous impedance boundary conditions of resonance-type (pro-
posed by L.A. Veinstein in ref. [78]) at the open resonator ends. This makes
1t possible to reduce the problem of the open resonator to a closed one. As a
result the equations are obtained which may be resolved analytically by means
of standard methods. The method is applicable as in the FEL theory as in
semiclassical theory of laser [79] - [82].

One of the important aspects of the FEL theory is the analysis of the non-

linear processes. The analytical methods are limited in the description of the
saturation effects and numerical simulation codes are being used. The main
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problems of the nonlinear simulations are connected with the calculation of
the radiation and space charge fields. Several different methods are used to
calculate the radiation fields: various modifications of the transverse mode
spectral method (see e.g. ref. [83]), the finite difference method [84] - [86] and
the Green’s function method [87]. The developed nonlinear codes provide a
possibility to perform rather rigorous calculations of the FEL amplifiers. On
the other hand, situations with the codes for calculations of the FEL oscilla-
tors is not so excellent which is connected with the problem of the rigorous
calculations of the radiation fields (a similar problem takes place in the theory
of quantum lasers, too).

So, we see that incorporation into consideration of the effects of radiation
diffraction, waveguide walls, etc., would lead to a substantial increase in the
review’s volume. To be acquainted with such generalizations the reader should
refer to original publications. In this paper we limit our consideration of the
diffraction effects with the case of the FEL amplifier with the “open” electron
beam when the influence of the waveguide walls (or vacuum chamber walls
etc.) on the process in the FEL may be neglected. Such a model is well suit-
able for FEL amplifiers of short-wave infrared, visible, VUV and soft X -ray
wavelength ranges.

9.1 Self-consistent field equations

The analyzed model is based on the Maxwell’s wave equations taken in the
paraxial approximation and the description of the electron beam with the ki-
netic equation expressed in “energy-phase” variables. It is anticipated that
electrons move (on the average over constrained motion) only along the tra-
Jectories parallel to the undulator axis. Such a model has proved to be very
fruitful to describe the physical phenomena in the FEL amplifiers and allows
one to take into consideration such effects as diffraction of radiation, space
charge fields and energy spread of electrons in the beam. Moreover, using the
results obtained with this model, the reader can define the applicability region
of the one-dimensional theory described in the previous sections.

Let us consider relativistic electron beam moving along the z axis in the field
of the helical undulator. The undulator magnetic field at the axis has the form:

H, +iHy = H, exp(—iky2),
where k., = 27/, is the undulator wavenumber. We neglect the transverse
variation of the undulator field and assume the electrons to move along the

constrained helical trajectories in parallel with the z axis. The electron rotation
angle is considered to be small and the longitudinal electron velocity v, is close
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to the velocity of light ¢ (v, ~ c). The electric field of the amplified wave may
be represented in the complex form:

Ey+1F, ZE(z,F_L)exp[iw(z/c—t)]. (9.1)

As it was done in the previous sections, we describe the electron motion using
“energy-phase” variables £ and ¢ = kwz+w(z/c—t). Using the approximation
that electrons move only in the z direction, the evolution of the distribution
function f(4,&,z,71) is given by the kinetic equation

0f  dvof  deos _

8z ' dz 09 zog ="

In the linear approximation we shall seek the solutions for f in the form:

f=fot+ fre¥ + fre ™.

In the linear approximation, the energy £ of the particle does not differ sig-
nificantly from the nominal value &, so the electron motion can be described
with the Hamiltonian (2.5):

w
26")’3 50

H=CP+ P — (Ue¥ 4 Ure~®) 4 /dweEZ.

Derivatives di/dz and d€/dz are defined with the corresponding canonical

equations of motion. As a result, we obtain the following equations for the
amplitude f;:

8- ~ .
5.0+ [C +wP/(cv260)] fi + (iU — €E,) 8—‘913 fo=0. (9.2)

Here notations are similar to those of section 2: P = £—~&, C = [ky —w/(2¢y?)]
i1s the detuning of the particle having nominal energy &, U = —ef,E(z, 7, )/2

is the complex amplitude of the particle-wave effective potential of interaction

and E'z(z,f"l) = E,e™¥ + C.C. is the complex amplitude of the longitudinal

space charge field.

In the further consideration we use the following approximations:

a) complex amplitude of the electric field E is the slowly changing function,
e |0E/0z | < ky | E |;

b) the transverse electron beam dimension is rather large, i.e. 12 > y2c? Jw?;
c) The electron beam at the undulator entrance is modulated neither in ve-
locity nor density, i.e.

fils=o =0, Jolz=0 = no(7L)F(P), (9.3)
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where the function F'(P) describing the energy distribution is normalized to
the unity. The beam current density is connected with the distribution function
as follows (we assume here v, ~ ¢):

Jo=—Jo(F1L) + pexp™ +C.C.,  j = —ec/f]dP,

where —jo(7L) & —ecng(7L) is the longitudinal component of the beam current
density at the undulator entrance at z =0 .

In the frame of accepted limitation on the electron beam transverse size, we
can write the following expression for F, :

E, = —47ij |w. (9.4)

Complex amplitude j; can be obtained with the integration of kinetic equation
(9.2). Using initial conditions (9.3) and expression (9.4) we have

z

iz, 7L) = ijo(7L) / d2' |U(2',71) + dmefu (2, 7L) o] x
0

o0

/ de};fPP) exp [ (C + wP/(cy2E )) (z — z)] . (9.5)

-0

Now we should consider electrodynamic problem. The electromagnetic field in
the amplifier is subjected to the wave equation

—_  —

AVIE - PE9? = V(V - E) + 4787/t (9.6)

which can be obtained from Maxwell | equations. In the frame of accepted lim-
itation, we can neglect the term V(V - E) in the right-hand side of eq. (9.6).
When the transverse electron motion in the undulator is defined by the un-
dulator field but not radiation field and in the ultrarelativistic approximation
we can write the following expression for the transverse beam current density:

71 = 0, [Ex cos(kwz) — &, sin(kw2)] (j16¥ + C.C.). (9.7)
We seek the solution for E in the form of eq. (9.1). Substituting egs. (9.1)

and (9.7) into eq. (9.6) and neglecting the fast oscillating terms, we obtain
equation for the slowly changing amplitudes j; and E:

c {Vi + 2i(w/c)8/82] E = —4ribwj,, (9.8)
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where V7 is the Laplace operator over transverse coordinates. When writing
down this equation we have assumed the characteristic scale of the radiation
field £ change along the z axis to be much more than the radiation wavelength,
so the second derivative of E with respect to z has been omitted. One can
see that at the right-hand side equal to zero, eq. (9.8) coincides with the well
known wave equation written down in paraxial approximation (see e.g. ref.

(88]).

So, we have obtained the system of self-consistent field equations (9.5) and
(9.8). This system can be solved by two methods. First, we can substitute
eq. (9.5) into the right-hand side of eq. (9.8). Then expressing the function
71(2',71) in terms of eq. (9.8), we obtain integro-differential equation for the

field amplitude E:

2 =~ iaE _

V_LE+2zc——az =
Y I L4 . wdE
Z]o("‘l)/dz I:T?;cigssz(Z,T‘J_)-F % l:ViE-}-QZ%W]] X

0
T _dF w
P— 3 ' — . .

_[od 7p ©XP [z (C+'y§€ocp) (2 z)} (9.9)

Another method consists in obtaining a single integral equation for the first
harmonic j; (2,7 ). In this case we solve eq. (9.8) with respect to £(z’, 7. ), then
substitute this solution into eq. (9.5), and obtain the only integro-differential
equation for the first harmonic of the beam current density 7,(z, 7).

Let us represent the radiation field as a sum of external and radiated waves:

E=FEyw+E. Solving eq. (9.8), we find the field of the radiated wave E’i:

_ Lw [ dZ oo w |7 =7 |
. =i — | == 'R . 1
EI(Z,T.L) 20562 E)/ 2 — o /drl]l(z ’TJ_)eXp [ 26(2 _ Z') (9 0)

Substituting eq. (9.10) int eq. (9.5), we obtain the single integral equation for
the first harmonic of the beam current density j;:

el

~ - RN f ~ o ime - -
Jlz, 7)) = Z]o(h.)/dzl {—Ei—Eext(z,7rJ_) + —w—Jl(Z',M)—
0

!
2w T dz" vy o w | 7L =7 )2
2¢? J = 2" /dri]l(z TL) exp 2¢(2" — 2") *
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T dF w
—_— ' h— . 11
_/ deP exp [z (C + 71250cp> (2 z)] (9.11)

When the energy spread is negligibly small (F(P) — &§(P), where §(P) is the

delta function), this equation is reduced to:

d231 : d.;l dre . 2| =
E-FQZC'JZ—-}- C’)’ZTSO]O(T-L)_C nh=

Y o7 ebs - = 803“‘) [ dz v
CVfgojo(rl){EEGXt(z’rl)+ 22 / Z_z//drljl(z’rl)x

iw | 'Fl — 77_1_ ’2
exp [ X } } . (9.12)

So, the self-consistent field method in the linear approximation enables one to
get from the kinetic equation and Maxwell’s equations the only equation either
for the field amplitude of amplified wave (9.9) or for the modulation amplitude
of the beam current density (9.11). Both of the ways lead to the same results
but for the analytical calculations it is preferable to use the equation for the
wave field: in this case the mathematical apparatus is always connected with
more conventional differential equations. At the same time the situations with
the computer simulations is proved to'be reversed and the method using the
equation for the modulation amplitude of the beam current density is more
convenient.

9.2 Conservation energy law

Let us show that the energy conservation law takes place, i.e. the output ra-
diation power of the FEL amplifier is equal to the power losses of the electron
beam. To find radiation power W, we consider the Fresnel diffraction approxi-
mation. So as diffraction angles are small, the vectors of electric and magnetic
field are equal in the absolute value and are perpendicular to each other. Thus,
the expression for the radiation power can be written in the form:

W:i/:ﬁjpda,
4ir

where the line denotes the averaging in time. Total electromagnetic field in
the undulator is the sum of external and radiated waves, so the total radiation

151



power W consists of three summands: W = W, + W, + W;. The summand W,
refers to the radiated wave:

Wi = 47r/| B |2d7, (9.13a)

the summand W refers to the external wave and is equal to the external signal
power:

W, = 4i / | By, 247, = Wy, (9.13b)
T

The interference summand W is equal to:

(&

Wa= / (B, - Eox)dr. (9.13¢)

Let us consider the summand W;. So as the radiation field in the Fresnel
diffraction zone has the form (9.10), then W, is given with:

leﬁ/mmra:
202 L] < iw | 7 — 7, J?

