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Abstract
This thesis describes the implementation
of a wireless, battery-powered radiation
monitoring system for particle accelera-
tors. The system is based around a sensor
node using a floating-gate dosimeter and
static random-access memories as radia-
tion sensor. Data is transmitted using
LoRaWAN, which enables long communi-
cation range without excessive infrastruc-
ture costs. The sensor node is modular, al-
lowing reuse of the microcontroller-based
platform for other purposes than radia-
tion measurement.

Furthermore, a suitable database
schema and user interface for data re-
trieval are presented. The work concludes
by discussing results of performed tests,
including in radiation-test facilities and in
the Large Hadron Collider (LHC) tunnel.

Keywords: data logging, dosimetry,
embedded systems, floating-gate
dosimeter, FGDOS, InfluxDB, LoRa,
LoRaWAN, low-power,
radiation-tolerant, single-event effects

Supervisor: doc. Ing. Jan Fischer, CSc.

Abstrakt
Práce se zabývá realizací systému mon-
itorování radiace v urychlovačích čás-
tic, založeného na senzorické jednotce s
provozem na baterie a bezdrátovou ko-
munikací. Pro měření radiace je použit
dozimetr s plovoucím hradlem (FG-
DOS) a paměť typu SRAM. Přenosová
technologie LoRaWAN umožňuje snižení
nákladů oproti komunikaci po kab-
elech. Senzorická jednotka je modulární,
takže vzniklou platformu, sestávající
z mikrokontroléru, modemu a datové
paměti, je možné použít pro další ap-
likace.

Součástí práce je také návrh databáze
měření a uživatelského rozhraní pro
prohlížení získaných dat. Systém byl po-
droben testu v laboratoři pro ozařování
gamma částicemi a v tunelu urychlovače
LHC.

Klíčová slova: bateriový provoz,
bezdrátový přenos dat, dozimetrie,
FGDOS, InfluxDB, LoRa, LoRaWAN,
vestavěné systémy, záznam dat

Překlad názvu: Bezdrátový systém pro
monitorování radiace v urychlovačích
částic
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Chapter 1

Background and motivation

In its mission to push the boundaries of science and our understanding of the universe
around us, the European Organization for Nuclear Research (CERN) operates the largest
particle physics laboratory in the world. Six accelerators and one decelerator form a network
enabling progressive acceleration of particle beams before delivering them to one of the
several installed experiments. In the Large Hadron Collider, protons have reached energies
of up to 6.5 TeV, yielding a collision energy of 13 TeV1 for a pair of beams. The accelerator
complex is being continuously upgraded to reach ever-higher energies and enable new
experiments, such as the High Luminosity LHC project that is currently underway.

Through several mechanisms, accelerators produce fields of electromagnetic and particle
radiation that extend beyond the accelerator’s interior. The main mechanisms are:

. imperfect collimation of the beam, causing particles to deviate from the desired
trajectory and collide with the beam pipe (beam losses). collisions between particles of the beam and residual particles in the beam pipe, which
is depressurized to between 10−7 and 10−9 Pa. beam-beam collisions in experiments and beam-target collisions in beam dumps

Of particular concern is ionizing radiation, due to its adverse effects both on human
health and on technical equipment. In addition, free neutrons emitted during operation of
the machine can cause activation of matter in the machine itself and surrounding facilities.
Activated material continues to produce radiation as a secondary source, even after the
primary source has been shut down or removed.

To limit the scope, this work focuses solely on radiation protection of equipment, rather
than personnel. Accelerators contain large amounts of electronics needed not only to ensure
good performance, but also to protect the accelerator itself from the massive energies of
beams within. Cost constraints dictate that most of these electronics be based on commercial
off-the-shelf components, which do not have a guaranteed radiation performance.

113 TeV = 2.083 · 10−6 J per collision

1



1. Background and motivation ....................................
1.1 Radiation field in the LHC and the associated risks

The LHC is surrounded by a mixed radiation field. This field is made up of various particle
types, with an energy spectrum spanning more than 12 orders of magnitude. Radiation
threatens the reliability of electronics in the LHC via several mechanisms, which can
be categorized into two broad classes: cumulative effects and single-event effects.
Cumulative effects cause gradual deterioration of the properties of semiconductors. Single-
event effects manifest as sudden disturbances or errors in the operation of circuits.

It is single-event effects (SEEs) that are an immediate concern for reliability: according
to [1], in 2012, radiation-induced errors caused 70 out of the 409 premature beam aborts,
leading to over 300 hours of downtime. It can take several hours before a new beam is
ramped up to full power, and therefore precious time for physics experiments is being lost.
The effects of cumulative effects are not so dramatic, but they can also lead to sudden
failure in complex systems and they add up to increased costs when equipment must be
replaced.

Figure 1.1: Simulated lethargy spectra for the SEE-relevant hadrons at an LHC-like test location
at the CHARM test facility. The different shaded regions represent, in an approximate manner,
the thermal neutron (gray), intermediate neutron (blue) and HEH fluxes (red). From [1].

In order to describe the radiation field quantitatively, introducing a bit of terminology
will be necessary:

Flux denotes the number of particles passing through a unit of area per unit of time.
Typically expressed in units of cm−2 · s−1 in relation to a specific class of particles, e.g.
hadron flux or electron flux.

Fluence can be understood as flux integrated over a period of time – the number of
particles that would have passed through an area of unit size: cm−2.

2



......................... 1.1. Radiation field in the LHC and the associated risks

Cross-section refers to the frequency of some event occurring in an electronic device
proportionally to the flux, and can be therefore understood as the physical size of the
sensitive part of the component, multiplied by a sensitivity factor (the proportion of
particles that cause an event). The cross-section is reported with respect to a specific
device, the class of particles considered, and the type of events counted. For example,
if a device with a neutron SEU cross-section of 0.01 mm2 is exposed to a flux of
103 neutrons · cm−2 · s−1, on average 1 SEU will occur every 10 seconds.

Ionizing dose is the cumulative energy per unit of mass, deposited by ionizing radiation
into object, expressed using the SI unit gray; 1 Gy = 1 J · kg−1. The time derivative of
dose is dose rate.

According to [2], expected radiation levels in most of the LHC tunnel area vary between
107 and 1012 cm−2 · year−1 in high-energy hadron flux and 0.01 to 1000 Gy · year−1 in
ionizing dose. As another example, figure 1.1 illustrates the energy spectrum of SEE-
causing hadrons in the LHC.

1.1.1 Basic mitigation of radiation effects

In some cases, the undesirable radiation effects can be mitigated through one of the following
techniques...1. Reducing the flux by increasing distance. For isotropic sources, of the radiation the flux

diminishes with the squared distance from the source. Equipment placed further away
will thus experience lower fluxes. However, certain critical equipment (collimators,
magnets, beam monitors) must be, by definition, placed very close to the beam, in
which case this mitigation is not suitable...2. Reducing the flux by shielding the sensitive equipment. The appropriate material and
mass of shielding depends on the particle and energy spectrum of the radiation field.
In particle accelerators, blocks of concrete are often used due to its low cost and ability
to stop both gamma and neutron radiation. However, in critical areas the required
thickness would be on the order of several meters, which again might be impractical
for electronics that need to be a part of the accelerator itself...3. Reducing the effective cross-section. This is a subject of active research. Techniques
such as redundancy and radiation hardening can reduce the frequency of events
induced by a given flux. Different semiconductor manufacturing technologies also vary
in sensitivity to begin with.

Because mitigation can not always be fully applied, it is important to have an under-
standing of the radiation field in the area before equipment is installed, and to retain an
ability to monitor it during operation. When new facilities and experiments are designed,
the radiation field is first estimated by a computer simulation. However, the simulation
can only be as good as the input data and model; it cannot account for all micro-scale
effects, or changes in the environment due to daily use. Therefore, radiation measurement,
or dosimetry, is required to keep an accurate insight into the concerned areas.

