CANIL

Identification of μ s-Isomers produced in the Quasifragmentation of a 112 Sn Beam

R. Grzywacz^{1,2}, R. Anne², G. Auger², D. Bazin², C. Borcea³, V. Borrel⁴, J.M. Corre², T. Dörfler⁵, A. Fomichov⁶, M. Gaelens⁷, D. Guillemaud-Mueller⁴, R. Hue², M. Huyse⁷, Z. Janas^{8,*}, H. Keller⁸, M. Lewitowicz², S. Lukyanov^{6,2}, A.C. Mueller⁴, Yu. Penionzhkevich⁶, M. Pfützner¹, F. Pougheon⁴, K. Rykaczewski^{1,2}, M.G. Saint-Laurent², K. Schmidt⁸, W.D. Schmidt-Ott⁵, O. Sorlin⁴, J. Szerypo^{7,*}, O. Tarasov ^{6,2}, J. Wauters⁷, J. Żylicz¹

¹IFD, Warsaw University, Pl-00681 Warsaw, Hoza 69, Poland

² GANIL, BP 5027,14021 Caen Cedex, France

³IAP, Bucharest-Magurele P.O.Box MG6, Roumania

⁴IPN, 91406, Orsay Cedex, France

⁵ University of Göttingen, D-37073, Göttingen, Germany

⁶FLNR, JINR 141980 Dubna, Moscow region, Russia

⁷IKS KU Leuven, B-3001, Leuven, Belgium

⁸GSI, Postfach 110552, D-64220, Darmstadt, Germany

300 3451

GANIL P 94 34

Identification of μ s-Isomers produced in the Quasifragmentation of a 112 Sn Beam

(November 15, 1994)

R. Grzywacz^{1,2}, R. Anne², G. Auger², D. Bazin², C. Borcea³, V. Borrel⁴, J.M. Corre², T. Dörfler⁵, A. Fomichov⁶, M. Gaelens⁷, D. Guillemaud-Mueller⁴, R. Hue², M. Huyse⁷, Z. Janas^{8,*}, H. Keller⁸, M. Lewitowicz², S. Lukyanov^{6,2}, A.C. Mueller⁴, Yu. Penionzhkevich⁶, M.Pfützner¹, F. Pougheon⁴, K. Rykaczewski^{1,2}, M.G. Saint-Laurent², K. Schmidt⁸, W.-D. Schmidt-Ott⁵, O. Sorlin⁴, J. Szerypo^{7,*}, O. Tarasov ^{6,2}, J. Wauters⁷, J. Żylicz¹

¹IFD, Warsaw University, Pl-00681 Warsaw, Hoza 69, Poland

² GANIL, BP 5027,14021 Caen Cedex, France

³IAP, Bucharest-Magurele P.O.Box MG6, Roumania

⁴IPN, 91406, Orsay Cedex, France

⁵ University of Göttingen, D-37073 Göttingen, Germany

⁶FLNR, JINR 141980 Dubna, Moscow region, Russia

⁷IKS KU Leuven, B-3001, Leuven, Belgium

⁸GSI Darmstadt, Postfach 110552, D-64220 Darmstadt, Germany

^{*}On leave of absence from IFD, Warsaw University, 00681

Abstract

Decays of over forty short-lived ($T_{1/2}$ from $\approx 50 \text{ns}$ to $70 \mu \text{s}$) isomeric states including a new 66m As produced in the quasifragmentation of a 112 Sn beam (58 A·MeV,63 A·MeV) in a nat Ni target were observed at the final focus of the LISE3 spectrometer at Ganil. Their detection, based on the slow ($\approx 10 \mu \text{s}$) time correlation of the implanted product with the characteristic γ -radiation, represents a novel, unambiguous isotope identification method for projectile fragment separator experiments. Measured intensities of the isomeric beams and the ratio of the isomeric yield to the total production are given. 25.70.-z,25.70.Mn,21.10.Tg,29.30.Kv

The production of nuclear beams in metastable states is one of the attractive applications of the projectile-fragment separator technique [1-3]. Such projectiles can be used to investigate the properties of a nucleus in an isomeric state like its nuclear radius (see [4,5] for examples of such experiments with radioactive ground-state beams) as well as for the reaction studies. Beams of isomers characterized by a high-spin multiquasiparticle configuration can be used for investigations aimed at the observation and understanding of levels built on exotic band-heads and at the determination of the spin-dependence of selected reaction channels. Systematic data on the isomer-to-total production ratio (F) can contribute to a better understanding of the fragmentation-like reaction mechanism [2]. The feasibility of such studies strongly depends on the projectile intensities achieved. So far the production of only a few beams of isomers with relatively long half-lives, namely ^{26m}Al [2], ^{38m}Cl [6], ^{38m}K [6], ^{42m}Sc [3] and ^{44m}V [7] has been reported. Exceptions are the pioneering work on short-lived ^{18m}F [1,8] and ^{43m}Sc [9]. The total intensities for ^{18m}F (about 2000 pps), ^{42m}Sc (114 pps) and ^{43m}Sc (5 to 60 pps) correspond to the normalized rates R at 10¹⁰ incident beam particles of 32±6 pps, 38 pps and 100 to 1200 pps, respectively.