& [ 25 i e [2EZ0T]

Fodz iw | 7L — 7 2]
{/ /d_leZ a exp[ 2Ic(:_z,;L)l}}. (9.14)

The products of integrals over 2’ and 2" can be represented as

()" | &*(2")d2" = [ ®(2')dz’ ¢ (2")dz" + C.C. (9.15)
[ et =[]

The integral over transverse coordinate 7, is equal to:

/dFlexp{iwlFl_f"L |2_zw|rl—r)|2}:

2¢(z — 2') 2¢(z — 2"
by o : 2 _ 2 : N2 V)
/dm/dyexp we—2+y—y) wlx-—z")+(y~-y") _
~ ~ 2c z—2z 2¢ z =2z

2mic(z — 2')(z — 2") —tw |7, — 7 |2
w 2 — 2" P 2¢(z' — 2")
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As a result, expression (9.14) can be written in the form:

’

_w?e? T d2"
= 3= /dz/Z,_Z”/er/er_]lz )12, 7))
0

- o . / 2
exp{ e |(TJ‘_ 7| }—}—C.C. (9.16)

2c

To calculate the interference summand W3, we represent the field of the ex-
ternal wave at z = 0 in a Fourier series:

[(Bext)s +i(Bex)y] _ = Eext(0,71) exp(—iwt) =

2=0

exp(—iwt)/A(EL)exp(iEl . Fl)dﬁl.

Each Fourier component is a plane wave:

Eext(z,rl)exp (tw(zfc—1t)) = exp(—iwt)/dklA(El)exp(iEl T+ thyz),

where

1 w C k_L2
k, =~ w2—kic2:——M.
c c 2w

Therefore, the complex amplitude Eext(z, 71 ) of the external field is given by

~ - - — a2
Eoxi(z,71) = /dklA(kl)exp {z’kl R — ”;lcz} (9.17)

W

Substituting this expression for Eext(z, 1) into eq. (9.13¢c), we obtain:

Wa= = / (BB + Bz By)d7, =
4

B . - - . k2 c
_147rc/er_/dklA(kL)exp {sz-rl - 12:) z} x

iw|7"‘l—f"l |2

2¢(z — 2')

7 ~*(z',f1)exp{— } + C.C.
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Integral over transverse coordinate 7, can be calculated as:

LR )2
/dFleXp{iki-Fl—zw[rl T'LI }:

2¢(z — 2')
T . iw(¢ -2\ T : w(€ —y')* | _
_o/o d(exp{zkx( - m}-i dfexp {Zkyf — m} =
2mic

- ) 2
(z —2")exp {ikl T+ Zklc(z — z')} )
2w

w

As a result, we obtain:

Wo=—30, [ d! [ i) [k Ay x
0

- y k2
exp {ikl T — Zzlcz'} +C.C. =
w

1, 7 - N
30 / dz’ / i 512 7)) B2, 7,) + C.C. (9.18)
0

The expressions for W, and ‘Ws can be written in terms of effective potentials

of the radiated field U; and external field U,,,:

eOsEi(z, F_}_) U 805Eext(2a F.L)
—_—— T, ext = — T o .

U = :
21 21

Using eqgs. (9.16) and (9.18) we write for the sum W, + Ws:

1 z
o

Uese(2', 7)) 5 (2/,7) + C.C.} . (9.19)

On the other hand, the radiated power W; + W, must be equal to the difference
of the electron beam powers at the exit and the entrance of the undulator.
First, we find the energy change of the single electron:

d€  9H

PR Ve (Ui + Uexs + dmegs Jw) exp(itp) + C.C.
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To find averaged power losses in the beam, we must multiply d€/dz by the
beam current density —j,(1, z,7,)/e, average over phase ¢ and integrate over
transverse coordinate and the z coordinate:

27e

2 z
1 LT L dE
AW, = ——~O/d¢/dno/h(¢,z,m)dz =
1 z Z 2n
- / dz {2—7; / @ [ &7 (Ui + Ve + d7els o), exp(i) + c.c.} =
1 ¢ o
_gofdz’{z/drl(U; + UG+ C.C.}.

Comparing this expression with eq. (9.19), we see that the radiation power
and the change in the electron beam power have equal absolute values and are
opposite in signs, i.e. AW, + W, + W3 = 0. So, the conservation energy law
takes place.
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10 Linear quasi-optical theory of the FEL amplifier with an ax-
isymmetric electron beam

In this section we present theoretical analysis of the FEL amplifier with an
axisymmetric electron beam. An FEL model is discussed wherein diffraction

effects, space charge fields and energy spread of electrons in the beam are
taken into account.

We have shown in section 9 that in the linear approximation the self-consistent
field method makes possible to get from the kinetic and Maxwell’s equations
the only integro-differential equation for the radiation field amplitude. In this
section this equation is used to solve the eigenvalue problem. To find the
eigenvalues and eigenfunctions we use the condition of the quadratic integra-
bility of the eigenfunction and the continuity conditions of the eigenfunction
and its derivative at the beam boundary. The obtained solutions allow one to
calculate increments of the eigenmodes, find the field distributions in the Fres-
nel and Fraunhofer diffraction zones. Asymptotical behaviour of the obtained
solutions is discussed, too.

The next problem of the linear theory is the initial-value problem consisting in
the finding of the evolution of the amplified wave under given conditions at the
undulator entrance. The first analytical solutions of the initial problem of the
FEL amplifier with axisymmetric electron beam have been obtained in ref. [89].
In the present paper we follow by ref. [69] where the initial problem has been
solved for the practically important case with the unmodulated electron beam
and electromagnetic radiation from the master oscillator at the entrance into
the undulator. When the electron beam profile is stepped, the initial problem
was solved analytically with the Laplace transform technique. The asymptotic
formulae for the high gain limit were derived taking into account diffraction
of radiation, space charge fields and energy spread of the electrons in the
beam. When the electron beam has the arbitrary gradient profile there is no
possibility to obtain the rigorous analytical solution of the initial problem.
For this case we have developed the algorithm of numerical integration of the
self-consistent field equations.

At the design stage of an experiment the problem of optimal focusing of the
external radiation beam on the electron beam is usually arisen. We have per-
formed the optimization of the external radiation focusing for the case prac-
tically important when external radiation has the form of the Gaussian laser
beam.
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10.1 Solution of the eigenvalue problem

Let us consider the homogeneous axisymmetric electron beam with radius
ro. Using polar coordinates (r, ¢, z), in the high-gain limit we shall seek the
solution of eq. (9.9) in the form:

E(z,r,0) = Bo(r)e (C?S(W)) , (10.1)
sin(ny)

where n is integer, n > 0. Substituting expressions (10.1) into eq. (9.9) we get
the Bessel equations:

PPd2®,/di? 4 #d, [dF + (p2F —n?) Dy =0  at 7 <1, (10.2a)
Pd*®,/df? + £d®,/dF — (g*** +n?) d, = 0, at 7 > 1, (10.2b)

where the following notations are introduced: # = r/ro, C=C /T is the de-
tuning parameter, A = A/T is the reduced eigenvalue, g2 = —2; BA,

ﬂ2=__2i_gz _/ _dF(§)/dE
1—iA2D 7 A+zc+z§

The reduced energy distribution function F({) is normalized to the unity:
JF(€)de =1, where £ = w(€ — &) /(cy2T&) is the reduced energy deviation.
The gain parameter I', diffraction parameter B and space charge parameter
A2 are defined with formulae:

Tw??
= [IAL;’YZ’Y] ) B =Triw/e, A2 = 4c?/(w?rdh?),

where [ = nrij, is the beam current and I, = mc®/e ~ 17 kA is Alfven’s
current. Function D is given with the following expression for the Gaussian
energy spread:

=i [exp [-A2er/2 — (A +iC)e] d,
0

where A2 = AZ/T? =< (AE)? > w?/(PHAE2T?) is the energy spread pa-
rameter. When the energy spread is negligibly small, i.e. A — 0, we have:
D=iA+iC )2

157



To avoid the singularity at # = 0 the solution for ®,(#) inside the beam should
be chosen in the form:

O, (F) = C1Ju(pf),  at 7 <1,

where J, is the Bessel function of the first kind of order n. As the field must
vanish at 7 — oo, we should choose the solution for ®,(#) outside the beam
in the form (we assume here that Re(g) > 0):

¢.(F) = Co K, (g7), at 7 > 1,

where K, is the modified Bessel function. The continuity conditions of ®, and
d®,/di at the beam boundary give us the system of two linear equations:

Cidn(p) = CeKy(g)
pCrJg(n) = gCa K, (9).

Satisfying the compatibility condition of this system and using the relations

Ko(Q) = nKa(O)/¢ = Kna(Q),  Ju(€) = nda({)/¢ = Jns1(C),

we get the eigenvalue equation for the FEL amplifier with the homogeneous
axisymmetric electron beam:

pdni1 (1) Kn(g) = gJn(p) Knt1(9)- (10.3)

The field mode eigenfunction (i.e. transverse field distribution inside the un-
dulator) is given with the expressions:

Jn(ut), at 7 <1

O,(7) = { (10.4)
Ju() Kn(g7)/ Knlg), at 7> 1.

The directivity diagram of the radiation intensity is one of the important
characteristics of FEL amplifier. At large distance from the amplifier exit,
at z > [, the output radiation has the form of a spherical wave. In the
axisymmetric case the radiation field amplitude depends on the observation

angle § = r/z according to the expression (we assume here the Fraunhofer
diffraction approximation):

=(0) = / Bo(#)Jo(67)FdF, (10.5)
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where § = frow/c is the reduced observation angle, ®o(7) is the complex
amplitude of axisymmetric radiation mode at the amplifier output and J, is
the Bessel function of the first kind. When the FEL amplifier operates at the
ground TEMgo mode, using eq. (10.4) we can write the following expression

for Z(0):

2(0) = ] CIo(BO) T )d¢ + dCao(m) (B Kol o)/ Kolg) =

D
)
| fr
k=
N
———
D>y
S
—_
=
p——
S~
—_—
D>
p—
I
S
—
p—
S
——~
=N
p
—,

Taking into account equation (10.3) we get the following expression for the
radiation power directivity diagram:

1(6) ‘s«ﬁ) '

~ 2

o(1)K1(9)/ Ko(g)

Jo(8) — 6J,(8)J
(1+62/g%)(1 — 62/ p2)

=) (10.6)

At large values of the diffraction parameter B the Fraunhofer diffraction ap-
proximation may be used when c¢R;/(riw) > 1 , where R; is the distance
between the observation point and the amplifier exit. When B < 1 the above
condition changes to: | A | R ~TR; > 1.