3



1. Background and motivation ....................................
1.2 Radiation monitoring systems at CERN

Figure 1.2: A RadMon installed in the LHC. The serial number V50053, and device ID 4LM19S
can be seen. Note the heavy fieldbus cables (green). Image from [3].

Radiation levels in the LHC are currently monitored by a measurement system called
RadMon [2][4]. In the LHC alone, it comprises over 500 measurement devices, which are
connected to a network using WorldFIP, an evolution of the FIP fieldbus. The devices
monitor the following aspects of the radiation field: ionizing dose per day, flux of high-energy
hadrons and thermal neutrons (SEE-inducing flux), and flux of 1-MeV equivalent neutrons
(DD-inducing flux). The measured data is periodically transmitted via the fieldbus and
logged in a central database.

The WorldFIP fieldbus is organized into segments. A segment can contain up to 32
devices sharing a common set of copper wires. Each segment is controlled by a FEC
(Front-End Computer). A downside of WorldFIP is the amount and cost of required wiring;
at CERN, in total over 450km of WorldFIP cables is installed [5].

The choice of WorldFIP has another drawback; in order to set up new measurement
points, the necessary communications infrastructure must be put in place first. This process,
including planning, procurement and installation, can take several months. In contrast,
regular breaks in the machine operation (technical stops) last only a few days, leaving mere
hours for any intervention.

These constraints led to the development of the first-generation of portable radiation
monitor at CERN, now referred to as the “old BatMon”. This is a battery-powered device,
derived from the RadMon and equipped with sensors for measuring TID2 and the rate
of single-event effects. Because the device is not connected to any data network, the
measurements must be read out by physically accessing the device and inserting a memory

2Total ionizing dose

4



................................... 1.3. Concept of the New BatMon

1 2
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Figure 1.3: Components of the RadMon. Adapted from [2].

card. For a high number of devices, this procedure scales poorly, and the duration of a
technical stop becomes once again the limiting factor.

The old BatMon is not particularly suitable for long-term deployment, either, because
its high current consumption limits the battery lifetime to between 3 and 4 months.

1.3 Concept of the New BatMon

To address the limitations of the presented solutions, a new solution was sought, satisfying
the following requirements:

. no cabling needed for data transmission: wiring deployment is costly both in terms
of material and in terms of time; during technical stops, the available time is on the
order of only several hours.measurement: total ionizing dose and SEE-inducing flux, with resolution/sensitivity
same or better vs RadMonV6. radiation resistance: competitive with RadMonV6, which is built to a design TID of
250–300 Gy [2]. choice between mains-powered and battery-powered operation: while AC power is
generally available in the accelerator complex, the coverage is not 100 % and it imposes
constraints on placement of the device. Therefore, the device should be able to operate
on battery power, with a lifetime of at least 10-12 months.

Based on these constraints, the concept of a New BatMon was proposed: a wireless,
distributed measurement system. Sensors would be deployed as part of compact, battery-
powered sensor nodes that can be placed freely for short-term tests, or fixed in position for
long-term deployments. Wired fieldbus shall be replaced by a network based on appropriate
technology to transmit both measurement data and status information. All data should be
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Sensor nodes

Wireless gateways

IP network

Database User interface UserAlerts

Figure 1.4: Proposed system architecture for the New BatMon

stored in a central database, and where necessary, made accessible to the interested users.
(figure 1.4)

All electronic components should be commercial off-the-shelf. Radiation hardness is
to be assured by choice of components with known radiation performance and thorough
testing. The following chapters detail the considerations and trade-offs that led to selection
of appropriate technologies and components for the system, followed by description and
justification of choices made in the system implementation.

6



Chapter 2

Radiation measurement

In chapter 1, the context of this work was introduced – increasing electronics reliability in
CERN accelerators by monitoring radiation levels. This chapter aims to give an overview
of technical means for radiation measurement, and justify the choices made in this area.
First, however, some background for this complex topic must be built up.

2.1 Classification of radiation effects in electronics

While the underlying physics is complex, involving different classes of particles and often non-
linear behaviors, it is practical to group the effects based on the mechanism and whether
the effect causes permanent changes. The same effects that are usually considered
undesirable can be also used to measure various aspects of the radiation field; therefore,
we avoid labeling them as good or bad. The basic classification of radiation effects was
introduced in section 1.1 and the following sections will expand upon it.

This classification is also reflected in the quantities used to describe the findings; a
measurement is only useful if its results are represented in an accurate, understandable
way. For a given point in a radiation field, the most precise description would be a
set of energy-flux spectra (lethargy spectra), one for every kind of particle that can be
encountered; however, in practice, this representation is not easily obtained, nor is such
detailed description usually necessary. More often, the field is described using quantities
based on its different effects: ionizing dose rate (relevant for cumulative effects), thermal
neutron flux and high-energy hadron flux (relevant for SEE) and 1 MeV equivalent neutron
flux (relevant for displacement damage).

2.1.1 Cumulative effects

Cumulative effects can be defined as macroscopically observable variations in the char-
acteristics of an electronic circuit or component due to the gradual degradation of some
electronic parameters [6]. Generally, we consider them irreversible, although in specific cases
circuits may “heal” by annealing after removing the radiation field. The specific changes
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2. Radiation measurement ......................................
will depend on the type of circuit (analog, digital or mixed), manufacturing technology and
type and energy of the impinging particles, among other factors. It is difficult to generalize
these effects and quantitative figures often suffer from a high degree of uncertainty.

Ionizing dose effects

Ionizing radiation, such as gamma rays, induces generation, transport and trapping of holes.
Conductors and semi-conductors have a high density free carriers, so any induced charge is
quickly transported away or dissipated. Therefore, no permanent changes occur from a
TID perspective.

Insulators, however, do not have this wealth of free carriers. In MOS and bipolar
transistor technologies, SiO2 is commonly used as the isolation material. As a result, energy
deposited by radiation will readily create electron-hole pairs. If the mobility of the electrons
and the holes were the same, the pairs would eventually recombine and anneal out. However,
this is not the case; electron mobility in oxides is much higher than that of holes, so excess
electrons are quickly removed, leaving behind the trapped holes creating a positive electric
charge [7].

In transistors, the result of accumulating these micro-defects is increased leakage and
shifting of the gate threshold. At first, the only observable effect might be increased current
consumption. However, when enough damage accumulates, the transistor thresholds will
shift so much that the circuit stops to work. When an electric field is present, these effects
are further accelerated. This translates directly into a practical consequence: electronic
devices powered during irradiation may degrade significantly faster; especially in modern
technologies with thinner gate oxides [8]; see also figure 2.1.

Figure 2.1: Experimentally measured fractional hole yield as a function of applied field, for a
number of incident particles. From [8].

The acronym TID stands for total ionizing dose, a measure of energy absorbed per unit
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........................... 2.1. Classification of radiation effects in electronics

of mass, expressed using the SI unit gray; 1 Gy = 1 J · kg−1. Because we are discussing the
absorbed energy, the material of the irradiated object must be also specified. In this work,
it is assumed that the material of interest is always silicon. In other words, we use Gy as a
shorthand for the standard explicit notation Gy(Si).

A related unit is the dose rate, commonly expressed in Gy · h−1. In literature, the
older unit of rad can be also encountered, particularly in relation to space applications.
100 rad = 1 Gy.

Displacement damage (DD)

Displacement damage is an instance of a non-ionizing radiation effect.

Modern semiconductor technologies almost invariably involve atoms in a regular lattice,
cut from a monocrystal with extremely low defect density. When an incident particle
elastically collides with an atom in the lattice, it can knock the atom off, creating a vacancy
and an interstitial defect (figure 2.2). As a practical consequence, in bipolar-junction
transistors, this increases the recombination rate in the base area, increasing the base
current required for a given collector current, therefore reducing the transistor’s current
gain [7].