Fragmentation-like reactions with heavy projectiles at intermediate energies are characterized by a wide distribution of the products in mass and atomic number (see e.g. [10,11]). The isotope identification in such experiments is based on the known magnetic rigidities ($B\rho$) used to transmit the ions from the target to the final focus together with the measurements of energy-loss (ΔE), total kinetic energy (TKE) and time-of-flight (TOF). Here, in addition to the data on the production of isomeric beams, we present a novel and global method for the unambiguous identification of nuclei implanted at the final focus of projectile-fragment separators. This method is based on the detection of γ -radiation following the decay of short-lived ($T_{1/2}$ about 0.1 to $100\mu s$) isomeric states in time correlation with the respective heavy-ion implantation signals. For the first time such a sensitive search for isomers has been performed for about 400 nuclei in one single measurement.

Two experiments have been performed with a ¹¹²Sn beam at GANIL. During the first one [12], a ^{nat}Ni target (78 mg/cm²) was placed at the entrance to the LISE3 spectrometer. With

a primary beam energy of 58 A·MeV the typical time-of-flight of the fragments through the spectrometer was about 500 ns. The detection set-up at the final focus consisted of a four-fold Si telescope surrounded by a thin plastic β -counter and four large-volume Ge detectors. The summed photopeak efficiency of the γ -detectors reached 11% at 166 keV and was still about 4.5% at 1 MeV.

Among other parameters, the standard TAC signals of the fast coincidence between implanted ion and γ -radiation have been recorded in an event-by-event mode together with corresponding ion- and γ -energies. The TAC range was 500 ns, while the acquisition was kept open by any trigger signal during $\approx 10 \mu s$ (ADC's gate). The rate of the heavy-ion triggers was kept well below 10³Hz. The prompt coincidence peak in the TAC spectrum (FWHM ≈ 10 ns) was basically due to prompt γ -radiation induced by a nuclear reaction of the implanted ions with the Si detector material. Only about 0.2 % of all recorded ions have produced such prompt signals. However, the time distribution of γ -radiation was much broader than the prompt TAC peak (10 ns) and the TAC (500 ns) range. This is due to the delayed γ -radiation following β - and isomer-decays. The β -decay halflives are of the order of hundreds of milliseconds for exotic, weakly produced nuclei, reaching up to very long decay times for nuclei closer to the β -stability line. These decays produce a certain constant level (about 30 per second) of background γ -events which are not correlated with the implanted quasifragmentation products in the 10μ s time interval. In contrast, the recording of the γ -radiation with characteristic decay times in the 10μ s range can be strongly enhanced. This enhancement is due to the requirement of a presence of the specific ion signal and the γ -radiation within 10μ s.

With only one setting of the LISE spectrometer, known isomeric decays of forty nuclei have been detected. A comparison of an ungated identification spectrum i.e. atomic number Z versus the ratio of a mass A over a charge state Q of the detected ion given in Fig.1a with a spectrum gated by delayed γ -radiation (Fig.1b) shows the presence of a large number of isomeric states with the half-lives of the order of 100 ns to 100 μ s (Table 1). Isomeric decays with half-lives for neutral atoms below 100 ns were also observed for nuclei produced at

high rates like 94m Mo $(T^m_{1/2}=98\pm 2 \text{ ns})$, 72m1,m2 As $(T^{m1}_{1/2}=85\pm 5 \text{ ns} \text{ and } T^{m2}_{1/2}=88\pm 2 \text{ ns} \text{ [13]})$, 66 Ga $T^m_{1/2}=57\pm 1.4 \text{ ns})$ 91m1,m2 Mo $(T^{m1}_{1/2}=47\pm 1 \text{ ns} \text{ and } T^{m2}_{1/2}=38\pm 4 \text{ ns} \text{ [14]})$. For the decays of 72m1,m2 As and 91m1,m2 Mo it was not possible to deduce the γ -intensities precisely enough to allow a separation into two components. Only upper limits for the joint production rates $R(^{72m1,m2}\text{As}) < 0.12$ and $R(^{91m1,m2}\text{Mo}) < 0.03$ can be given (in pps per 10^{10} beam particles). The limits for 73m Kr $(E^*=434 \text{ keV})$ and 92m Ru $(E^*=2835 \text{ keV})$ are R<0.007 and R<0.02, respectively.