In conclusion to this section we should notice that the presented approach to
solve the eigenvalue problem can be easily extendéed to the case of the electron
beam with an arbitrary gradient profile of current density. It can be performed
by means of multilayer approximation method. The similar method is used, for
example, in the optical waveguide theory (see ref. [90]). This method consists
in replacing the electron beam profile with a set of layers and in each of them
the current density is supposed to be constant. The fulfillment of the continuity
conditions of the eigenfunction and its derivative at all boundaries between
the layers leads to the eigenvalue equation (see ref. [69] for more details).

10.2 The analysis of the solutions

10.2.1 The field distribution

The field distribution of the ground symmetric TEMg, mode is presented in
Fig.10.1. One can see that at large values of diffraction parameter B the radia-
tion field is concentrated inside and near the electron beam. When parameter
B is decreasing, the radiation field redistributes in the space outside the elec-
tron beam. Figs.10.2 and 10.3 illustrate the field distribution of the higher
radiation modes TEMg,;, TEMo,, TEM,;o and TEM,;.
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Fig. 10.1. The field distribution of TEMg, mode versus the reduced radius #. Here
C =0, A2 =0, A% = 0. Curve (1): B = 0.1, curve (2): B =1 and curve (3): B = 10.
The curves show analytical results (TEM,, mode) and the circles are calculated with
nonlinear simulation code at the linear stage.
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Fig. 10.2. The field distribution ofA TEMgg, TEM,; and TEM,; modes versus the
reduced radius 7. Here B = 10, A2 = 0 and A% = 0. Curve (1): TEMy, mode

(C' = 0.1), curve (2): TEMy, mode (C = 0.7) and curve (3): TEMgz mode (€ = 2.0).
10.2.2 The directivity diagram

Fig.10.4 illustrates the directivity diagrams of the ground TEMgo mode. One
can see that all radiation power is concentrated in the small angle near the z
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Fig. 10.3. The field distr}bution qf TEM,, and TEM;; modes versus the reduced
radius 7. Here B = 10, A2 = 0, A} = 0. Curve (1): TEM;, mode (C = 0.2) and
curve (2): TEM;; mode (C = 1.1).

axis. At large values of diffraction parameter B the width of the distribution
1s approximately equal to Af ~ 1.8¢/(row). At small values of parameter B
the width of the distribution is much less than ¢/(row). This is due to the fact
that in this case the transverse dimension of the beam radiation mode at the
amplifier output is much more than the electron beam size (see Fig.10.1).

10.2.3 Increments of the eigenmodes

Let us define the increment as the real part of the eigenvalue. According to
eq. (10.3) the increment is the function of four reduced parameters (we let
here the energy spread to be the Gaussian):

~

ReA = F(C,A2, A%, B).

First, we consider the case of negligibly small space charge field and energy
spread, A2 — 0 and A% — 0. Some results of numerical solution of the eigen-
value equation (10.3) are presented in Figs.10.5 and 10.6.

One-dimensional approximation corresponds to the case when diffraction ef-
fects can be neglected. This region is determined with large values of the
diffraction parameter B, B >> 1. In this case we let | g [> 1 and K,(g) ~
K.+1(g). Hence, we get from equation (10.3) that J,(x) =~ 0 which is possible
only when y ~ v,;, where v,; is the ith root of the Bessel function of order n.
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Fig. 10.4. The directivity diagram of TEMg, mode. Here ¢ = 0, [Xg = 0 and
AZ = 0. Curve (1): B = 0.1, curve (2): B =1 and curve (3): B = 10. The curves
show analytical results (TEMg, mode) and the circles are calculated with nonlinear
simulation code at the linear stage.
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Fig. 10.5. The dependence of the maximal reduced increment max Re(A) on the
diffraction parameter B. Here A% =0, A3 = 0. Curve (1): TEMg, mode, curve (2):

TEM;, mode and curve (3): TEM;;, mode. The curves show analytical results and
the circles are calculated with nonlinear simulation code at the linear stage.

162



O —
-/
0.3 //
2 / 2 RN
O
0.1 \ \ \
| \ . N
0.0 :“‘ i PP ST BN RN RPN R .‘q
-2 -1 0 1 2 3 4 5

¢
Fig. 10.6. The reduced increment Re(A) versus the reduced detuning C. Here

B = 10, Ag = 0, AZ = 0. Curve (1): TEMgo mode, curve (2): TEM;; mode and
curve (3): TEM,, mode.

As a result, we get asymptotically at B — oo, Af, — 0 and A?r — 0:

A A

2/(A +iC)? ~ g* = —2iBA. (10.7)

If we redetermine the gain parameter

Iw6?

B~/ =
Lacyyirg

1/3
] =T (one — dimensional), (10.8)

which corresponds to the definition of the gain parameter in the one dimen-
sional approximation, we see that eq. (10.7) becomes to be identical to the
eigenvalue equation (2.26) of the one-dimensional theory. The accuracy of this
approximation at the value of diffraction parameter B = 8 is illustrated in
Fig.10.7. For comparison in this plot we present also the rigorous solutions for

TEMgo and TEM;, modes.

The approximation of a thin beam is defined with the condition B — 0. As
soon as the argument of the modified Bessel function tends to null, we should
use the expansion at small arguments. For the ground TEMgg mode we have:

Ko(g) ~ —In(g/2) —v.,  Ki(g) ~1/g,
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Fig. 10.7. The reduced increment Re(A) versus the reduced detuning C. Here B = 8,
A"’ =0 and AZ = 0. Curve (1) is the solution of asymptotic equation (2.26). Curve
(2 ) (TEMyo mode) and curve (3) - (TEM;, mode) are the solutions of accurate
equation (10.3).

where v, = 0.577 is the Euler’s constant. Substituting this approximation into
eq. (10.3) we get:

pJi(p)/ Jo(p) =~ —[In(g/2) + )" .

Assuming the value of | In(B) | to be large, we find with the double logarithmic
accuracy the following eigenvalue equation for the ground TEMgs mode of the
thin beam:

~ A

2(A +iC)?* = —In(—iBA) + (In2 — 27, + 1/2). (10.9)

The sum of the last three members in the right-hand side of equation (9)
is equal to 0.03 and may be neglected. The accuracy of this asymptotic is
illustrated in Fig.10.8.

Let us now study the influence of the space charge field. In the limit of A —0
and at fixed parameters A2 and B, there is always the value of the detuning

Cm at which increment achleves its maximal value. This maximal increment
is the function of two parameters, the space charge parameter A2 and the
diffraction parameter B, and may be represented in the form:

max(Re(A)) = max(Re(A) | iz—o X 1(AZ, B)
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Fig. 10.8. The reduced increment Re(A) versus the reduced detuning C. Here

B = 0.1, f\g = 0, ]\% = 0. Curve (1) is the solution of accurate equation (10.3)
and curve (2) is the solution of asymptotic equation (10.9).

The plots of function f; for the ground TEMgo mode are presented in Fig.10.9.

R
O.6> \X\‘\\ |
3 \§

|
|

0.4

0.2

0.0 i " i i . i N i A
0.0 0.5 1.0 1.5 2.0

Ap
Fig. 10.9. The dependence of function f; for TEMg, mode on the space charge
parameter A2. Curve (1): B = 0.1, curve (2): B = 1 and curve (3): B = 10.

In the limit of B — oo and A% — 0, eq. (10.3) transforms to the eigenvalue
equation of the one-dimensional approximation:

[(A+iC)?+A2] A =4/B.
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Taking into account the redetermination procedure (10.8) for the gain param-
eter, we obtain that this equation is identical to the corresponding eigenvalue
equation (2.22) of the one-dimensional model.

In the limit of A2 — 0 and B — 0, the eigenvalue equation (10.3) for the
ground mode TEM, takes the form:

2 [(A+iC)? +A%] = —In(~iBA).

Let us now study the influence of the energy spread on the FEL amplifier
operation. In the limit of A2 — 0 and at fixed parameters A and B there is

always the value of the detunmg parameter Cy, when the increment achieves
its maximum. This maximal increment is the function of only two parameters,
the energy spread parameter A2 and the diffraction parameter B which may
be expressed as:

max(Re(A)) = max(Re(A)) l[\%-»o x f(A2, B).

The plots of function f, for the first two axisymmetric modes are presented in
Figs.10.10 and 10.11. One can find from these plots that the energy spread acts
as the strong radiation mode selector. Even at comparatively small values of
the energy spread parameter, at A2 ~ 0. 1, the maximal increment of TEM;
mode is decreased drastically with respect to the ground TEMg mode.
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Fig. 10.10. The dependence of function f, for TEMy, mode on the energy spread
parameter AZ. Curve (1): B = 0.1, curve (2): B =1 and curve (3): B = 10.
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Fig. 10.11. The dependence of function f, for TEM,; mode on the energy spread
parameter AZ. Curve (1): B = 0.1 and curve (2: B=10.

In the limit of B — oo and Ag — 0, the eigenvalue equation (10.3) transforms
to:

75 exp {—A%€?/2 — (A + iC)¢} de = —iBA.

0

After redetermination procedure (10.8) of the gain parameter, this equation
is reduced to the eigenvalue equation (2.39) of the one-dimensional model.

At B — 0 and Af) — 0, the eigenvalue equation (10.3) for TEMgy mode
transforms to:

/gexp{ 2272 — (A +4C)e} dé = —2/In(—iBA).

10.3 Solution of the initial-value problem by Laplace technique

To find the evolution of the electric field of the amplified wave E(z,r,¢) one
should solve the self-consistent field equations under the given conditions at
the undulator entrance. In this paper we consider a specific, but practically
important case of the following initial conditions:

a) the electron beam is modulated neither in velocity nor density at the un-
dulator entrance;

b) the electric field amplitude E takes the value Eeyt(r, ) at the undulator

167



entrance.

In this case evolution of the complex amplitude E (z,7,¢) of the amplified wave
is defined with eq. (9.9). In this paper we consider the case of axisymmetric

electron beam with stepped profile of current density. Introducing the following
notations:

z2 =Tz, T =r/ro,

B =Triw/c, Af, = 4c%/(w?Oird),

we write eq. (9.9) in the following reduced form:

Region 1, (7 < 1):

# 19 18 o 8l... .
ot | Bt
f . L[ 18 1 8 817 -
. at Al A 2 - - n_ Y Al A
zo/dz [QE(Z yTye) + AL [—87‘2 + =57 + 7 950 + 22382,] E(z ,r,cp):l X
/ dedF (&) /dé exp [i(€ + C)(# - 3)], (10.10a)

Region 2, (1 < 7):

# 19 18 ] -
P Y TR B> 2,7, ¢) = 0. .10b
[3;.2 + FOF + 72 92 + 22382] E(z,7,0)=0 (10.10b)

The Laplace transforms of the Fourier coefficients £

E™(p,7) = / eP2 B3, 7)d2
0
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are submitted to the following equations:

2 2 .