Incident particle

Vacancy

Interstital

Figure 2.2: Vacancy (light gray) and Interstitial defect (dark gray) created in a silicon crystal
lattice by an energetic particle. From [7].

On the other hand, MOS circuits are generally fairly robust against DD effects up to fairly
high DD doses. At sufficiently high absorbed doses, mobility degradation and free-carrier
reductions caused by DD ultimately lead to reductions in MOSFET device drive strength
and switching speed. Because of the difficulty in quantifying displacement damage, what is
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2. Radiation measurement ......................................
usually reported is the flux or fluence of DD-inducing particles, which are typically energetic
electrons, protons and neutrons. Indirectly, gamma radiation can also cause DD effects via
secondary (produced) electrons.

2.1.2 Single-event effects

Single-event effects are stochastic, and caused by a single passing particle. Non-destructive,
or soft SEEs disrupt the circuit behavior and can corrupt data stored in a memory, but
do not cause lasting damage. Destructive, hard SEEs, on the other hand, permanently
damage or destroy the circuit.

Non-destructive single-event effects

Single-event transient (SET). An energetic ion passing through an electronic device will
create ionized electron-hole pairs in its wake. The electric field will attract the electrons and
the holes in opposite directions, causing a brief flow of charge – electric current. Eventually,
all pairs will recombine or have their charge transported away and the device will return to
a normal state. Figure 2.3 illustrates this process. Depending on which node in a circuit is
struck, the effect may be observable; for example, as a voltage transient on the output of
an operational amplifier, or as a spurious clock pulse in a synchronous circuit. SET is the
archetype and originator of all other single-event effects.

Among other factors, the amplitude and duration of the event depends on the energy of
the responsible particle, in ways that can be counter-intuitive; a higher energy of a particle
does not always translate into higher energy transferred into the circuit. More detailed
description of the physical background can be found in [7].

Figure 2.3: Charge generation and collection phases in a reverse-biased junction and the
resultant current pulse caused by the passage of a high-energy ion. From [9].

Single-event upset (SEU). When a large enough single-event transient occurs in an
analog or digital circuit with state (such as a sample-and-hold circuit or a digital memory),
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........................... 2.1. Classification of radiation effects in electronics

it may corrupt the stored value. In a latches, flip-flops and memories, this can lead to a
bit flip – changing the stored bit from 0 to 1 or from 1 to 0 (the mechanism of an SEU in
static memory is further discussed in section 2.2).

The severity of the incident then depends entirely on the significance of the affected data.
If a critical register or memory location is struck, the system may enter a state where it is
no longer able to perform its function. This is called a Single-event functional interrupt
(SEFI) and can be recovered only by resetting or power-cycling the affected system.

When manufactured in comparable technologies, and using no special mitigation, dynamic
memories are more prone to upsets than static memories,1 which in turn are more sensitive
than general sequential logic. This is not only due to the much higher bit density of the
former, but also due to different circuit topology (one bit line in a commercial DRAM
connects to 64 or more bit cells).

Destructive single-event effects

Single-event latch-up (SEL). A latch-up is a well-known failure mode of CMOS integrated
circuits. The totem-pole configuration of MOSFETs creates a PNPN structure, equivalent
in behavior to a thyristor, or a pair of bipolar junction transistors connected in a positive
feedback loop.

Figure 2.4: Typical I – V curve for positive current injection into a PNPN structure. Inset:
Equivalent circuit for PNPN structure showing parasitic BJTs and well resistances. From [10].

During normal operation, this structure is inactive, but a sufficiently large voltage spike
on an input pin can put one of the parasitic transistors into a forward-biased state. Due
to the topology of the equivalent circuit, this creates a self-sustaining loop where each of
the transistors keeps the other one saturated, as long as voltage is applied (figure 2.4). A

1Though SRAMs have a higher relative proportion of single-event multiple-bit upsets
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2. Radiation measurement ......................................
short-circuit is created between the poles of the CMOS structure – typically the power rail
and ground. If uncontrolled, the resulting high current can burn out the affected device,
the power supply, or parts of the PCB.

A single-event latch-up occurs when a high-energetic particle injects current into the
base of one of the parasitic transistors, thereby activating this structure.

The problem of latch-up is not being ignored – manufacturers of electronic parts routinely
employ anti-latch-up techniques. Some of these techniques are process-based, for example
adding guard rings to evacuate injected carriers [11]. Others work by suppressing the usual
triggers of latch-ups, e.g. clamping input voltages via on-chip diodes; these techniques are
not effective at preventing SEL.

A different approach to latch-up mitigation is using an external circuit to monitor the
current consumption of the system. If the consumption rises above a defined level, the
circuit immediately powers the system off to remove the forward bias of the parasitic BJTs.
Afterwards, power is restored. In this way, the latch-up still results in an interruption of
device operation (soft error), but permanent damage may be prevented.

2.2 Detection of single-event effects: static random-access
memory

A common approach for measuring the SEE-inducing flux is to use Static Random-Access
Memories (SRAMs). A conventional “6T” SRAM cell consists of 6 transistors, making up
the storage for one bit, as shown in figure 2.5.

N2

P2P1

“1” “0”

N1

WL WL

BL1 BL2

V1

V2

T1 T2

Figure 2.5: 6T SRAM bit cell in storage mode. The WL is off, so both pass transistors are off.
The “1” data state is maintained on the left side by the P1 pull-up. The “0” data state on the
right side is pulled down by N2. N1 and P2 are off. Adapted from [7].
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.................... 2.2. Detection of single-event effects: static random-access memory

The principle is the same as two inverters connected in a loop. These inverters are
made up by transistors P1/N1 and P2/N2, respectively. In the example, the value “1” is
stored in node V1, represented by positive voltage with respect to ground. This voltage
keeps transistor P2 off and transistor N2 on, therefore holding the value of V2 in “0” (zero
voltage). In turn, P1 is held on and N1 off, which reinforces the “1” on the left side. The
circuit is stable.

To change the value stored in V1 to “0”, WL and BL1 are brought low. The N-MOS
transistor T1 is stronger than P1, and will overdrive it. This causes P2 to turn on and N2
to turn off, reinforcing the new state.

Because the state on each side is held only by one, relatively weak transistor, an energetic
particle can inject enough charge to temporarily override the state, thus also changing the
gate voltage on the opposite side, and putting the cell into a new stable state with inverse
value. This is not simply a theoretical proposition, but a real, major concern for computer
systems under radiation. The effect is stochastic, but given enough bit cells and enough
time, remarkably consistent. Notably, due to the high uniformity of an SRAM die, the
probability of the effect is about the same for every bit cell in a chip.

Due to these properties, SRAM is suitable as a sensor for certain types of particles. The
mean rate of upset events in an SRAM is equal to the product of the particle flux and the
SEU cross-section of the device:

E{fSEU} = Φ · σ (2.1)

For commercial (not radiation-qualified) parts, the cross-section is not specified by the
manufacturer, and is subject to variations in a manufacturing process. However, it can be
determined by testing in a beam with well-defined flux, and the results can be extrapolated
to the entire production lot.