Some examples of the 'heavy-ion correlated' γ -spectra are given in Fig.2. Well-known characteristic lines were clearly observed, confirming unambiguously the ΔE -TKE-TOF isotope identification.

The rates R of the isomeric beams at the final focal point of LISE3 as derived from the measured γ -intensities are listed in Table 1 (column 7). Each rate correspond to a partial production of the isomer in the target and depends on the overall spectrometer transmission efficiency - function of the momentum and charge state distribution of the ions. Even with a spectrometer setting which was presumably not optimized for the detection of one particular isomer, rates at the level of a few pps at 10^{10} primary beam intensity can be reported for several isomers (cf. Table 1).

The isomeric to total ratios F were obtained by dividing the isomeric yield at the target resulting from γ -measurements and corrected for in-flight decay losses by means of ionic half-lives (see Table 1) by the total number of the respective ions (Fig. 1a). The results given in Table 1 indicate a substantial (sometimes dominating) production of nuclei in their isomeric states. Such a reaction feature can be used in mass measurements [15] to test the achieved high resolution by separating the nuclear mass of the ground state and of the isomeric state at a few MeV excitation energy.

Several isomers have been found in two or three ionic charge states Q (see Table 1). In most cases, their F^Q ratios are (within error-bars) identical. This indicates that a relative change in velocity of up to about 4% (corresponding to the change in ionic charge by two units) does not affect the relative isomer production.

In the second experiment [10,11] performed with a 112Sn beam at 63 MeV/nucleon, a segmented BGO ring detector [16] has been used to detect the γ -radiation. The total photopeak efficiency was increased to 50% at 511 keV, however at the expense of a much lower energy resolution than that of the Ge-detectors. The resulting 'isomer identification' plot i.e. the heavy-ions (HI) correlated with γ -emission occurring after the prompt HI- γ coincidence is given in Fig. 3. In addition to the nine known isomers detected in the first experiment, an evidence for a new isomeric state in 66As can be concluded. Since the typical time-of-flight of the ions in the second experiment icreased from 0.5μ (in the first experiment) to $1.5\mu s$, some of the known short-lived isomers like e.g. 67m Ge and 92m Ru were not detected in spite of an optimzed spectrometer setting for this isotope region. The limit for the production of $^{73m}\mathrm{Kr}$ is R < 0.0025. The limited resolution of the BGO did not allow to deduce the R-values for 76mRb and 82m1,m2Y. As compared to the first experiment, the rates of fully stripped 96m Pd and 93m Ru were about three times lower. This is ascribed to the combined effects of the spectrometer transmission efficiency and the different charge state distribution in the two measurements. Due to the use of a charge-changing thin mylar foil in the second experiment, the production rates of ligther nuclei like 43mSc and 54mFe were reduced [10,11].

A list of the derived F ratios of isomeric to ground-state production for different charge states Q is given in Table 1. The F-values obtained for fully stripped ions in the two experiments at the two bombarding energies do not differ significantly. This indicates a rather similar production mechanism in both reactions.

The method presented here is well suited for scanning of large parts of the nuclear chart for short-lived isomers in the 0.1μ s to 100μ s half-life region. Such an experiment can be performed with only one B ρ setting of the projectile-fragment separator equipped with a sensitive γ detection set-up at the final focus. Such a dedicated study can also be performed for isomers whose neutral atoms have even shorter half-lives and decay by highly-converted transitions. Due to the blocking of the main conversion-electron decay channel, fully stripped fragments can be transported over a long path length with small intensity losses (cf. the

halflives of ^{80m}Rb, ^{90m}Mo, ^{91m}Zr or ^{93m}Tc in different ionic charge states and as neutral atoms in Table 1).

In conclusion, it has been demonstrated that quasi-fragmentation at intermediate energies provides quite high isomeric yields as compared to the isotope formation in the ground-state (see Table 1). This increases the potential power of such studies, when applied to short-lived isomers in weakly produced proton drip-line nuclei. The search for spin-gap isomers beyond the drip-line is one of the ambitious goals for the follow-up experiment with a ¹¹²Sn beam. Fragmentation of neutron-rich projectiles together with the presented isomer detection should allow a search in regions of the nuclear chart which are not populated in fission reactions or in the fusion-evaporation reactions (e.g. very n-rich Sc to Co isotopes). The use of very heavy projectiles like ²³⁸U [18] should allow to produce and inspect isomers almost over the complete nuclear chart in one measurement.