[gdﬁJrii —n—+#]E( p,#) = f(), #<1 (10.11a)
2 1 2 B .

[% ;;;, -5 —ﬁz} E®™(p,#) = fM(F), F>1 (10.11b)
r

where notations are introduced:
-1

p*=-2D[1-iA2D]" —g*, g = —2iBp,

b= /d F()/de ’
p+i(é+C)

—0oQ

f#) = 25BEG(#).

To find E™ one must solve equations (10.11) with the following boundary
conditions:

EM™(p,#) — 0 at 7 — oo

b

E™ |icrpo= E™ |y, dE™ [dF |s=y40= dE™ [dF |121_0 .

We use the Green’s function method to solve inhomogeneous egs. (10.11).
First, we consider the region inside the beam. We seek the Green’s function
G(r 7') satisfying to the homogeneous equation

. d |.dG ~2 22 A _
iy [Tdf'} + (g7 —n*)G =0 (10.12)

at all 7 except of # = 7' and at the latter point the following conditions must
take place:

G limirgo =G limire0= 0, dG/dF |smsryo —dG/dF |imir_o= 1/F. (10.13)

The Green’s function must be finite at # = 0. If two linearly independent
solutions of eq.(10.11a) x(7) and (#) are normalized as

Ydx/di — xdy/dF = 1/7, (10.14)

then the Green’s function is

"»Z)(T')X(f'), r >
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It satisfies to eq. (10.12) and conditions (10.13). Moreover, if function Y(7)
is finite at # = 0, then the requirement for the Green’s function to be finite
is fulfilled. The following solution of the homogeneous equations satisfy to all
the mentioned above conditions:

Y= (n/2)Ju(@f), X = (7/2)"2Na(@).

Thus, we obtain

Finally, we find in the general form the solution of inhomogeneous eq. (10.11a):

B = Co(if) + ZNu() [ dCT(BOCTO(C) +
0
() / dCNA(EOCF™ (). (10.15)

To find the solution in the region outside the beam, at 7 > 1, we also seek
the Green’s function é(f',f") of the homogeneous equation corresponding to
inhomogeneous equation (10.11b). To provide boundedness of the solution at
7 — 00, the following condition must be fulfilled:

A

G—-0 at?— oo (10.16)

We choose the following solutions of the homogeneous equation satisfying the
normalization conditions (10.14):

Y= iIn(gf')» X = iKn(gf')

and obtain the following Green’s function:

’

~3>

G = (10.17)

7’;/

—L(3%)Ka(37), 7 <
— (37" Ka(37), >

So as K,(g7) tends to zero at # — oo, then the boundary condition (10.16) for
the Green’s function is fulfilled. Thus, the general solution of inhomogeneous
equation (10.11b) has the form:
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B = Cy K, (§7) — Ka(g7) / dCI,(3C)CFM(¢) -

1n(g7) [ dCKA(§0CFP(C). (10.18)

The continuity conditions of E(™(p,#) and dE™(p,#)/d# at the beam bound-
ary # = 1 give us the following equations:

B) + 2N / dCIn(BOCF™(C)
CoKA(5) /dcls (§0)¢f™ (),
ClﬂJn.H + Nn+1 /dCJ f(n)

CoFnns(9) + 3hvss(9) [ dCEA(GOCTC).

The solution of this system is given with

_ [ orre (mm e fm
O T ERE) = Koy “CHR004I0)

7 R Kl0) = K 1) [ &nipoci)

Substituting C; and C; into expressions (10.15) and (10.18) we get the solution
for E(™),
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To find E(”)(é, 7) we use the inverse Laplace transformation:

¥ +ic0
~ 1 _
EW(z,7) = 5~ / AAEM(\, 7). (10.20)
T
¥/ —ico

where the integration path in the complex plane A is parallel with the imagi-
nary axis. The real constant 4’ is greater than the real parts of all the singular-
ities of E(™ (), 7). We shall consider only the high-gain limit. In this case the
solutions growing exponentially are given with the residues of the integrand
in (10.20) lying in the right half of the complex plane A. Using eqs. (10.15),
(10.18) and (10.19) we may write:

E™ =3 uda(pt) exp(X2),  F<1 (10.21a)
J

B0 = S o dnl) s ep(02), A L (10.21b)
j Rn(gj)

Here ); is the jth root of the equation (Re(};) > 0):

A Tna1 (1(X)) Kn (9(X5) = G(ON5) Kngr (§()) T (B(X5)) = 0

where notations have been introduced:

52625 ijJn(ujC)Cf("’(C) + ;fda{n(gjg)gf(n)(o

u. = e —_ -— o p—
J A BTn1 (A Kn(3) — 5Kt (8)Jn ()] [rm
—2:D); . T dF(¢)/d
W= g = viBy, D= [atE0E
1 —AZD; 2 N+ +0)

Each term in the right-hand sides of expressions (10.21) corresponds to the
separate radiation mode and is characterized with the unique amplitude factor,
increment and the dependence on the transverse coordinate.

In the paraxial approximation the power gain coefficient G of the radiation
mode with the azimuthal index n is given with the expression:

0

o0 (o0} -1
G= [r|E™(zr) [ dr [/r | BS)(r) |2 dr} .
0
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When diffraction parameter B is not very large (B < 10)), one can find from
Figs.10.5 and 10.6 that the increment of TEMg, mode is visibly greater than
the increments of higher TEM,,; modes (n,k =1,2,3,...). Hence, when the
undulator is sufficiently long, the contribution of TEMgg mode in expression
(10.21) is much more than the contributions of all other modes. In this case
we may use the single mode approximation and write:

-2

G = 4B?exp(2Re())3) X

gd; (21 () Ko(9) — K1()Jo(R)]
) |

ext(P)dF + [To(y12)/ Ko(gn)] [ #Ko(g17) Bun(7)d?

A=)\

Ko(g1)Jo(p17)
JO(#l)

2 o
df+/r‘-|1{o(glf)|2dﬁ} x
1
2

. (10.22)

4

where J; is the reduced eigenvalue of TEMg, mode.

10.3.1 Optimal focusing of master oscillator radiation

Let us now study the problem of the external radiation optimal focusing on
the electron beam. We shall consider the case when the radiation of master
oscillator has the form of the Gaussian laser beam:

—iBqw*(w/c)e !

2(z — 2z9) — 1ww/c

exp 4i9(z — z) 4 2W/)(z = zo)r* — (Tww/6)2}
P{ c( O) + 4(2; — 20)2 + (w2w/c)2 (1023)

Ey+iEy = Eoyy(z,7) exp iw(z/c—1)] =

Here zo and w are the position of the focus and the waist size in the focus of
the Gaussian laser beam, respectively. At z = z, the Gaussian laser beam has
plane phase front and Gaussian distribution of the amplitude:

Eexi(z0,7) exp [iw(z/c — t)] = Ege ™ exp(—r? [w?).

One can easily obtain that the complex amplitude Eext(Z,T) of expression
(10.23) is an exact solution of paraxial wave equation

[02/87«2 +r719/0r + 2ic‘1w0/az] Eext(z, r)=0.
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When the undulator is sufficiently long, the power gain is submitted to the
exponential dependence:

G = Aexp [2 Re(A)é} ,

where factor A is the function of six reduced parameters: B, C ,Af,, Agr, w =
w/re and 25 = I'z,.

0.08

0.06 X

< 0.04 \

0.02 ~

0.00

w
Fig. 10.12. The dependence of preexponential factor A on the reduced Gaussian
laser beam waist w. Here B=1,C =0, 3, = 0, A2 =0, A% = 0. Curve is calculated

with formulae (10.3), (10.22) and (10.23) and crosses are the numerical solution of
the initial problem.

Let us consider the case of negligibly small the space charge field and energy
spread (A2 — 0 and A% — 0) and accurate resonance (C = 0). Then at the
fixed value of diffraction parameter B there are always the optimal values of
the laser Gaussian beam parameters  and 3, when factor A achieves its max-
imum. To simplify the optimization problem we will not perform the variation
of 2y and set it equal to zero. We will show below that such a choice of Zg 18
close to the optimum. Fig.10.12 presents the dependence of factor A on the
reduced laser beam waist w at fixed value of parameter B. The maximal value
of factor A and the laser beam waist corresponding to this maximum are
the universal functions of the only parameter B. The plots of these functions
are presented in Figs.10.13 and 10.14. Fig. 10.15 presents the dependence of
factor A on the reduced laser beam focus coordinate Zo. It is clearly seen that
the value of A at 2, = 0 does not differ significantly from its maximal value.

In conclusion we present in Fig.10.16 the resonance curve of the power gain GG
and in Fig.10.17 - the dependence of the reduced bandwidth of the amplifier
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Fig. 10.13. Maximal _preexponential factor A versus the diffraction parameter B.
Here C' =0, % =0, A2 =0, AZ = 0.

Amax

-

Wopt
S

.| \\\

0 “
-2 -1 0 1
1g(B)

Fig. 10.14. Optimum of the reduced Gaussian laser beam waist 4 versus the diffrac-
tion parameter B. Here C = 0, 3, = 0, A2=0,A%=0.

AC on the power gain G (we calculate the bandwidth at the half of the nominal
power).
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Fig. 10.15. The dependence of the preexponential factor A on the position of the
Gaussian laser beam focus. Here B = 1, C = 0, A2 =0, A2 = 0. Curve is calculated
with formulae (10.3), (10.22) and (10. 23) and crosses are the numerical solution of

the initial problem.
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Fig. 10.16. The power gain G dependence on the reduced detuning C.Here B =1,
w=13,2=4.7,A2 = 0, A2 = 0. Curve is calculated with formulae (10.3), (10. 22)
and (10.23) and crosses are the numerical solution of the initial problem.

10.4 Integration of the self-consistent field equations on a computer

We have shown above that in the case of the stepped profile of the beam
current density, the initial-value problem can be solved analytically using
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Fig. 10.17. The amplifier reduced bandwidth AC versus the power gain G. Here
Al = 0, AZ = 0. The reduced laser beam waist is optimized at C' = 0. Curve (1):
B = 0.1 and % = 2.55, curve (2): B =1 and @ = 1.3 and curve (3): B = 10 and
w = 0.89.

eq. (9.9). When the electron beam has an arbitrary gradient profile of current
density one should use the numerical methods to solve the initial problem.
The self-consistent field method in the linear approximation enables one to
get from the kinetic equation and Maxwell’s equations the only equation ei-
ther for the field amplitude of amplified wave or for the modulation amplitude
of the beam current density. Both of the ways lead to the same results but
for the analytical calculations it is preferable to use the equation for the wave
field (9.9): in this case the mathematical apparatus is always connected with
more conventional differential equations. At the same time the situations with
the computer simulations is proved to be reversed and the method using the

equation for the modulation amplitude of the beam current density (9.12) is
more convenient.