Estimating the flux from number of upset events

With a calibrated cross-section σ and n bit flips counted during a time interval τ , the flux
can be estimated as

Φ = n

τ · σ
. (2.2)

Reality is usually more complicated; the radiation fields of interest are made up of different
kinds of particles, in proportions that are unlikely to be the same as those experienced when
calibrating the memory. For example, considering now two different classes of particles,
thermal neutrons and high-energy hadrons, the expected number of events n during a time
interval τ would be:

E{n} = τ · σT hN · ΦT hN + τ · σHEH · ΦHEH (2.3)
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2. Radiation measurement ......................................
The equation now contains 2 unknowns, and cannot be unambiguously solved for flux,

given just one measurement n. The situation can be remedied by taking another measure-
ment with a different ratio of σT hN and σHEH – thereby removing a degree of freedom from
the problem.2 Consider:

n1 = τ · σT hN1 · ΦT hN + τ · σHEH1 · ΦHEH

n2 = τ · σT hN2 · ΦT hN + τ · σHEH2 · ΦHEH ,
(2.4)

or, in matrix form: [
n1
n2

]
= τ ·

[
σT hN1 σHEH1
σT hN2 σHEH2

]
·
[

ΦT hN

ΦHEH

]
, (2.5)

N = τ · Σ · φ. (2.6)

If the ratios of σT hN1/σHEH1 and σT hN2/σHEH2 are different, Σ will necessarily be
invertible, and the vector of estimated fluxes can be recovered by computing

φ = 1
τ
· Σ−1 ·N. (2.7)

In this example we demonstrated a case of 2 classes of particles in the field; however, the
matrix approach scales to an arbitrary number. m distinct fluxes can be measured if Σ is a
non-singular m×m matrix (note that some elements of Σ may be equal to zero). More
generally, the number of rows of Σ may be greater than m, yielding an over-determined
system. In that case, the Moore–Penrose pseudoinverse of the matrix Σ can be used to find
the best-fit solution.

Other concerns for measurement accuracy

Resolution of the measurement can be increased by using multiple of the same SRAM in
parallel, at the cost of increasing the amount of data to read out. Some other effects may
impair the accuracy:

. If the measurement algorithm is “initialize–wait–readout” and two SEU-inducing
particles hit the same cell during one measurement cycle, the second event will mask
the first. The probability of this is usually sufficiently low to be negligible; it would
manifest as a seemingly shrinking cross-section during the measurement cycle.. Scrubbing of the memory – that is, counting flipped bits and re-initializing the memory
contents – takes a non-trivial time, during which some new events may be missed.
Highest accuracy is achieved if each cell is rewritten immediately after being read out
and if the duration of the scrubbing operation is constant.

2In practice this is achieved by using multiple SRAMs from different product lines, or multiple chips
with a different bias voltage applied as in [2].
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................. 2.3. Measurement of dose effects: radiation-sensitive field-effect transistor

.Occasionally, a single particle may upset multiple bits simultaneously. On average,
this effect should reflect in the cross-section, but due to its lower occurrence, it tends
to cause gross measurement errors on a short time-scale in devices suffering from this
phenomenon.

Finally, an interesting observation is that the most accurate estimate of the SRAM
cross-section might not be the most suitable for radiation measurement. Let us consider
an extreme example, in which 10 % of all events are consistently missed as an artifact
of the measurement algorithm; in this case, highest accuracy of measurement will be
achieved using a cross-section obtained by a calibration procedure that suffers from the
same systematic error. Thus, if the systematic error is not exactly known – as is usually
the case in practice – it might be advantageous to calibrate with the exact same procedure
as used for measurement, including all of its flaws.

2.3 Measurement of dose effects: radiation-sensitive
field-effect transistor

A RadFET (RADiation-sensitive Field Effect Transistor) is a field-effect transistor manufac-
tured with an emphasis on consistent and controlled radiation sensitivity. By means of the
effects described earlier, accumulated dose alters the gate threshold voltage of transistors
in general, which is exploited for TID measurement. The sensitivity is controlled by the
gate oxide thickness; 100 nm, 400 nm and 1 µm have been used at CERN. For illustration, a
400 nm RadFET with grounded gate (also referred to as 0 V bias) has an initial sensitivity
of 40 mV ·Gy−1. Figure 2.6 shows the non-linear dependence of sensitivity on bias voltage
and oxide thickness.

RadFETs have been used in dosimetry applications for years; however, they have certain
drawbacks that complicate their integration in a measurement system:..1. Analog circuitry is needed for read-out, which might be prone to EMI-induced noise and

temperature drift. Furthermore, A/D converters embedded in low-cost microcontrollers
and FPGAs generally trade off resolution for higher speed, making them a sub-optimal
match (on the RadMon, this is partially compensated by adjustable voltage gain of
the read-out amplifier)..2. High analog voltage (15 V) is needed for read-out, which necessitates the presence of
another power rail on the board...3. RadFETs suffer from a fading phenomenon, where the gate threshold rebounds after
irradiation stops (15 % after 5 days for a 400nm device). Dis-entangling the effects of
fading from effects of further irradiation might not be possible...4. A choice of gate oxide thickness must be made to control the trade-off between
sensitivity and TID.
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2. Radiation measurement ......................................

Figure 2.6: RadFET sensitivity as a function of the dose with different gate bias for irradiation
with 60Co at 40 ◦C. From [2].

2.4 Measurement of dose effects: floating-gate dosimeter

Recently, a new type of integrating dose sensor has become available, promising improve-
ments where the RadFET suffers from limitations.

Floating-gate field-effect transistors were originally conceived for implementation of bit
cells in non-volatile memories. The gate of such a transistor is isolated to eliminate leakage,
and charge is deposited or removed using Fowler-Nordheim tunneling, a quantum process
[12].3 In a non-volatile memory, the presence (0) or absence (1) of charge in the gate
encodes the stored value.

It has been observed that floating-gate transistors are susceptible to charge loss by
irradiation; according to [13], the dominant mechanisms are: 1) the injection into the
floating gate of the charge generated by the impinging radiation in the surrounding oxides,
and 2) photoemission when the carriers in the floating gate get enough energy from the
radiation to surmount the potential barrier. An opposite effect may happen through charge
trapping in the tunnel oxide, however the oxide is usually sufficiently thin to make this
effect negligible.

Inspired by these observations, a prototype floating-gate MOSFET dosimeter has been
built and characterized by Álvarez et al. in [14]. The dosimeter is a silicon die manufactured
in a conventional CMOS process, and packaged as an integrated circuit. It incorporates

3Hot Carrier Injection is another technique used in some cases, but not by the FGDOS.
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a single floating-gate MOSFET along with a conventional MOSFET for temperature
sensitivity compensation, a charging circuit, an evaluating circuit which converts the
remaining charge to frequency, and an SPI configuration interface.

Figure 2.7: Block diagram of a modern FGDOS sensor. The commercially available integrated
circuit packages two such modules with independent pin-outs. From [15].

Nowadays, the dosimeter is available as a commercial product, marketed as FGDOS
(Floating Gate DOSimeter). Although the design has evolved and more support circuitry
has been added, the principle is unchanged.

2.4.1 Operating principle of the floating-gate dosimeter

The operation of the dosimeter begins by charging up the gate capacitor. To charge the
isolated gate, a voltage of 15–18 volts is needed to invoke the tunneling effect. The chip
incorporates a charge pump which is able to generate this voltage from a common 5-volt
rail. Then, as the capacitor is irradiated, it is discharged due to the effects described above
[16].

At any time, the charge in the capacitor modulates (non-linearly) the drain-source current
of the transistor [16]. When voltage is applied between drain and source, the current will
vary correspondingly. The integrated circuit incorporates a current-to-frequency converter
with a linear characteristic, which makes it possible to indirectly measure the gate charge
as frequency of an AC signal. In older versions of a chip, this signal was the output of the
chip; the latest revision includes an embedded frequency counter, so the read-out is fully
digital.

The ratio between frequency change and the absorbed dose is expressed by sensitivity,
defined as

S = ∂f

∂D
(2.8)

and typically expressed in units of kHz ·Gy−1.
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Figure 2.8: Operating principle of the floating-gate dosimeter. From [17].

Eventually, the gate capacitor would become completely discharged. At that point, the
charging circuitry could be used to recharge the gate and resume measurement. However,
as figure 2.9 illustrates, the response is highly non-linear over the full range of charge (the
sensitivity is not constant). To compute the dose accumulated since the latest recharge, a
calibration curve must be applied to the measured frequency. Furthermore, measurement
resolution is diminished in the extremes due to the lower sensitivity. For these reasons, it
may be desirable to constrain the operating range to a small linear region, where sensitivity
is well-known and constant.