In future experiments the yields of high-spin isomers with masses $A \approx 90$ can be improved by about an order of magnitude. This can be done by optimizing the spectrometer transmission and by increasing the beam intensity [10,11]. Thus, total reaction cross section measurements with isomeric nuclei used as projectiles and with secondary targets might become feasible.

REFERENCES

- [1] F.D. Bechetti et al., Phys. Rev. C42 (1990) R801
- [2] B. M. Young et al., Phys. Lett. B311 (1993) 22
- [3] J.L. Uzureau et al., Phys. Lett. B331 (1994) 280
- [4] I. Tanihata et al., Phys. Lett. B206 (1994) 592
- [5] T. Brohm et al., GSI Sci. Rep. 1990 (1991) GSI-91-1, p.12
- [6] B. M. Young et al., in Proc. of IIIrd RNB Conf., Michigan 1993, p. 437
- [7] H. Keller et al., Z. Phys. A348 (1994) 67
- [8] J. A. Brown et al., in Proc. of IIIrd RNB Conf., Michigan 1993, p.317
- [9] W. Schmidt-Ott et al., Z. Phys. A, in print
- [10] M. Lewitowicz et al., Phys. Lett. B332 (1994) 20
- [11] K. Rykaczewski et al., 'Identification of New Nuclei at and beyond the Proton Drip-line near the Doubly-Magic Nucleus ¹⁰⁰Sn', submitted to Phys. Rev. Letters
- [12] M. Lewitowicz et al., Nouvelles du Ganil 48 (1993) 7
- [13] M.M. King, NDS **56** (1989) 1
- [14] H-.W. Müller, NDS 60 (1990) 835
- [15] A. Gillibert et al., Phys. Lett. B192 (1987) 39
- [16] H. Keller et al., Z. Phys. A340 (1991) 363
- [17] B. Blank et al., in contribution to the Int. Symposium on Physics of Unstable Nuclei, Oct. 31st-Nov. 3rd, 1994, Niigata, Japan,
- [18] M. Bernas et al., Phys. Lett. B331 (1994) 19

FIGURE CAPTIONS

- 1 Distribution of fully stripped (Q=Z) fragments produced with a ¹¹²Sn (58 A·MeV) beam: a)all products registered, b)selected nuclei correlated to γ-radiation within 10μs after the triggering heavy-ion signal ('chart of isomers'). For the groups of nuclei without known isomeric state in the 0.01-100μs half-life range the probability of chance coincidence with γ-radiation was estimated and corresponding (low) background was substracted at part b).
- 2 Examples of γ-energy spectra obtained in a correlation with fully stripped ions. Known isomeric transitions are marked by their energies in keV. For ^{105m}Cd only the lines used for the estimation of the isomeric rates are indicated. See also [11] for the spectra obtained for other isomers.
- 3 'Chart of isomers' obtained for fully stripped ions in the experiment with a 112 Sn beam at 63 MeV/nucleon, compare to Fig.1. In the inset, a magnified part of the spectrum is shown with an evidence for the new isomer ^{66m}As . Very recently, the presented method has been applied to study the γ -decay properties of this new isomer in experiment with a ^{78}Kr beam (September 1994) at Ganil [17].