In this section we present the algorithm of the initial problem numerical so-
lution using eq. (9.12). The case of axially symmetric radiation field modes is
under study. Let us consider the case of negligibly small energy spread. The

field of master oscillator has the form of the Gaussian laser beam (10.23) with
amplitude

1/2

Ey = [SWext/(wzc)] ,

where W,y is the total power of the master oscillator. Using standard normal-
1zation procedure, we rewrite eq. (9.12) in the form:
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—dZA—2+22072;+ [AP—C ]]1 :0/—2_—2,0 rdr (2, 7)o | X
iB(7? 4 7'%) 1 A .
—_— — 2 10.2
exp{ 27 + 22,Uext(z,r), (10.24)
where the following notations are introduced:
31(277') :jl(zvr)ﬂ'rg/l’ I/i/ext = Wext/WO7
L T ~2y]1/2 2
Eg = [8Wexi/(Bw 7L Wo = I&D2e/(ew),
" i B E, ~2iB(2 — 50)#* — (Bur)?
ex 3 = = ~ " ; " " = .(10.2
Uext(2,7) 2(2 — 29) — i Bw? exp{ 4(2 — 20)? + (Bw?)? (10.25)

Integro-differential equation was solved using computer code FS2RL [69].
Computed value of the beam modulation J1 are used to calculate the power
gain G:

22 2 1 1 R T",/,'{‘,II
G=1+1{- /dé’/dé"/dﬁ'/dﬁ”jl(z’,f’)A _x
W P
] 0

o Ko/ ; 72 Al12
j;(éﬂ, f',’)Jo [ BT r J exp {_M} + CC} -
Z

51— 4
1 z 1
i / ds' / iUz (3, 7)) (2, #)7 + C.C. b | (10.26)
Wext 0 0

Figs.10.12, 10.15 and 10.16 present the results of the numerical solution of
equation (10.24) (the crosses). The solid curves are calculated with analytical
formulae. It is clearly seen that in the high gain limit there is good agreement
of numerical and analytical results.

All the results of the linear theory obtained above refer to the case of the
helical undulator and circularly polarized radiation. These results can be used
also for the case of a planar undulator and linearly polarized radiation at the
following redetermination of the parameters:

I'= [A3J1w203(21Ac27127)_1}1/2 , B = rilw/c,

C = ky —w/(2¢y]), Ag = 8cH(w*rt As;)!

b
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AL =P < (AE)? > /(S T2E2), Wo = I& T e/ (ew).

Here, as it was done in sections 2 — 4, we have introduced the following nota-
tions:

b = eH/(Eokw), Wi=~"24 62/2.

Factor A;; is given by the formula

Ags = [Jo(v) = J1(v)],

where v = 6fw/(8ckw ), Jo and J; are the Bessel functions.
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11 Nonlinear simulations of the FEL amplifier with an axisymmet-
ric electron beam

The nature of saturation mechanism of the FEL amplifier is of the same na-
ture as that described in section 3 where we have studied saturation effects
in the frame of the one-dimensional model. In the linear mode of the FEL
amplifier operation, at sufficiently low input radiation power Wey,, an increase
of Wex: leads to the proportional increase of the output power W;. When the
input power is increased further, the operation of the amplifier becomes to
be nonlinear: output power increases more slowly than that input one, and
at a certain value of Wy, the output power reaches a maximum. To find the
FEL characteristics at saturation, it is necessary to solve the equations of the
nonlinear theory of the FEL amplifier. The analytical methods are limited in
the description of the saturation effects and numerical simulation codes are
being used.

The main problems of the nonlinear simulations are connected with the calcu-
lation of the radiation and space charge fields. Several different methods are
used to calculate the radiation fields: various modifications of the transverse
mode spectral method (see e.g. ref. [83]), the finite difference method [84] - [86]
and the Green’s function method [87]. In this paper we, following by ref. [87],
present an approach to constructing numerical simulation code using Green’s
function method for the radiation field calculations.

When using the numerical simulation codes the problems are usually arisen
of the reliability and the clear physical interpretation of the obtained results.
The presented approach satisfies these requirements. First, the model approx-
imations allow one to check the linear stage of amplification with the rigorous
solutions of the linear theory (see section 10). Second, when writing down the
final equations we use the similarity techniques. This enables one not only
to reduce the number of the problem parameters but also to go over to the
variables possessing the clear physical sense. Each physical factor influencing
the FEL operation (diffraction, space charge, energy spread etc.) is matched
with its own reduced parameter. For the effect under study this reduced pa-
rameter is a measure of the corresponding physical effect. When some effect
becomes less important for the FEL amplifier operation, this is reflected by
the corresponding reduced parameter taking on small values and falling out
of the number of the problem parameters.

The presented FEL amplifier model allows one to take into account such effects
as the radiation diffraction, space charge fields, energy spread of the electrons
in the beam. The initial conditions are considered when one has the radiation
from master oscillator (the Gaussian laser beam) and unmodulated electron
beam at the undulator entrance. The presented code enables one to calculate
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the frequency, amplitude and current characteristics of the FEL amplifier. The
field distributions in the Fresnel and Fraunhofer zones and various electron
beam characteristics could be computed, too. The code allows one to calculate
all these characteristics at the constant undulator parameters as well as at the
tapering ones.

11.1  The working equations

In this section we describe briefly nonlinear simulation code FS2RN for the
FEL amplifier with an axisymmetric electron beam [87]. The electron beam
moves along the axis of the helical undulator. The electron motion is described
in the “energy-phase” variables with the phase

Y = /nwdz —w(t —z/c)

as canonical coordinate and energy £ as canonical momentum. The Hamilto-
nian has the form

H(E, b, z) = /(&w +w/c — w/v,)dE — usin(d + o) + e/Ezcw,

where u and 1, are, respectively, the amplitude and phase of effective poten-
tial:

uexp(iho) = —ef E exp(ithy) = —eOsE(FJ_,z)

and E, is the longitudinal component of the space charge electric field. The
corresponding equations of motion are as follows:

df/dz=—0H/0y = ucos(y) + o) — ek,
dp/dz=0H/OE = Kk, +w/c —w/v,(€). (11.1)

Then we perform usual normalization procedure. The diffraction parameter B,
the gain parameter I, the space charge parameter Ag and the energy spread
parameter A% are defined the same way as in section 10.1 and are calculated
using initial parameters of the electron beam and the undulator. So, the equa-
tion of motion (11.1) can be written in the following reduced form:

') =Re [eiwth, — iA2UC]
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W _ g plt B2 (11.2)
dz (1+BP)?
Here 2 =Tz, C = C/T, P = wP/(e2&T), P = € — &, B = ¢yl /w is the

efficiency parameter and 9 = 6, /6, = (1 +EP) is the reduced rotation angle.

The expression for the effective potential of the radiation field U, is given with:

z

g 1
U, = Um+22/ dz /f’f’] 5 )
0
exp | BT [ BE ) (11.3)
2(z -2 z—-2z

where U,y is given with eq. (10.25).

The complex amplitude 7, =| 7 | -exp(21) entering eq. (11.3) is calculated
with the local macroparticle ensemble:

2 N 271/2
=+ HZ i) cos () J + [Z dix) sin(tx)) ] }

k=1

P = —arctg [zk : 19(k s1n(1/) }

Zk 1 k) cos

The expression for the effective potential of the space charge fields U, is of the
form:

Ac=§§j e [Ko(nf,/B/ﬂ)/ 'd"in(#',2)Io (n#'\/BJB) +
I, (ni\/B/3) /r’df’&n(f",é)Ko (ni'\/B/B)| .(114)

1‘:

When B/ > 1 (which corresponds to the one-dimensional a’pproximation for

the space charge field, r >> 42¢?/w?) the expression for U, takes the following
simple form:

U.=Y e (", %) (11.5)
n=1 n
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The beam density modulation harmonics 4, = | an | exp(iyhn) are calculated
as follows:

1/2

The power gain coefficient G is calculated using eq. (10.26).

The field distribution in the Fresnel diffraction zone (i.e. inside the undulator)
1s given with expression (11.3) At the large distance of z from the undulator
exit, the radiation has the form of a spherical wave with the amplitude =(8)

depending on an observation angle § = r/z (we assume here the Fraunhofer
diffraction approximation):

lw 1

=(0) = / d3 / dif i (3, 7) exp (i625/ B ) Jo(67) —
0 0

Eq%B 1023,  10)26?
2B 4 |

where é, Eg, w and Z, have been defined in section 10.

It should be emphasized that the system of working equations (11.2) has been
derived without using severe restrictions on the electron energy deviation from
the initial value: we have only omitted the terms of the order of 1/4? in
the right-hand sides of equations (11.2). Hence, this algorithm allows one to
simulate the FEL amplifiers with high efficiency n up to the unity (of course,
the final electron energy must be sufficiently large, i.e. 4; > 1).
The simulation is performed with the macroparticle method. The macroparti-
cle ensemble is prepared as follows: the electron beam is divided into M layers
over the radius and in each layer we distribute uniformly N macroparticles
over phase v from 0 to 27. The initial energy spread is simulated with the
additional distribution of the particles according to the Gaussian law:

}‘32

1 -
dw = = exp [ = ] dP.
V2rAZ 2A%
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As a result, we get the system of 2 x N x M ordinary differential equations
(11.2) which is integrated with the Runge-Kutta scheme. It should be noted
that the standard numerical quadratures are not effective for the calculation
of the integral over 2’ in expression (11.3) as the integrand has a singularity at
z" — 2. To calculate this integral, we have developed a special algorithm [87].
The integration interval (0, ) is divided into some number of subintervals and
71 is approximated with the polynomials in each of them. The Bessel function
Jo(t), where t = B##'/(2 ~ #'), is approximated with the polynomials at small
values of ¢ and at large values of ¢ we use the asymptotic expansion. As a
result the calculation of integral (11.3) over 2’ is reduced to the sum of special
functions: Fresnel integrals, integral sine and cosine. The definite integral over
the transverse coordinate is calculated with the standard quadrature formulae.

11.2  Some results of numerical simulations

In this section we present some results of the numerical simulation of the FEL

amplifier with axisymmetric electron beam with the stepped profile of the
current density.

First, we present some testing results of the code at the linear stage of op-
eration. Fig.10.5 illustrates the results of the increment calculations with the
simulation code and the analytical ones obtained in section 10. One can see
that even at the number of radial mesh divisions N = 5 the divergence of
the simulation and analytical results is less than 1 % in the wide range of
the diffraction parameter B. Figs.10.1 and 10.4 present the comparative re-
sults of the field distributions and directivity diagrams. Fig.11.1 shows the
power gain at the initial stage of amplification. The thorough testing of the
simulation code has shown that the code is stable and provides the required
accuracy of the calculations with the corresponding choice of the simulation
parameters (number of radial mesh divisions, number of macroparticles, step
of integration etc.).