Target current

Threshold current

I o
ut

Total Ionizing Dose

Figure 2.9: After being charged up (blue curve), the change of current due to unit amount of
dose is highly non-linear over the operating range of the sensor (red curve). Linearity can be
achieved by limiting the sensor to a narrower operating region where the sensitivity is sufficiently
close to constant (in picture between target and threshold). Figure from [17].

2.4.2 Operation in autonomous mode

The sensor is capable of operating in a so-called autonomous mode, where the recharging is
handled entirely by digital logic in the chip. The user first configures the sensor by setting
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a threshold frequency and target frequency.4 When the measured frequency drops below
the threshold, the sensor automatically initiates a recharge. Once the target frequency
is reached or exceeded, the recharge is stopped. The number of recharges performed is
also counted by the digital logic and can be read out by the user along with the measured
frequency at any time.

Autonomous mode can greatly simplify integration of the sensor into an application and
allow the rest of the system to be put in low-power mode for extended periods of time.
However, it might not be suitable for all use cases, for reasons explained below.

Complementary to autonomous mode is manual mode, where the user is fully in charge
of starting/stopping the internal recharge mechanism, or even injecting recharge voltage
through a dedicated pin on the chip.

2.4.3 Passive operation

The FGDOS also permits fully passive operation. In other words, after charging up the
on-chip capacitor, the sensor can be completely powered down and the radiation-sensitive
part will continue to measure absorbed dose. It then becomes the responsibility of the user,
however, to power the sensor up often enough, read its value and perform a recharge if
needed to stay within an operating range suitable for the application.

2.4.4 Sensitivity and linearity

The typical sensitivity of the sensor is specified in its the data sheet [15]; however, a
non-negligible variance, presumably due to manufacturing tolerances, has been observed
(further discussed in chapter 6). At the moment it is not clear if this variance can be
compensated, or if the sensors require individual characterization to achieve maximum
accuracy.

Over large doses (dozens and hundreds of grays), another effect begins to significantly
impact measurement accuracy: ionizing radiation causes irreversible degradation of the
sensor sensitivity.5 There is no simple work-around for this effect; to correctly interpret
measurements from a sensor that has absorbed a large dose, the entire previous lifetime
of the sensor must be tracked, and the TID must be taken into account when evaluating
the incremental dose. Any transient inaccuracies will cause long-term measurement errors
because the newly calculated TID is used to compensate all subsequent measurements.

In [16], the temperature sensitivity of the FGDOS has also been investigated. Although
the sensor contains circuitry to allow temperature compensation by the user, it was found
to be inaccurate across the operating range of the LHC, and the authors propose another
compensation method based on a look-up table.

4The official recommended range is 50 to 90 kHz, however due to overshoot of the recharge mechanism,
accuracy improves after setting the target to 80 kHz.

5Characterized in [18] and also in chapter 6
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2.4.5 Interpretation of readings

Although fundamentally the sensor measures dose by its effect on charge remaining in a
gate capacitor, only the converted frequency is exposed outside.

If no recharge occurred, the dose absorbed between two frequency readings, f1 and f2, is
calculated as an integral of the reciprocal frequency sensitivity (figure 2.10):

∆D =
∫ f2

f1

1
S
df. (2.9)

f1 f2

∆D

Figure 2.10: Integrating
of the reciprocal sensitiv-
ity

A problem with this expression is that it suggests the sensi-
tivity is constant, while in reality, it depends on several factors,
most importantly:

. instantaneous frequency (non-linear dependency).manufacturing variations of the radiation-sensitive vol-
ume on the die (linear dependency). TID absorbed during the sensor’s lifetime (non-linear
dependency). ambient temperature (not investigated, as compensation
is available)

Focusing only on the first 3 factors, the sensitivity of a particular sensor at a particular
frequency, having absorbed a particular dose, is expressed as

S(S0, f,D) = S0 · sf (f) · sD(D), (2.10)

with S0 representing the initial sensitivity and sf , sD being scalar functions describing the
relative sensitivity change with frequency and TID, respectively. To remove excess degrees
of freedom, we fix sf (90 kHz) = 1 and sD(0 Gy) = 1. The integral then becomes

∆D =
∫ f2

f1

1
S0 · sf (f) · sD(D) df. (2.11)

Depending on the required accuracy and the operating conditions, some of the effects
can be neglected. For example, if we constrain ourselves the a linear region of operation
and ignore the long-term sensitivity degradation, the expression can be simplified to

∆D = f2 − f1
S0

. (2.12)

Neglecting the manufacturing variation will cause a larger error (10-20 %), but in
accelerator dosimetry applications even such uncertainties are not uncommon [2]. Then the
nominal value of sensitivity, as specified in the sensor data sheet, may be used directly.6

660 kHz · Gy−1 in high-sensitivity mode, 10 kHz · Gy−1 in low-sensitivity mode.
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Accounting for sensor recharge

The equations shown thus far share a common flaw; they do not account for periods of
recharging the floating gate, which is a fundamental part of the sensor’s operation. During
recharge, the output frequency rises quickly, but the exact rate is not specified. Due to
this, in order to achieve consistent results, the recharge must be performed in a feedback
loop, regularly checking if the target frequency has been reached, which can take up to
several seconds; whether this is achieved by the autonomous functionality described above,
or driven externally, the mechanism is the same.

In any case, information about dose absorbed during the recharge is lost. Several
approaches can be considered to cope with this issue, depending on the mode of operation
used. In autonomous mode, the options are:

Ignore the problem. If the dose rate is low and stable, and the proportion of the time
spent recharging is negligible relative to the time of discharge, it may be acceptable to
simply discard the segments where frequency increased instead of decreasing. The data
must be read out often enough that these segments are sufficiently short; in particular,
if an entire recharge period passes between two samples, a systematic error will occur
as illustrated in fig. 2.12, leading to grossly incorrect measurement.

Factor in the recharges. The sensor internally tracks the number of recharges performed.
Because ftarget and fthreshold are known (specified by the user), the following calculation
can be done (see also figure 2.11):

∆f = f1 − f2 + (ftarget − fthreshold) ·Nrecharge (2.13)

This does not compensate for the “lost” dose, but it prevents the gross errors caused by
ignoring recharge. In practice, however, the configured ftarget is not reached exactly;
the autonomous recharge can only be stopped whenever the built-in frequency counter
finishes one counting period. With the fastest possible setting, this happens once per
125 milliseconds. As a result, termination of the recharge is delayed and the frequency
overshoots the configured target.

time
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Figure 2.11: Frequency over time in autonomous mode with a constant dose rate

As can be seen, autonomous mode has fundamental flaws that limit the measurement
accuracy, especially if the dose rate is considerable. In manual mode, more effort is required
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to integrate the sensor and evaluate readings; however, new approaches to handle the
recharge accurately become possible:

Extrapolate the dose rate. If the dose rate is very stable, the ∆D for segments of
increasing frequency may be calculated from their duration and the dose rate. A
method for estimating the dose rate, such as a low-pass filter, must be selected
appropriately with regards to the operating environment. Figure 2.13 illustrates this
approach.

Use two asynchronous sensors. If two independent sensors are available – as is the
case with the used FGDOS – it can be ensured that they are never being recharged at
the same time. The measurements from both can then be combined to remove any
gaps. In addition, when both sensors are measuring, the values can be averaged to
improve resolution by a factor of 2, and checked for mutual consistency to detect issues
in the measurement system.

2.4.6 Summary

The FGDOS is an example of a modern radiation sensor that enables more accurate
measurement in comparison to previously available options, while also adapting to a wide
range of dose rates due to two configurable sensitivity levels and autonomous mode. To
get reasonably accurate readings in low-dose-rate applications, autonomous mode can
be used to simplify integration. However, when high accuracy is desired, it is necessary
to understand its principle of operation and avoid, or at least be aware of, some of its
fundamental limitations. The advantages of the FGDOS compared to RadFETs make it a
more appropriate sensor for dose measurement on the BatMon.
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Chapter 3

Communications and data logging

Having acquired and pre-processed the measurement data, the next step is to cross the “air
gap” between the devices and the network infrastructure. Simultaneously, the data is also
stored on the device to cover for any connection issues.