				<u> </u>				
		E*	I*	$T_{1/2}$	Q	$T_{1/2}^Q$		$\mathbf{F}^{\mathbf{Q}}$
22 Na (4) Seb.* (2) Seb.* (2) Seb.* (3) Seb.* (2) Seb.* (3) Se	10			με		μs		
43 Se ^{h.c} 3123 19/2	33 r		-					
1946 -2 27(6) 6			_					. ,
64 Fed 6527 10 + 0.364 26 0.406 6.8(8)=2 11(2) ° 65 Ni* 87 5/2" 1.67 28 3.34 2.2(8)=2 21(8) 66 CuJ** 1154 6" 0.596 29 0.598 8.4(12)=3 40(6) 67 Zn* 604 9/2* 0.333 0.033 4.7(3)=2 68(7) 69 Ge* 398 9/2* 0.1103 32 0.1141 1.1(7)=2 68(15) 69 Ge* 398 9/2* 0.853 34 0.857 1.5(6) 52(2) 69 Se* 574 (9/2*) 0.853 34 0.95 0.11(3) 1.7(4) 17 Se* 260 (9/2*) 19 34 2.09 0.11(3) 1.7(4) 18 Sa* 317 (4*) 3.2 37 4.0 1.1(1) 2.0 68 Rb* 317 (4*) 3.2 37 4.0 1.1(3)=2 33(5) 81 Sr* 79 <t< td=""><td>Score</td><td>3123</td><td>19/2-</td><td>0.469</td><td>21</td><td>0.524</td><td>0.10(1)</td><td></td></t<>	Score	3123	19/2-	0.469	21	0.524	0.10(1)	
63 Nyis 87 5/2" 1.67 28 3.34 2.2(8)e-2 22(8) 66 CgJr.c 1154 6" 0.596 29 0.598 8.4(12)e-3 40(6) 66 CgJr.c 1464 7" 0.0574 31 0.073 1.7(5)e-2 74(22) 67 Zgr 604 9/2" 0.333 0.334 7.3(7)e-2 68(29) 69 GeA 388 9/2" 2.81 32 2.84 1.59(5) 52(2) 69 SeA 574 (9/2") 0.853 34 0.857 17(1)e-2 68(15) 52(2) 71 Se* 260 (9/2") 0.853 30 0.33(3) 73(1)(4) 6(4) 71 Se* 260 (9/2") 1.7 3 2.01 4(1)e-2 2.3(6) 73 As* 427 9/2" 5.7 3 2.01 4(1)e-2 33(6) 76 Rb* 317 (4*) 3.2 37 4.0 1.1(3)e-2 35(10) 89(1) 2.	54 Fed	6527	10+	0.364	26	0.406		, ,
66 Cu.f. 66 Cu.f. 67		0021	10	0.504	20	0.400	2.3(4)e-2 °	11(2) °
66 Ga Jr. of 67 Zp. of 604	63 Nie	87	5/2-	1.67	28	3.34		
67 Zn g 604 9/2+ 0.333 30 0.334 7.3(7)=-2 68(7) 67 Ge g 752 9/2+ 0.1109 32 0.1111 4.1(7)=-2 88(15) 69 Ge h 398 9/2+ 2.81 32 2.84 1.59(5) 52(2) 69 Se h 574 (9/2+) 1.98 34 2.99 0.11(3) 17(4) 71 Se l 260 (9/2+) 1.9 34 2.0.9 0.11(3) 17(4) 73 As l 427 9/2+ 5.7 33 5.8 0.36(2) 36(2) 80 Rbl. e 561 6+ 1.6 37 9.6 0.89(3) 20(1) 81 Sr m 79 (5/2) 0.34 38 1.4 0.10(4) 3.2(11) 81 Sr m 79 (5/2) 0.34 38 1.4 0.10(4) 3.2(11) 82 Ym. e 108 6 0.137 39 0.25 4.1(15)e-2 26(1) 85 Rp r	66 Cu ^{f, c}	1154	6-	0.596	29	0.598	8.4(12)e-3	40(6)
6° Ge° 752 9/2+ 0.1110 32 0.1111 4.1(7)e-2 88(15) 6° Ge° 398 9/2+ 2.81 32 0.1111 4.1(7)e-2 88(15) 6° Se° 574 (9/2+) 0.85 34 0.857 17(3)e-3 42(11)° 7° Se° 574 (9/2+) 19 34 20.9 0.11(3) 17(4) 33 20.1 4(1)e-2 23(6) 3.36(2) 36(2) 33(2) 4.2(7)e-2 33(6) 7° Rbk 317 (4+) 3.2 37 4.0 1.1(3)e-2 35(10) 8° Rbl-e 561 6+ 1.6 37 9.6 0.89(3) 20(1) 8° Srmb-e 508 (6+) 0.137 39 0.25 4.1(15)e-2 26(4) 8° Srm-e 508 (6+) 0.137 39 0.25 4.1(15)e-2 16(6) 8° Srm-e 508 (6+) 0.137 39 0.84 9.2(9)e-2 9.3(10) <	66 Ga ^{f,c}	1464			31	0.073	1.7(5)e-2	74(22)
67 Ge" 752 9/2" 0.1109 32 0.1111 4.1(7)e-2 88(15) 69 Ge" 398 9/2" 2.81 32 2.84 1.59(5) 52(2) 311 2.82 0.12(1) 46(4) 46	67Zng	604	9/2+	0.333				
69 Ge ^h 398 9/2 ⁺ 2.81 32 2.84 1.59(5) 52(2) 69 Se ^h 574 (9/2 ⁺) 0.853 34 0.857 71 Se ^t 260 (9/2 ⁺) 19 34 20.9 0.11(3) 17(4) 73 As ² 427 9/2 ⁺ 5.7 33 5.8 0.36(2) 36(2) 76 Rb ^k 317 (4 ⁺) 3.2 37 4.0 1.1(3)e-2 35(6) 80 Rb ^{1,c} 561 6 ⁺ 1.6 37 9.6 0.89(3) 20(1) 81 Sr ^m 79 (5/2) 0.34 38 1.4 0.10(4) 3.2(11) 82 Yn.o 403 (4 ⁻) 0.22 39 0.27 0.10(4) 38(14) 82 Yn.o 508 (6 ⁺) 0.137 39 0.25 4.1(15)e-2 16(6) 85 Rb ² 514 9/2 ⁺ 1.015 37 1.022 5.4(25)e-3 50(23) 86 Sr ^{q,c} 2956 8 ⁺ 0.457 38 0.946 5.2(7)e-2 9.3(10) 88 Zr [−] 2888 (8 ⁺) 1.320 40 5.13 2.9(1) 58(2) 90 Nb ^{+,c} 1880 11 0.472 41 0.98 0.78(5) 15(1) 90 Nb ^{+,c} 1880 11 0.472 41 0.98 0.78(5) 15(1) 91 Nb ^{+,c} 2034 17/2 3.76 41 5.7 0.86(7) 32(3) 91 Nb ^{+,c} 2167 21/2 ⁺ 4.35 40 10.5 3.3(7)e-2 2(5(1) 91 Nb ^{+,c} 2203 11 0.472 41 0.28 3.3(6)e-2 2(5(1) 92 Nb ^{+,c} 270 (4 ⁺) 1.015 40 0.57 3.3(6)e-2 2(5(1) 92 Nb ^{+,c} 270 (4 ⁺) 1.03 43 11.3 0.22(2) 92 Tc [*] 270 (4 ⁺) 1.03 43 11.3 0.24(2) 92 Tc [*] 270 (4 ⁺) 1.03 43 11.3 0.24(2) 92 Tc [*] 270 (4 ⁺) 1.03 43 11.3 0.24(2) 94 Mo ^{*,c} 2956 8 ⁺ 0.98 42 0.11 0.28 3.7(9)e-2 2(5(1) 94 Mo ^{*,c} 2956 8 ⁺ 0.131 40 0.172 2.9(5)e-2 49(7) 93 Tc ^{*,c} 3167 21/2 ⁺ 4.35 40 105 3.3(7)e-2 62(14) 91 Tc ^{*,c} 3167 21/2 ⁺ 4.35 40 105 3.3(7)e-2 2(5(1) 92 Mo [*] 270 (4 ⁺) 1.03 43 11.3 0.23(2) 2.2(5) 93 Tc ^{*,c} 2968 8 ⁺ 0.19 42 0.246 0.49(4) 22(2) 94 Mo ^{*,c} 2956 8 ⁺ 0.098 42 0.117 0.22(2) 2.2(3) 94 Mo ^{*,c} 2956 8 ⁺ 0.098 42 0.117 0.24 3.3(6)e-2 22(5) 94 Mo ^{*,c} 2956 8 ⁺ 0.098 42 0.117 0.29 3.3(3) 2.3(4) 94 Mo ^{*,c} 2956 8 ⁺ 0.098 42 0.117 0.29 0.34(3) 2.3(2) 94 Mo ^{*,c} 2956 8 ⁺ 0.098 42 0.117 0.29 0.34(3) 2.3(2) 94 Mo ^{*,c} 2956 8 ⁺ 0.098 42 0.117 0.29 0.34(3) 2.3(2) 95 Tc ^{*,c} 2185 17/2 10.2 43 190 3.7(4) 29(4) 42 2.44 3.5(3) 2.7(3) 24(5) 43 84 0.105 3.3(6)e-2 22(5) 94 Mo ^{*,c} 2956 8 ⁺ 0.098 42 0.117 0.20(5)e-2 49(1) 95 Mo ^{*,c} 2185 17/2 10.2 43 190 3.7(4) 29(4) 42 2.44 3.5(3) 2.7(3) 3.6(6)e 2.8(5) 96 Pd [±] 2511 8 ⁺ 2.10 2.2 46 4.47 3.4(6)e-2 3.6(6) 96 Pd [±] 2511 8 ⁺ 0.098 42 0.117 0.20(5)e	67 C . g	750	0.42+	0.1100				
69 Se								
69 Sek 574 (9/2+) 0.853 34 0.857	GC .	330	3/2	2.01			` '	
Tilde	⁶⁹ Se ^h	574	$(9/2^{+})$	0.853			· /	(-)
73 As			,				1.7(3)e-3 °	42(11) °
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁷¹ Se ¹	260	$(9/2^{+})$	19	34	20.9		17(4)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					22	20.1		22(6)
***Border**	73 Asj	427	9/2+	5.7				
76 Rb ^k , 80 Rb ^l , c 317 (4+) 3.2 37 4.0 1.1(3)e-2 35(10) 80 Rb ^l , c 561 6+ 1.6 37 9.6 0.89(3) 20(1) 81 Sr ^m 79 (5/2) ⁻ 0.34 38 1.4 0.10(4) 3.2(11) 82 Yn·° 508 (6+) 0.137 39 0.27 0.10(4) 38(14) 82 Yn·° 508 (6+) 0.137 39 0.25 4.1(15)e-2 16(6) 85 Rb ^p 214 9/2+ 1.015 37 1.022 5.4(25)e-3 50(23) 86 Sr ^{q,c} 2956 8+ 0.457 38 0.946 5.2(7)e-2 49(7) 86 Zr ^r 2888 (8+) 1.320 40 5.13 2.9(1) 58(2) 86 Zr ^r 2888 (8+) 1.31 40 0.172 2.9(5)e-2 54(9) 90 Zr [*] 3589 8+ 0.131 40 0.172 2.9(5)e-2 54(9)		721	3/2	0.1				
80 Rbl.c 561 6+	⁷⁶ Rb*	317	(4 ⁺)	3.2			, ,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{80}\mathrm{Rb}^{l,c}$	561		1.6	37	9.6	, ,	
81 Srm. 79 (5/2)^- 0.34 38 1.4 0.10(4) 3.2(11) 82 Yn.o. 403 (4^-) 0.22 39 0.27 0.10(4) 38(14) 82 Yn.o. 508 (6^+) 0.137 39 0.25 4.1(15)e-2 16(6) 85 Rb.p. 514 9/2+ 1.015 37 1.022 5.4(25)e-3 50(23) 86 Srq.c. 2956 8+ 0.457 38 0.181 3.6(5)e-2 9.3(10) 86 Srq.c. 2956 8+ 0.457 38 0.946 5.2(7)e-2 49(7) 37 0.670 5.7(19)e-3 40(13) 8.1(12) 58(2) 39 1.84 1.19(8) 60(3) 8 Zr. 2888 (8+) 1.320 40 5.13 2.9(1) 58(2) 90 Tr. 3589 8+ 0.131 40 0.172 2.9(5)e-2 54(9) 90 Nb*.c 1880 11- 0.472 41 0.98 0.78(5) 15(1)								
82 Yn.o. 403 (4 ⁺) 0.22 39 0.27 0.10(4) 38(14) 82 Yn.o. 508 (6 ⁺) 0.137 39 0.25 4.1(15)e-2 16(6) 85 RbP 514 9/2 ⁺ 1.015 37 1.022 5.4(25)e-3 50(23) 86 Srq.c. 2956 8 ⁺ 0.457 38 0.946 5.2(7)e-2 49(7) 88 Zr 2888 (8 ⁺) 1.320 40 5.13 2.9(1) 58(2) 90 Zr 3589 8 ⁺ 0.131 40 0.172 2.9(5)e-2 51(12) 90 Nb*.c 3589 8 ⁺ 0.131 40 0.172 2.9(5)e-2 54(9) 90 Nb*.c 3589 8 ⁺ 0.131 40 0.172 2.9(5)e-2 51(12) 90 Mo*.c 2875 8 ⁺ 1.12 42 8.3 3.46(8) 50(3) 91 Zr*.c 3167 21/2 ⁺ 4.35 40 105 3.3(6)e-2 22(5)	81 c m	5 0	(5 (5) 5					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	82 vn,o							