Let us now present some results of the numerical simulation of the FEL am-
plifier. First of all, we consider the FEL amplifier with untapered undulator.
In this case the maximal output radiation power is achieved at the satura-
tion point when the most part of electrons fall into the accelerating phase of
the ponderomotive potential. When the external input signal power is rather
small, i.e. Wy €« Wy, the FEL amplifier output characteristics at the sat-
uration depend on neither the input signal power nor the interaction length
and are the functions of four reduced parameters C, B, A2 and AZ. Let us
now illustrate the characteristic features of the FEL amplifier operating at
the saturation.
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Fig. 11.1. The power gain at the linear stage of amplification. The curve is calcu-
lated with the initial problem solution code and the circlgs are calculated with the
nonlinear simulation code. Here B = 1, C' = 0, Al=0,A3=0,N =5 M =100,
w = 1.2.

Within the above accepted limitations the FEL amplifier reduced efficiency
7 = n/B at the saturation is a universal function of the detuning parameter
C, diffraction parameter B, space charge parameter AZ and the energy spread

parameter AZ: f = f(C, B, Af,, A%). Fig.11.2 illustrates the simulation results
of the reduced FEL amplifier efficiency # versus the interaction length at the
value of diffraction parameter B = 1. It is clearly seen from this plot that
the growth of the output power is ceased at the saturation point when the
most part of electrons fall into the accelerating phase of the ponderomotive
potential.

Fig.11.3 presents the dependence of the maximal reduced efficiency 7 on the
detuning parameter . One can see from this plot that the amplifier efficiency
1s the increasing function of the detuning parameter . This is explained with
the fact that when the detuning parameter is increased, the electrons interact
with the wave for a longer distance (one should remember that this takes place
only when the detuning is inside the amplification bandwidth).

Fig.11.4 presents the dependence of the maximal reduced efficiency on the
space charge parameter Ag It is clearly seen that the efficiency of the FEL
amplifier is an increasing function of the space charge parameter. This is the
consequence of the fact that the space charge fields prevent the beam over-
modulation near the saturation point and the interaction of the modulated
electron beam with the wave is prolonged.

185



= 2' /
/A 1

S 7 9 11 13 15

V4

0

Fig. 11.2. The reduced efficiency 7 versus the interaction length. Here B = 1,C =0,
A2_0 A2 =0,N =5 M =100, % = 1.2 and W,,, = 10-3. Curve (1): Wlthout
tapermg and curve (2): the tapering according to formula (11.6).
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Fig. 11.3. The reduced efficiency 7 at the saturation versus the detuning parameter
C.Here B=1, Az—OandA2 0.

Fig.11.5 shows the dependence of the maximal reduced efficiency on the en-
ergy spread parameter. One can see that the amplifier efficiency is decreased
drastically with the energy spread.

All the numerical simulations, presented above, have illustrated the main fea-
tures of the FEL amplifier at the fixed value of diffraction parameter B. It
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Fig. 11.4. The reduced efﬁuency 7 at the saturation versus the space charge pa-
rameter A2 Here B = 1 and A?F = 0. (The detuning parameter corresponds to the
maximal mcrement at the linear high-gain limit).
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Fig. 11.5. The reduced eﬂiuency 7 at the saturation versus the energy spread pa-

rameter A2 Here B =1 and A2 = 0. (The detuning parameter corresponds to the
maximum gain at the linear hlgh -gain limit).

would be interesting to trace with Fig.11.6 the dependence of the reduced
efficiency on the diffraction parameter B.

Fig.11.7 shows the field distribution over the radius when the FEL amplifier
operates at the saturation. The field distribution of the ground symmetric
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Fig. 11.6. The reduced efﬁciel}cy 7 at the saturation versus the diffraction parameter
B. Here C' = 0, A2 =0 and A% = 0.

N
BN

1)
0.4

| \\

<&

)/2(0)

d(r
7
/

0.0 : \\\
0 1 2 3 4 5

Fig. 11.7. The field distribution in the undulator versus radius: (1): at the linear
stage (analytical results), (2): at the saturation, (3): at 2 = 15 with the tapering
according to formula (11.6). Here B = 1, € = 0, Ag =0,A2=0,N =5, M = 100,
W= 1.2 and Wey, = 1073,

TEMoo mode (linear stage) is presented in this figure, too. One can see that
the field distribution at the saturation is wider than at the linear stage and
the radiation field redistributes in the space out of the electron beam.

Fig.11.8 illustrates the directivity diagram of the FEL amplifier at the satura-
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Fig. 11.8. The directivity diagram versus the reduced observation angle: (1): at
the linear stage (analytical results), (2): at the saturation, (3): at 2 = 15 with the
tapering according to formula (11.6). Here B = 1, C = 0, Ag =0,A2=0,N =5,
M =100, @ = 1.2 and W,,, = 1073.

tion and the corresponding diagram for the ground TEMgo mode. It is clearly
seen from these plots that the width of the radiation field distribution at the
saturation is less than at the linear stage. This is the consequence of the fact
that the effective size of the radiation spot at the amplifier output is greater
at the saturation with respect to the linear stage (see Fig.11.7)

In Figs.11.9 and 11.10 one can see the basic output characteristics of the
FEL amplifier at the saturation: the reduced resonance characteristic (the
dependence of the efficiency on the detuning parameter) and the amplitude
characteristic (the dependence of the efficiency versus the input power de-
viation from the nominal value). Using the reduced resonance characteris-
tic and the definitions of the reduced parameters one can easily show that
the reduced bandwidth AC is connected with the physical parameters by
the simple relations: frequency bandwidth is Aw/w = 24 - AC; the electron
beam energy deviation is AE/E = B - AC; the undulator field deviation is
AH,/H, = B(1+ K?)-AC/K?.

The method of the FEL amplifier efficiency increase with the undulator param-
eters tapering is a well known one (see section 4). Here we shall only compare
some output characteristics of the FEL amplifier with tapered undulator with
output characteristics at the saturation of the FEL amplifier with untapered
undulator. In Figs.11.2, 11.7 and 11.8 we present the simulation results of the
FEL amplifier with the tapered undulator. The tapering has been performed
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Fig. 11.9. The output power deviation W/W,,, from the nominal value versus the

detuning parameter. FEL amplifier operates at the saturation, Here B = 1, A2 =0,
Az =o.
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Fig. 11.10. The output power deviation W/ Wp from the maximal value versus the
deviation of the input radiation power W.,, from the nominal value W"‘ FEL
amplifier operates at the the saturation. Here B = 1, ¢ = 0, A2 = 0, A =0,

N =5 M=100,% = 1.2, and W™ = 1073,
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at the fixed value of undulator parameter K according to the law

R 0 at 2 <7
T(2)= (11.6)
2 -7 at z > 7.

(833

One can see from the plots in Fig.11.7 that the radiation spot size at the
amplifier output is larger when the FEL amplifier operates with the taper-
ing parameters and, as a result, the width of the radiation power directivity
diagram becomes narrower (see Fig.11.8).

Now let us discuss the validity region of the one-dimensional FEL amplifier
theory (see sections 2-4). The linear analysis of the FEL amplifier shows that at
the value of diffraction parameter B ~ 10 the divergence between the TEMgq
mode increment and one-dimensional model increment does not exceed few
percents (see Fig.10.7). It is naturally to suppose that the same relations may
be obtained at the nonlinear stage, too.
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Fig. 11.11. The reduced efficiency 7 versus interaction length. The power gain
coefficient at the saturation is G = 40 dB. (1) - one-dimensional simulations.
Two-dimensional simulation with the FS2RN code at the value of diffraction pa-
rameter B = 10: (2) - the total efficiency, (A) - the efficiency at # = 0, (o) — the
efficiency at # = 0.5 and () ~ the efficiency at # = 1. Here C = 0, A; = 0 and
A2 o,

However, one can see from the plots in Fig.11.11 that there is the signif-
icant difference in the efficiency calculations with these two models at the
value of diffraction parameter B = 10. The efficiency calculated with the two-
dimensional simulation code is visibly less. To explain this phenomenon, we
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should analyze the distribution of the electron energy losses over the radial
coordinate. One can see from Fig.11.11 that the electron energy losses are
smaller for the particles located closer to the beam boundary. This asymme-
try 1s connected with the nonuniform distribution of the radiation field over
the beam due to the diffraction effects. Though at B ~ 10 the value of TEMgq
mode increment is close to the one-dimensional asymptote, the increments of
the higher modes: TEMg,, TEMq,, etc. are visibly less. When the FEL am-
plifier power gain coefficient is sufficiently large, the only TEMy, radiation
mode is forming. From Fig.10.1 one can see that the nonuniformity of the
TEMgo mode field distribution is increased with the value of the diffraction
parameter. Coming to the conclusion of our discussion on this topic we should
emphasize that the results of the one-dimensional nonlinear theory should be
used carefully because even at the large values of the diffraction parameter
the diffraction effects could play a significant role.

11.3  Applicability region

In sections 10 and 11 we have presented analysis of the FEL amplifier op-
eration wherein diffraction effects have been taken into account. The basic
peculiarities of our approach are the three-dimensional representation of the
radiation and space charge fields, and the electron motion description with the
one-dimensional approximation. This model, to some extent, tends to simplify
real processes occurring in the FEL amplifiers. However, within the scope of
such a model we take into account almost all the main effects influencing the
FEL amplifier operation: diffraction of radiation, space charge fields and en-
ergy spread of electrons in the beam. It should be noted that in the framework
of the presented model the beam emittance influence on the FEL amplifier op-
eration has been fallen out of the consideration. To be strict, this effect should
be taken into account in the framework of the fully three-dimensional theory
and the results, obtained with this model, should be considered as a reliable
test basis for the more complicated models. As for upgrading the numerical
simulation algorithm, it is not a physical problem but computational one and
can be easily resolved. Situation with upgrading the linear theory is much

more complicated and there is no possibility to obtain rigorous analytical re-
sults (see, e.g. ref. [74]).