The following data needs to be communicated:..1. Dose measurement (TID)..2. SEU counts or flux estimates..3. Diagnostic information

Considering the available resolution of the measurements, one data point can be encoded
in about 40 bytes. Depending on the area of deployment, the frequency of reporting will
generally vary between 1 per hour and 1 per day; for accelerated testing and diagnostics, a
reporting rate as high as every 5 minutes may be needed.

3.1 Selection of appropriate wireless technology

The wireless technology market is incredibly diverse. The applications range from tiny
devices powered by coin cells (wireless car keys) to massive arrays of satellite dishes receiving
signals from deep space; correspondingly, different technologies are available to cover this
spectrum of needs. To make an adequate choice in such wide landscape, a first necessary
step is to identify criteria relevant to the application:..1. Power efficiency: to achieve long lifetime with battery power...2. Radiation hardness: because the node incorporating the modem hardware must operate

in a radiation environment. The modem does not need to be designed a as rad-hard
specifically, qualification by testing is also possible.
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3. Communications and data logging....................................3. Possibility and cost of deploying own network infrastructure: coverage is needed also
in the tunnels deep underground; it should be easy and cheap to extend the network...4. Easy to incorporate: preferably compact modem, lightweight antenna and not many
additional components..5. Availability of modem hardware and networking equipment..6. Data bandwidth and latency: in this area, our requirements are very modest. Still,
a higher throughput could improve data fidelity and allow closer monitoring of the
system.

Figure 3.1: Classification of wireless technologies by bandwidth, power consumption and
communication range. From [19].

Figure 3.1 depicts a coarse classification of wireless technologies by bandwidth, power
consumption and communication range. For the application of radiation monitoring, short-
range technologies are less interesting, because they would require any access points or
gateways to be exposed to the radiation environment – this means that the range should
be measured at least in 100s of meters. On the vertical axis, being a low-power application
excludes current cellular technologies. This leaves a single quadrant to focus on: LPWAN.

3.1.1 Low-power wide-area networks

The low-power wide-area network (LPWAN) technology space have seen major development
in the recent years, driven by increased demand for “Internet of Things” (IoT) applications,
and enabled by advances in chip manufacturing and digital signal processing. As the
name suggests, the common aspect of these technologies are low power consumption, low
bandwidth, long range and low cost per device. Some of them also operate in license-free
ISM1 frequency bands.

In 2017, the CERN IT department evaluated several LPWAN technologies for adoption
on site: LoRaWAN, NB-IoT, SigFox, Weightless-P, Weightless-N, Ingenu, SymphonyLink,
QoVisio, Neul and Waviot. Ultimately, LoRaWAN has been selected for pilot deployment,
and is progressively being rolled out. The parameters of LoRaWAN are compatible with

1Industrial, scientific and medical
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.............................3.1. Selection of appropriate wireless technology

the needs of the BatMon, and by adopting it, the system can take advantage of the ongoing
deployment.

3.1.2 LoRa and the LoRaWAN ecosystem

LoRa specifically targets energy-constrained devices where data throughput requirements
are low (on the order of dozens of bytes per hour). Due to its operation in license-free
frequency bands, it is possible to deploy complete custom networks without any kind of
administrative procedure (national and international rules still have to be followed; these
limit, for example, the time-on-air and maximum transmission power). Note that LoRa
refers to the technology powering the lowest levels of the stack – the modulation and
physical layer.

LoRaWAN is a related protocol and standard which builds on top of LoRa to enable
the co-existence of many nodes in a wide-area network, but also to standardize device
provisioning and provide security features. The authoritative document is the LoRaWAN
Specification, currently in version 1.1; however, we describe version 1.0.3 [20] because of
more mature support.

A notable LoRaWAN implementation is The Things Network (TTN), a worldwide project
to build an open, decentralized LoRaWAN network. This network is built up from gateways
operated by a community of volunteers. The network can be used free of charge under a
fair-use policy. The LoRaWAN network deployed at CERN is based on TTN software, but
operates independently and is not available to the general public. Figure 3.2 illustrates the
components of such network, which consists of gateways that provide the actual wireless
coverage and a network server that manages the registered end devices. The data is then
delivered to the appropriate application server, which can be independent of the network.

Figure 3.2: LoRaWAN architecture. From [21].

Finally, on the top level of the stack is the user application itself. The application can
transmit payloads of limited size (up-link), as well as receive messages from the network
(down-link).
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3. Communications and data logging..................................
3.2 LoRa physical layer

On the physical layer, LoRa employs a combination of established and novel techniques to
achieve a balance between power consumption, bandwidth and operational range. Details
of the encoding and modulation are proprietary, but related patents reveal much of the
principles, and independent reverse-engineering efforts have been able to fill in the details.
This is important, as it enables a more objective study of the technology, and may reduce
the dependency on a limited number of vendors.

3.2.1 Chirp spread spectrum modulation

In a chirp spread spectrum (CSS) modulation, each bit of a message is transmitted as
a series of chirps; that is, single tones with frequency linearly increasing or decreasing
(fig. 3.3).
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Figure 3.3: A chirp in time (left) and modulation (right) domains.

The result is that the signal is spread over a range of frequencies; its bandwidth is
increased. This has several advantages for signal fidelity: transmissions are less susceptible
to narrow-band noise, and destructive interference due to multi-path propagation (multi-
path fading) is limited. Traditionally, additional power margin would have been needed to
compensate for these issues.

The number of chirps used to encode every bit is determined by the spreading factor (SF),
which effectively controls the trade-off between data rate and link reliability. The actual
number of chirps is equal to 2SF , with SF ranging from 7 to 12. Thus, lower SF equals a
higher data rate. The node can select the value of SF to use every time a transmission is
started and the receiving gateway will synchronize automatically. Strategies for choosing
the SF vary based on the application requirements and are further discussed later.

To some extent, CSS also permits multiple simultaneous transmissions in a shared
communication channel: two transmissions using a different SF will not disrupt each other,
unless there is large disparity in received power [22]. The practical usefulness of this fact is
however limited by the observation that the optimal SF for devices placed near each other
tends to be the same (an extensive discussion of LoRa collisions can be found in [23]). This
is in contrast with some other spread-spectrum techniques (e.g. direct-sequence spread
spectrum, used by GPS and early Wi-Fi), which use orthogonal spreading sequences to
implement code division multiple access, CDMA. The advantage of CDMA is that multiple
transmitters can reliably use the same communication channel at the same time. LoRa does
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........................................... 3.3. LoRaWAN

not have this advantage, and because the nodes in a network are typically not synchronized,
collisions of transmissions are bound to happen. It is then a matter of statistics to determine
the expected collision rate, and additional mitigation if reliable transmission is needed.

3.2.2 Frequency channels
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Figure 3.4: Channel map of the EU868 LoRaWAN band. At 868.3 MHz is the only channel
permitting a bandwidth of 250 kHz; the others are specified to 125 kHz. The sub-band duty
cycle limits are defined by European regulation (and thus are legally binding), while the channels
and their properties are defined by LoRaWAN. Data from [24].

The spectrum used by LoRa is allocated to a number of channels. The frequency plan
varies by region; figure 3.4 shows the EU channel map, including legal limits applicable in
France and Switzerland (CERN is not exempted from these). The mentioned duty cycle
limits apply to every device in the network, including the gateway. This is the main reason
why by default, transmissions from end-devices are unconfirmed: no acknowledgment is
requested from the gateway. In dense networks, this can also limit the rate at which new
nodes are able to join.