85 Rbp								
85 Y								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,				, ,	• .
88 Zr			-,-	2.2.0			3 /	
88 Zr	⁸⁶ Sr ^{q,c}	2956	8+	0.457		0.946	5.2(7)e-2	49(7)
90 Zr* 3589 8+ 0.131 40 0.172 2.9(5)e-2 54(9) 90 Nb*.c 1880 11- 0.472 41 0.98 0.78(5) 15(1) 90 Mo*.c 2875 8+ 1.12 42 8.3 3.46(8) 50(3) 91 Zr*.c 3167 21/2+ 4.35 40 105 3.3(7)e-2 62(14) 91 Nb*.c 2034 17/2- 3.76 41 57 0.86(7) 32(3) 92 Nb*.c 2203 11- 0.167 41 0.28 3.7(8)e-2 22(5) 92 Mo* 2761 8+ 0.190 42 0.246 0.49(4) 22(2) 92 Yb*.c 2203 11- 0.167 41 0.28 3.7(8)e-2 22(5) 93 Tc*.c 2185 17/2- 10.2 43 190 3.7(4) 22(2) 93 Tc*.c 2185 17/2- 10.2 43 190 3.7(4) 29(4) 93 Tc*.c 2185 17/2- 10.2 43 190 3.7(4) 29(4) 93 Tc*.c 2185 17/2- 10.2 43 190 3.7(4) 29(4) 94 Mo*.c 2645 8+ 71 44 2.9 0.34(3) 23(2) 94 Mo*.c 2956 8+ 0.098 42 0.117 2.0(5)e-2 49(12) 94 Ru*.c 2645 8+ 71 44 95 1.7(3) 26(5) 96 Pd* 2531 8+ 2.2 46 4.7 3.4(5)e-2 38(6) 96 Pd* 2531 8+ 2.2 46 4.7 3.4(5)e-2 38(6) 96 Pd* 2531 8+ 2.2 46 4.7 3.4(5)e-2 38(6) 100 Rh*.c 112 7+ 0.130 45 0.25 0.19(4) 35(10) 105 Cd*.c 2517 21/2+ 4.5 48 7.4 0.44(4) 11(1)	88							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	oo Zr'	2888	(8™)	1.320				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
90 Nb*,c	⁹⁰ Zr*	3589	8+	0.131				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	90 Nb*,c	1880			41		, ,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9034 4.6	0055	- +					, ,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mo	2875	8'	1.12				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{91}\mathrm{Zr}^{t,c}$	3167	21/2+	4.35	40			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	91 Nb ^{1,c}	2034	17/2-	3.76		57	0.86(7)	32(3)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	92						. ,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mo-	2761	8'	0.190				(-)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								22(6)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁹² Tc*	270	(4^{+})	1.03	43	11.3		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	93m_v.c	010	17/0-	10.0				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	2185	11/2	10.2				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	93 Ruv	2083	21/2+	2.150	44	2.9	0.34(3)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					40	0.54	0.11(1) ~	35(4) °
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								17(3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	94 Mowic	2956	g+	0.098		-		, ,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	94 Ruw.c							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						84		` /
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pd*	2531	8+	2.2	46	4.7		38(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					45	3.3		39(p) _
100 Rh ^{y,c} 112 7 ⁺ 0.130 45 0.25 0.19(4) 35(10) 105 Cd ^{z,c} 2517 21/2 ⁺ 4.5 48 7.4 0.44(4) 11(1)								
$^{105}\text{Cd}^{z,c}$ 2517 21/2 ⁺ 4.5 48 7.4 0.44(4) 11(1)	100 Rhy,c	112		0.130	45	0.25	0.19(4)	35 (10)
47 5.9 0.17(3) 11(2)	¹⁰⁵ Cd*,c	2517	21/2+	4.5			0.44(4)	
					47	5.9	0.17(3)	11(2)