When deriving self-consistent equation (9.9) of the linear mode of operation
and constructing the numerical simulation algorithm we have neglected be-
tatron oscillations of the particles. On the other hand, when moving in the
undulator field, particles perform betatron oscillations. The wavelength of be-
tatron oscillations is

Xo = 222,070 (11.7)
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So, the reasonable question is arisen when this model describes correctly the
real processes in the FEL amplifier. Simple physical considerations show that
it takes place in two cases. First, this model is valid when the betatron oscilla-
tion wavelength is much more than characteristic length of the radiation field
growth. In the linear mode of operation this length is of the order of the gain
length. Second situation corresponds to such a choice of the FEL amplifier pa-
rameters which provide the characteristic transverse size of the radiation field
eigenmode to be much more than the transverse size of the electron beam.
In this cases the emittance effects can be taken into account as follows. As a
rule, the electron beam should be matched with the focusing system of the
undulator which results in the following values of the beam radius ry and angle
spread (< (AB)%>)!/2 of the electrons in the beam:

ro = (Bwen/ym)Y?, (< (A)>)2 = (en/7Buy)? (11.8)

where 3, = V2 A /270, is the beta-function of the electron beam in the un-
dulator and ¢, is the normalized emittance of the beam. The presence of the
angle spread in the beam results in additional spread in the longitudinal veloc-
ities which may be interpreted with introducing of additional energy spread.
So, the inclusion of the emittance effects is performed by substituting the real
energy spread og = [< (AE/E)?>]'/? in the energy spread parameter

Af = ofw? /() E5T7)

by “effective” energy spread

or = [<(AE/E)> 442 < (A0S /4]V/2,

Another limitation of the model is that the radius of the electron rotation r,
in the undulator must be much less than the radius of electron beam ry which
results in the following limitation on the electron beam emittance:

r2 = (0 A /27)F < €a)p /277, (11.9)

One more approximation of the model refers to the linear mode of the FEL
amplifier operation. When deriving eq. (9.9) we have neglected the reduction
of the plasma frequency due to finite transverse size of electron beam. This
condition assumes the transverse electron beam size to be rather large, r2 >
v2c?/w? which corresponds to the following limitation on the emittance value:

(1200/27)? < €a s /277, (11.10)
It is interesting to notice that conditions (11.9) and (11.10) are almost identical
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at a large value of the undulator parameter K = eH, )\, /2rmc?.

When the FEL amplifier parameters satisfy the above mentioned conditions,
the presented model provide reliable results when the emittance effects are
taken into account in the way described above. For instance, this model has
been used for calculations of the FEL amplifier for photon linear collider [6].
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A The extended Hamiltonian formalism

In the framework of Hamiltonian formalism a system of material points is
described with n pairs of canonical variables

L1,T2y.+.,%n

plap?a"'vpn

and with the Hamilton function

H($1,$2,...,$H,P1,p2,...,pn,t)-

The canonical equations of motion have the form:

dz;/dt = 9H/dp;, dp;/dt = —0H/dz;, Jj=1,...,n.

In some cases it is convenient to generalize the Hamiltonian formalism by in-
troducing the (n41)th coordinate z¢ coinciding with the independent variable
t (see e.g. ref. [91]). In this case the Hamiltonian may be written in the form:

H= H((Co,xl,- ce9TnyP1y P2y - ,pn)-

To provide the symmetry, new (n 4 1)th canonical variable Po, canonically
conjugated with zg is introduced. New Hamiltonian H of (2n + 2) variables is
of the form:

H(mo,xl,...,wn,po,pl,...,pn) = H(Z0,%1,- -, Tn,P1,P2s- - -, Pn) + Po.

which leads to the extended system of the canonical equations:

dz;/dt = 0H/0p;, dp;/dt = ~0H/0x;, J=0,1,...,n.

At j = 0 we have:

dl‘o/dt = ]., dpo/dt = —aH/aCCQ = —6H/6xo = —BH/at

Let us assume that variables zo and po satisfy the following initial conditions
at t =0:

20(0) =0,  po(0) = —H(o(0), .., po(0),...,0).
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In this case we get the solutions: zo(t) =t and po(¢) = —H(t). Hence, Hamil-
tonian M ‘at any time t is equal to zero, H(t) = 0, i.e. it is the integral of
motion.

Let us now consider a transformation of variables given with the following

expressions:
To= mO(:iO’jl, o3 ZnyPos P1y - - aﬁn)
Tn = xn(:iO’jl’ ey jrnﬁOvﬁla s 31_)11)

Po = po(Zo,T1,-- - ZTn, Po>D1y- - -+ Pn)

pn:pn("i()’j:la"-7:En’ﬁ05131""’ﬁn) (Al)

which leads to the following Hamiltonian H:

H(j%i‘l"'-a‘:—cnapoapla'"31311) =

H(l‘o(.’fo,.’fl, .. .,.’Z'n,ﬁo,ﬁl,. .. ,ﬁn), PN ,pn(.’i‘o,.’fl,. . .,i‘n,ﬁo,pl,. . ,pn)).

The derivatives of new variables with respect to time are of the form:

and

dz;/dt = Z[awj/aﬂcl)(dwl/dt) +(9%;/9p1)(dp /dt)]

s 1M+

((02;/021)(0H/dp) — (0z;/Opr)(0H [ day)]

=~ @02 3 (1011201051 0m) + (9 13541 O] -

{ k=0

Il
=]

(8%;/0p1) 2 |(0H /07,)(024/0z)) + (8ﬂ/8ﬁk)(8ﬁk/6x1)]}
= Z {(8f_1/3xk zn:[ 0z /0m)(0Z;/0x1) — (0%;/0p) (0% [ 0x1)] +
=0

(0H |0py) Zn: [((0pk/0p)(0%;/01) — (ajj/apl)(ap‘k/axl)]}. (A.2)
1=0
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n n

dpy/dt=—3 {(33/31%) [(9p3/0m)(9pk/ Ox1) — (9p;/ 01)(9pw /Op1)] +
k=0 =0

n

(0H [0zy) 3 [(9pi/Ip1)(Dzx/Dar) — (C”fk/apl)(aﬁj/axl)]}- (A-3)

=0

To reduce the expressions (A.2) and (A.3) we introduce the Poisson brackets

[f, gl

n

= >_[(8f/0m)(3g/dx1) ~ (Bg/dm)(Df/0z1)],

1=0

where

f(xo,z:lv'--axnapOJpla"'apn)

g(xo,ﬂfl, «++3Zn,PoyP1y - - - ’pn)'

As a result, the expressions (A.2) and (A.3) get the form:

dzs/dt = 3" {(08/0) (o0, 3] + (OF /907, 7]}
k=0
dpsfdt =~ 3" {01955, ) + (011 /0%4) (53, 24]
k=0

(A.4)

Using these expressions one can find out that the conditions

[jkvjj] =0, [ﬁk’jj] = &j, [ﬁk’ﬁj] =0. (A.5)

are the necessary and sufficient for the transformation (A.1) to be canonical,
and variables Z; and p; satisfy the canonical equations with Hamiltonian H:

dz;/dt = 0H /0p;, dp;/dt = —8H |0z;, i=0,1,...,n. (A.6)

Let us consider, for illustration, the point transformation [92]:

z; = Fi(Zo,...,Z,), 7=0,...,n. (A.T)
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We wish to go over to the new system of (2n + 2) variables (p;, Z;) which are
independent functions p; and z; and satisfy the condition:

> pidE; = ) pidaz;. (A.8)
=0 =0

One can easily find the formulae of this transformation:

B = Y. pOR/d; (A.9)

=0
Calculating the Poisson brackets (A.5) one can easily find that expressions

(A.7) and (A.9) determine the canonical transformation.

Let us now go over to a new independent variable Zo in place of t. The ex-
pressions (A.6) lead to the following equations:

dz;/dzo = (dz;/dt)(dt/dzo) = (0H [0p;)(OH |0po) ™" = — [0Po/Opilyg »
dp;/dzo = (dp;/dt)(dt/dzo) = —(OH [07;)(0H [0po) ™" = [0po/0%s]y -
Here the symbol ( ...)5; means that the corresponding derivative is calculated

at the constant value of H(Zo,...,Zn, Po,. .. ,Pn). From the condition H = 0
we get:

pO(:EO’- .. ﬂjn3p07' - ~“5n) = —H('fi()?' .. W:Enap(b s 7pn)-

Resolving the latter equation with respect to p, we obtain:

Po = H(Zo, ..., Zn,p1s- - -, Pa)-

As a result, the equation of motion may be written in the canonical form:

dz;/dzo = OH/Bp;,  dpi/dzo = —0H[dz;, j=1,...,n.
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B The general form of the solution of the initial-value problem
for the FEL amplifier with a “cold” electron beam

In section 2 we solved the initial-value problem using the Laplace method. In
this section we present completely different method of solving this problem.
When we can neglect the energy spread (i.e. in the case of “cold” electron
beam), the kinetic equation (2.7) and the wave equation (2.13) can be reduced
to a single differential equation for the field amplitude of the amplified wave

E:
E" 4+ %4CE" + (A2 - C?) E' = iE, (B.1)
where the prime denotes differentiation with respect to 2. Since eq. (B.1) is

a linear ordinary differential equation with constant coefficients, its solution
could be seek in the form:

E(z) = Aexp(A2).

According to eq. (B.1), the factor ) in the argument of the exponential satisfies
the algebraic equation

(i) + &) =5, (B.2)
which gives three values of A determining three linearly independent solutions
for the field amplitude:

By = exp(M£), Ey = exp(A22), By = exp(A3Z).

To solve the initial-value problem, we should set the initial conditions for
E(0), E'0), E"(0),

which correspond to the field amplitude and its first and second derivatives
with respect to Z at the undulator entrance at 3 = 0. Then

E FE
E| = M@GEI0) | E |, (B.3)
Eu Ew

Z 0
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where the transition matrix M(3/0) is equal to

. - . . . . -1
E1 E2 E3 El E2 E3
M=\|E Ey By | x|E| E,E,
E! El EY E! Ey E!

The explicit expressions for the matrix elements M;; are as follows:

Mi1= X A3B1 + A A3B; + A A3 B;

Miz=—~(A2 4+ A3)By — (M + A3)By — (A + A2)Bs
M,3=B, + B, + Bs

Mo = M A A3 M5

Moy = - (A + Az)By — Aa(A + A3)By — Aa(A + A2)Bs
My =X1By + \2By + \3B;

Mz = M A A3 My

Mz = -/\f()\'z + A3)B, — /\3(/\1 + A3)By — /\:2;(/\1 + X2)B3
Mss=A\B; + \2B, + A2Bs,

where to abbreviate the notations we have introduced

exp(A;2)
T (= A2) (A = Xg)
exp(Az2)
(A2 = A1) (A2 — A3)
exp(As?)
(As = A)(As = Ag)’

B2=

B3=

The values of £’ and E" at the undulator entrance can be expressed in terms
of the complex amplitude of the first harmonic of the particle density in the
phase space f;. Using kinetic equation (2.7) and the wave equation (2.13), we
have

E'(0)/Eo = ~2}1(0)/jo

j1/do = _/fl(())ﬁ)dﬁ
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As an example, let us consider the case when unmodulated electron beam and
an electromagnetic wave of amplitude E.,; are fed to the amplifier input. The
initial conditions at Z = 0 are as follows:

E(0) = Ee, E'(0)=0, E"(0)=0.