Three of the channels are enabled by default and can be used by the node for join
requests. Upon a successful join, the gateway will inform the node which other channels
may be also used. To reduce the probability of collisions, the end device pseudo-randomly
selects a new channel to use after every transmission. A gateway must therefore listen on
all channels simultaneously.

3.3 LoRaWAN

LoRa as such is concerned only with delivering simple data frames to a gateway. Other
responsibilities are left to layers higher in the stack, such as LoRaWAN. In LoRaWAN, an
end device is identified by its DevEUI, a globally unique 64-bit identifier. After joining the
network, the end device sends data to a specific application. All data is protected by two
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3. Communications and data logging..................................
layers of encryption as illustrated in figure 3.5; the gateway is able to access the header it
needs, but it cannot eavesdrop on the communication between end device and application
server.

MAC	payload

Frame	header Frame	payload
Encrypted	with	application	session	key

Encrypted	with	network	session	key

Figure 3.5: Communication between end device and network is protected from other users of
the network. Furthermore, application data is encrypted end-to-end.

3.3.1 Joining the network

To connect to the network, 3 pieces of information have to be stored in the device during
manufacture: DevEUI, AppEUI and AppKey.

DevEUI is the unique identifier introduced earlier, AppEUI is a 64-bit identifier of the
application, and AppKey is a 128-bit encryption key known both to the device and the
application, but not to the network provider. When the device intends to join the network,
it takes the following steps [20]:..1. The device transmits a join request, in which it states its DevEUI and AppEUI...2. A network server, if it recognizes the DevEUI and AppEUI, assigns a 32-bit device

address (DevAddr), and provides a session nonce (used to derive keys) as well as some
network parameters to the device...3. The device uses the new keys to encrypt the following communication.

If a device stays within one network, the session keys can be stored for extended periods
of time; there is no need to re-join the network after a power-cycle, for example. This can
be particularly important in networks where many end devices turn on around the same
time – as the gateway has to observe the strict duty cycle limits, it might be unable to send
out join request replies in real time.

3.3.2 Implementation in the LMIC library

LMIC (originally LoRaMAC in C ) is a library developed by IBM Research providing a
LoRaWAN implementation for Semtech SX127x family of modems. The library is not
tied to a specific processor or software platform; instead, it depends on a set of user-
provided functions to handle concerns out of the scope of the library, such as timing or
disabling/enabling interrupts. The library is high-level and handles internally all of the
join procedure, frequency hopping and also implements region-dependent limits. The user
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........................................... 3.3. LoRaWAN

is exposed only to high-level operations like Set DevEUI or Send packet. On the one hand
this makes for a low barrier of entry, on the other hand it may prevent an advanced user
from making full use of the available options and capabilities.

Over time, the library has been extended and ported to other platforms by other
developers. A version is available for the popular Arduino platform. At the time of writing,
work is underway to implement LoRaWAN 1.1 in one of the independently continued
projects.

3.3.3 Infrastructure

Figure 3.6: A low-cost LoRa
+ GPS module for the Rasp-
berry Pi

If one cannot (or does not wish to) rely on a third-party
infrastructure, it is also possible to deploy a custom
network from scratch. In the minimal case, a network
can be as small as a single gateway running an embedded
Network Server and an Application Server that simply
forwards all received packets via a simple protocol like
HTTP or MQTT.

When multiple gateways are used to form a network,
proper configuration is required to let end-nodes seam-
lessly roam between areas covered by the different gate-
ways.

Reception and transmission of LoRa frames requires
appropriate hardware; one of the most cost-aggressive
options is a “hat” for the Raspberry Pi single-board
computer, such as the one in figure 3.6 which is available
for around 35 €.

Figure 3.7: RAK7258 Micro
Gateway

An example of a self-contained solution is the
RAK7258 (figure 3.7). This indoor gateway is based
on the open-source OpenWRT operating system and
includes a Network Server implementation as well as an
Application Server with LoRa packet forwarder. It can
be connected to an IP network via Ethernet or Wi-Fi
connectivity. Available for 150 €. A model incorporating
LTE mobile connectivity is also available.

For the CERN LoRaWAN network, the Swiss-made
LORIX One gateway has been used. This gateway is
available in a weather-proof IP65 version, starting at
500 €. It can be used with a high-gain antenna or with
leaky feeder cable.

In terms of software, production-quality free software
solutions are readily available, such as ChirpStack, which is even used by major commercial
hardware providers.
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3. Communications and data logging..................................
3.3.4 Practical concerns

LoRa and LoRaWAN together provide a set of means for building dependable sensor
networks at a low cost. However, to achieve good and consistent results, some parameters
must be chosen appropriately. This section discusses some of the choices that must be
made.

Spreading factor and communications reliability

Spreading factor Bandwidth Physical bit rate Time on air
[kHz] [bit/s] [ms]

12 125 250 1811
11 125 440 988
10 125 980 453
9 125 1760 247
8 125 3125 134
7 125 5470 72
7 250 11000 36

Table 3.1: Bit rate as a function of used spreading factor and bandwidth, including time on air
for an example 20-byte packet. Values from [25].

As discussed above and demonstrated in table 3.1, the spreading factor directly affects
the data transmission rate. As LoRa is low-speed by design, the ultimate optimization goal
is not to push as many bytes as possible per unit of time, but instead to maximize battery
life. However, these two are closely linked: if the same amount of data can be transmitted
in half the time, the energy expended by the radio will be also cut in half (assuming a
constant transmit power). The total amount of data that can be sent while observing the
regional duty cycle limitation is also increased. For these reasons, it would be optimal to
always use the lowest spreading factor that successfully delivers the packet.

Adaptive Data Rate is a mechanism defined in LoRaWAN, whereby the end device can
ask a gateway to recommend the spreading factor to use. The gateway can consider the
measured signal-to-noise ratio and choose a SF according to the needed margin. This
negotiation is suitable for fixed devices in a static environment. For moving devices, however,
the reception quality can change rapidly, and the ADR mechanism would not be able to
react quickly enough.

Therefore, a conservative choice must be made for mobile devices, taking into consideration
network coverage in the area of deployment. For example, if most of the site is well-covered,
but parts are shielded, confirmed uplinks can be used to detect when packets are lost, so
that the end device can keep the data in memory and attempt re-transmission at a later
time.
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............................... 3.4. Offline logging of transmitted packets

3.4 Offline logging of transmitted packets

As the reliability of wireless communication links cannot be always guaranteed, it is
desirable to have an alternative data logging mechanism, which does not depend on external
infrastructure, and which can be used as a sort of “flight data recorder” in case of device
failure.

Therefore, the sensor node should also be equipped with a non-volatile data memory.
The contents of this memory do not need to be accessible remotely, but in case of need
can be read out by connecting a service cable. Emphasis is to be placed on robustness –
localized data corruption should not render the whole subsystem inoperable, and it must
also not negatively impact the normal operation of the device.

33



34



Chapter 4

Hardware of the sensor node

At the end of chapter 1 we presented a set of requirements for the system; many of those
translate directly into requirements for the hardware design of the sensor node, which we
re-iterate here:

. radiation resistance (250 Gy TID). resolution and sensitivity of measurement: satisfied by incorporating the set of sensors
selected in chapter 2. no cabling needed for data transmission: satisfied by using the LoRaWAN technology
described in chapter 3. choice between mains-powered and battery-powered operation

Common platform

Application-specific
sensor board

Power supply
options

Wireless
communications

Figure 4.1: “Stacked boards” hardware concept for the sensor node

In addition, as development of more LoRaWAN-based applications is foreseen at CERN
in the near future, it would be valuable to produce a radiation-tolerant base platform
which could be later re-used for new projects. Ultimately, this goal is what drives the
overall architecture of the hardware platform which is depicted in figure 4.1: a stack-up of
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4. Hardware of the sensor node ....................................
circuit boards with the main board hosting a microcontroller along with peripherals for
communications and data logging, and a sensor board for radiation measurement, which
can be replaced in future applications.