TABLE I. Rates R (pps at 1010 incident projectiles) of the isomeric beams measured at the final focus of LISE3 spectrometer and ratios F (in %) of the isomeric to total production for isomers detected among the quasifragmentation products of a 112Sn beam. They are given according to the mass A and to the charge state Q of the ion after the target. In addition to the source data on the isomers corresponding to the neutral atom state (columns 1-4) the half-life of the isomer in the ionic state is also listed in column 6. The latter has been obtained taking only the gamma decay probability for the fully stripped ions, and a respective part of the K-conversion deexcitation probability for hydrogen-like and helium-like ions. Most of the listed results were obtained with 0.5×10^{10} /s ¹¹²Sn projectiles at 58 MeV/nucleon and B ρ value of 1.98833 Tm, except those marked with index 'a' measured with 1.5×10^{10} /s ¹¹²Sn at 63 MeV/nucleon and B ρ =1.876 Tm. The given accuracies of R and F values were calculated taking into account the statistical errors of the observed \gamma-lines intensities and of the estimated accuracies of the used γ -efficiences as well as of the number of detected ions. The upper limits for summing corrections to the observed photopeak intensities of the cascading gamma-rays were estimated to be about 3% and about 10% for the Ge- and the BGO-setups, respectively, and they are not included in the R values. The data on the isomeric states were taken from: aNP A475(87)1, ^bNP A521(90)1, ^cADNDT 49(1989)189, ^dNDS 68(1993)887, eNDS 64(1991)830, fNDS 61(1990)461, gNDS 64(1991)875, ^hNDS 58(1989)1, ¹NDS 68(1993)579, ³NDS 69(1993)857, ^kZP A325(1986)37, 'NDS 66(1992)623, "NDS 69(1993)359, "NP A568(1994)202, °PR C47(1993)2546, PNDS 62(1991)271, ^qNDS 54(1988)527, ^rNDS 54(1988)1, ^sNDS 67(1992)579, ^tNDS 60(1990)835, ^uNDS 66(1992)347, ^vNDS 54(1993)1, ^wNDS 66(1992)1, ^xNDS 68(1993)165, ^yNDS 60(1990)1, ^zNDS 68(1993)935.