According to eq. (B.3), we obtain that

E(2) = My1(3]0) Eexe.

This expression is identical to expression (2.23).
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C Treatment of the linear mode of the FEL oscillator operation as
an eigenvalue problem

We consider a plane Fabry-Perot resonator of the base L equipped with two
plane parallel mirrors. A helical undulator having length [, is placed between
the mirrors and its axis coincides with the resonator axis. Magnetic field at
the undulator axis is given with the expression:

H,(z) = &H, cos(kwz) — €y Hy sin(ky 2),

where € and €, are the unit vectors. We neglect the transverse variations of
the undulator field and assume the electrons to move along the constrained
helical trajectories in parallel with the z axis (in average over the undulator
period). The electron rotation angle 6, is considered to be small and longitu-
dinal electron velocity v, is close to the velocity of light (v, ~ c).

We suppose the electromagnetic field in the resonator to be circularly polarized
because of the helical magnetic system of the undulator. Using the complex
representation, in the one-dimensional approximation the radiation field in the
resonator may be presented as a superposition of the oscillations with different
longitudinal wavenumbers. In the case of ideal mirrors, we have:

Ex+1iEy =Y En(t)exp(—iwmt) sin(km ) (C.1)

where ky = m7/L, wy = emr/L and m is integer number, m > 1. Physical
sense of expression (C.1) is that an integer number of half-waves must fit
the resonator base. This expression may be generalized to the case when the
resonator mirrors are made of material with refractive index n'. We suppose
the value of n’ to be the large complex number, i.e. | n’ I> 1. For example, the
refractive index of the metallic mirrors with the conductivity o is given with
the expression n'(w) = /4ni0’/w, where w is the frequency of electromagnetic
wave. The electromagnetic field must satisfy Leontovich’s boundary conditions
on the mirror surface (see e.g. refs. [93,94]):

- B Ly 1. =

[n X Ew] ls = — [n X [n X Hw” |,

n/

where 7 is the unit vector perpendicular to the mirror surface, £, and H, are
Fourier harmonic of the electric and magnetic field

E=Ee™4+ccC, H=He" 400,
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n’ = n'(w) is the refractive index. Using Maxwell equation ¢V x E = —3H /ot,
the Leontovich’s boundary conditions may be written in the form:

= 0. (C.2)

Assuming the refractive index to be constant in the operating wavelength
range of the FEL, we may generalize the expression (C.1) for the radiation
field in the resonator for finite value of the refraction index n':

Ex+iEy =Y En(t) exp(—iwmt) sin(kmz + 6), (C.3)

where ky, = m7/L — 2i{/(n'L) and § = i/n’. One can obtain that this field
satisfies Leontovich’s boundary conditions (C.2).

It should be noted that boundary conditions (C.2) may be used in the frame
of three-dimensional FEL oscillator theory, too [33,34].

In this section we let the complex amplitudes E,, to be the slowly changing
functions of time, i.e. | 0Ey/0t | L/c <| Ey |. The small field amplification
per one resonator pass means that the lasing frequency w is close to one of
the passive resonator frequency wy,.

In the framework of the one-dimensional theory the electric field E (z,t) in the
resonator is subjected to the wave equation

P?E[02* — 0°E [0t* = 4707 /0t (C.4)

which may be obtained from Maxwell’s equations. Let us now consider the
problem of obtaining the vector of the induced beam current density ]_"(z,t)
appearing in equation (C.4). The standing wave field in the resonator may
be represented as a superposition of two travelling waves. In the linear ap-
proximation vector J is proportional to the electric field strength of the wave
synchronous with the electron beam. Hence, using (C.3) we may write:

Ix+ gy = xEm(t) exp [twm(z/c — t)]. (C.5)

To find susceptibility x, the equations of electron motion in the given electro-
magnetic field should be solved.

In the same way as it was done in sections 5 — 8, we describe the electron
motion using “energy-phase” variables € and ¢ = kyz—wm(z/c—t). In the case
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when the space charge field can be neglected, the corresponding Hamiltonian
H has the form (see eq.(2.5):

- “Ym  p2 [ i . —iy] [ _
H(P,¢,z)~CmP+26722£OP [Une™ + Une ™| [1 - P/&,),

where P = £ — &, Cr = kw —wm/(2¢7?) is the detuning of the mth mode with
the particle having nominal energy &, Uy = €6, E,, /4 is the complex ampli-
tude of the effective potential of the particle interaction with the synchronous
electromagnetic wave, 0; = eH,/(Eokw), 42 = 772 + 62 and v = &/(m.c?).

The evolution of electron beam distribution function f 1s determined with the
kinetic equation:

0f L OHof OHOJ _
0z OPOY Oy 0P

In the linear approximation we shall seek the solution for f in the form:

f=fot hie” + fre.

Evolution of f; is described by the equation

Ofh | . 0
T+ (ot P (0360)) i+ iUm 22 <, (C.6)

We assume that the electron beam at the entrance into undulator is modulated
neither in velocity nor in density, i.e.

fl|2=zi = 07 fOlz:zi = nOF(P), /FdP = 1,

where z; is the coordinate of the undulator entrance and no is the bearn density.
The beam current density is connected with the distribution function f1 as
follows (we assume here v, ~ ¢):

jz = —jo + 316“1’ + CC
}1 ~ —ec/fldP,
Jx + iy = 0.j1 €xp [iwm(z/c — t)], (C.7)

where —jo =~ —ecny is the longitudinal component of the beam current density
at the undulator entrance. Complex amplitudes J1 and f; are connected with
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71 and 1, as follows:

(1/Djrexplen) =\ | exp(vr) = ji = —ec [ frdP

Substituting (C.7) into the kinetic equation and integrating over z and P we
get the following equation for j;:

J1= z'joUm/dz' / dPZ—i exp [z (Cm + me/(ﬂ/zzSoc)) (z' — z)] . (C.8)

Let us consider the case of the “cold” electron beam, i.e. the monoenergetic
electron beam with the distribution function F(P) = 0(P). One can easily
find that the function x entering eq. (C.5) is given by

X = Jowmel?(401260)™" [ d2'(2' = 2)exp iC(2' - ).

We shall seek the solution for the complex amplitude E, in the form:

Erm = const X exp(ent). (C.9)

Then we substitute egs. (C.3), (C.5) and (C.9) into eq. (C.4). After multiplying
the obtained equation by sin(knz) and integrating over z, we get:

Z(Cr), (C.10)

b =

where

m =2emL/(cT) +4/(n'7), 7 =21wm028jo(cv2vI4)™", Cum = Clw.

W

The function Z has the form:

1 ¢
Z:iofdgojdg'g'exp(_z‘ ). (C.11)

After integrating we obtain

Z = 2032 [2(Cr) " sin(Crn/2) — c05(Cen/2)] exp(—iCim/2). (C.12)
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Only the modes which eigenvalues satisfy the condition

Re(ém) > Re (4/(n'7))

will grow exponentially in time. The lasing condition may be written as
max Re(én) > Re (4/(n'7)). (C.13)
We have considered above the case of the resonator equipped with two identical

mirrors. When the mirrors are made of materials with different refractive
indexes n; and nj, the expression for ¢, is written in the form:

ém = 2emL/(cT) + 4/(n'7) = 2eL/(cT) + 2/(n}7) + 2/(n}y7).
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D List of basic notations

In this section we present the list of basic notations used in our review. All
notations refer to the case of helical undulator and circularly polarized radia-
tion. 4

D.1 General notations

¢ ~ velocity of light,

—e — the charge of the electron,

me — the mass of the electron,

w — the frequency of radiation |,

A - radiation wavelength,

Aw — undulator period,

kw = 2% /Ay — undulator wavenumber,

H,, - undulator field ,

Ny, - number of undulator periods,

ly — undulator length,

K = AyeH, [2rm.c? - undulator parameter,
& — electron energy,

& - nominal energy of the electron,

v = & /mec? - relativistic factor,

8s = K/~ ~ rotation angle of electron in the undulator,

Yo=(1-02/A) V2 (y72 40212 = 4\ T+ K2 - longitudinal relativistic
factor,

C = kw —w/(2¢y?) - detuning of the electron ,

# The case of planar undulator and linearly polarized radiation is discussed in the
corresponding parts of the text.
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Jo — beam current density,
I — total beam current,
ro — radius of the electron beam,

Iy = mec®/e ~ 17 kA — Alfven’s current.

D.2  One-dimensional model of the FEL amplifier

= [7rj0052w/(c72271,4)]1/3 - the gain parameter,

A - the eigenvalue of a partial wave,

A=A /T - the reduced eigenvalue of a partial wave,

C=C/T = [kw — w/(2¢42)]/T - the detuning parameter,

Ap = [47rj0/('yz2'yl,4)]1/2 — the longitudinal plasma wavenumber,
[\g = AZ/T? — the space charge parameter,

AR =w? < (AE/&)? > /(v2c’T'?) - the energy spread parameter,

B = eyl Jw ~T/2k, - the efficiency parameter,

Eo = (cv2&I?)/(ewbs) - saturation field amplitude parameter.
D.3 One-dimensional model of the FEL oscillator

7 = 2m02wjol3 (cy}v14)~! - the gain parameter,

G - radiation power gain per one undulator pass,

a - the relative power losses per one resonator round-trip,
& = a7 - the parameter of resonator losses,

C = Cl, - the detuning parameter,

A = 0P < (AE/E0) > [(e498) = (4nN,)? < (AE/Es)* > - the energy

spread parameter,

Ap = [Amjo/ (7214 Y2 _ the longitudinal plasma wavenumber,
P z g
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Ap = Aplw — the space charge parameter,
B = cy?/wly = (47 N,,)~! - the efficiency parameter,

Fo = (cv2&)/(ewb %) - saturation field amplitude parameter.

D.4 Three-dimensional model of the FEL amplifier

T = [Iw?0?/(I4c*v2y)]* - the gain parameter,

C = C/T = [ky — w/(2¢42)]/T - the detuning parameter,

Af) = AL/T? = 4c*[(w?r}0?) — the space charge parameter,

B = T'r2w/c - the diffraction parameter,

AZ = AZ/T? =< (AE/&)? > w? /(242 T?) - the energy spread parameter,
A - the eigenvalue of an eigenmode,

A = A/T - the reduced eigenvalue of an eigenmode,

B = c¢y2T'Jw - the efficiency parameter.

Wo = I&TI'v2c/(ew) - saturation power parameter. .
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