In line with this architecture, the following sections describe the design of the main board
and the radiation sensor board. These boards were designed at CERN’s Radiation-tolerant
and Measurement Electronics department (EN-SMM-RME) between the years 2018 and
2019. Additional improvements were also proposed and implemented during work on the
present thesis.

4.1 Main board

Figure 4.2 is a block schematic and figure 4.3 is a photo of the main board. Functionally,
the board is rather simple. However, what might not be obvious at first glance is that
important components have been selected based on how they had performed in radiation
tests.

Watchdog
timer

Power
supplies

SPI	bus

GPIO

GPIO MCU

LoRa
modem Flash

To
	s
en

so
r	b

oa
rd

Figure 4.2: Block diagram of BatMon main board

The chosen format of the PCB enables re-use of mechanical parts and some accessories
(described later) previously developed for the RadMon.

4.1.1 A note about radiation testing

To validate a device’s reliability in a radiation field, radiation tests are carried out at
specialized facilities. Such facilities are available at CERN and elsewhere in Europe and
around the world. For instance:

. CC60 (CERN Cobalt-60 irradiation facility) – Equipped with a 10 TBq 60Co gamma
ray source.. CHARM (CERN High energy AcceleRator Mixed field facility) – 24 GeV protons from
the Proton Synchrotron (PS) hitting a selectable target to create a rich particle field.
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Figure 4.3: BatMon main board

. Proton Irradiation Facility of Paul Scherrer Institute (PSI PIF) – 230 MeV protons,
optionally degraded to one of several discrete levels from 30 MeV to 200 MeV.

Due to the high number of devices that need to be tested (CERN has to compete for
testing capacity with users in the space industry, for example), it would be impractical to
test all components on a natural time-scale. Instead, accelerated tests are usually carried
out, where the device is subjected to a much higher flux and dose rate for a shorter time.
The time frame for such tests can be as short as 1 hour (when using beam time at PSI).
For slower tests, several months may be needed to reach the required dose or fluence.

To make matters more complicated, the effects of a certain TID may also depend on the
dose rate. In particular, linear bipolar devices like bipolar transistors and optical elements
suffer from what is called Enhanced Low-Dose Rate Sensitivity (ELDRS). On the other
hand, for CMOS technology devices, high-dose-rate irradiation is usually the worst case, so
accelerated tests are feasible.

4.1.2 Microcontroller choice and suitability

The microcontroller unit (MCU) at the heart of the board is responsible for controlling
all other components and executing the application. The chosen ATSAMD21G18 is based on
an ARM Cortex-M0+ processor core with 32 KiB SRAM and 256 KiB flash, along with
various built-in peripherals. For this application, the following peripherals are particularly
important:

. Serial Peripheral Interface (SPI) controller for interfacing with the LoRa module,
external flash memory and sensor board
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4. Hardware of the sensor node ....................................
. UART1 and USB for PC communication. Internal watchdog (to increase chance of SEFI recovery). Real-time clock (to control intervals between measurements). Analog-to-digital converter (for self-monitoring of the board)

To verify its suitability, in February 2019 the MCU was tested at PSI Proton Irradiation
Facility with 200 MeV protons up to a total dose of 252 Gy [26]. After absorbing this dose,
the device still operated as expected. Different single-event effects were also tested and
characterized:

Watchdog reset. The MCU was running with the internal watchdog enabled, reporting a
counter that was incremented every second, via UART. On several occasions, the MCU
restarted due to SEUs, presumably either because the program froze or because the SEU
triggered a spurious watchdog reset (in the reported data, it is not possible to distinguish
these conditions). No unrecoverable failures were observed.

Real-time clock (RTC) timing fault. The RTC was configured to periodically wake up
the MCU from Standby mode. A tester was placed on the same PCB but out of the beam,
to reset the MCU if it failed to wake up and provide the expected pulse signal. On several
occasions, the MCU was reset by the tester. On one occasion, the MCU didn’t recover
after being reset and a power cycle was necessary.

External Interrupt Controller (EIC) fault. The EIC (which, despite the name, is a
peripheral built into the MCU) was configured to trigger an interrupt when a rising edge
was detected on a specified input pin of the MCU and respond by toggling an output pin.
A tester generated this rising edge periodically and detected the response, to simulate the
behavior of an external hand-shaking watchdog timer. If the MCU stopped responding, it
would be reset by the tester, which happened on several occasion. On one occasion, the
MCU didn’t recover after being reset and a power cycle was necessary.

The test report does not mention the minimum number of consecutive missed replies
that triggers a reset of the MCU.

Measure-output-save loop. In this most complex test, a 5-second measurement cycle was
scheduled continuously. ADC, EXTI, RTC, SPI, UART and Watchdog peripherals were
all used. Both the internal watchdog and an external one were used. The program locked
up several times, but the MCU was always reset by one of the watchdogs (in the reported
data, it is not possible to distinguish between them).

The reported results are summarized in table 4.1 and visually in figure 4.4. In addition,
confidence intervals have been calculated based on the reported numbers of events and an
assumed flux uncertainty of 10 %. Note that the covariance of the failure modes has not

1Universal asynchronous receiver/transmitter
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been evaluated. In other words, some of the faults may be correlated, making their joint
cross-section smaller than a sum of the individual cross-sections2.

Test / type of fault Events Fluence E{σ} 95% confidence
[p · cm−2] [cm2] interval of σ

Watchdog reset 10 3 · 1011 3.33 · 10−11 (1.57; 6.15) · 10−11

Real-time clock 18 5.65 · 1011 3.18 · 10−11 (1.85; 5.06) · 10−11

(recoverable)
Real-time clock 1 5.65 · 1011 1.77 · 10−12 (0.04; 9.86) · 10−12

(non-recoverable)
External interrupt 14 4.5 · 1011 3.11 · 10−11 (1.67; 5.24) · 10−11

(recoverable)
External interrupt 1 4.5 · 1011 2.22 · 10−12 (0.04; 12.40) · 10−12

(non-recoverable)
Measure-output-save 22 4.32 · 1011 5.09 · 10−11 (3.12; 7.76) · 10−11

(resets)

Table 4.1: Summary of SEE test results for ATSAMD21G18, including calculated cross-sections.
Test at PSI, 200 MeV protons.

Considering a harsh environment with HEH flux of 5 · 1011 cm−2 · year−1, and one of the
serious failure modes (non-recoverable RTC fail), we can estimate the mean time to failure
(MTTF) as

MTTF = 1
Φ · σ , (4.1)

which evaluates to 58.9 weeks. For a leaner field of 5 · 1010 cm−2 · year−1, the longevity
increases to 11.3 years, making this MCU a good candidate for the BatMon.

One disadvantage of this MCU is its low pin count, which leads to some necessary
compromises in the sensor interface, as described further below.

4.1.3 Data memory choice and suitability

To store logged data and user configuration, a NOR-type SPI flash memory, part number
IS25LP128 is included. The memory has a capacity of 128 megabits (16 MiB), which should
provide significant margin considering the low amount of data that needs to be stored per
day. For example, at a sustained write rate of 64 bytes per hour, it would take nearly
30 years to fill the memory up. Although the lifespan of the device might be even longer, it
is not expected that such long data retention would be needed.

2Sufficiently enough to make such sum entirely meaningless.
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4. Hardware of the sensor node ....................................
The memory was tested at PSI in 2018 using 200 MeV protons with a flux of 2.3 ·

108 p · cm−2 · s−1 [27]. Two tests were carried out, one the device unpowered (OFF mode),
and one with the device powered (POWER DOWN mode). 3 chips were used in each test.

In OFF mode, no data corruption or functional issue occurred up to 500 Gy. The devices
failed between 500 Gy and 1000 Gy, and their current consumption increased by a factor of
3.3. In POWER DOWN mode, 2 of the 3 samples failed between 200 Gy and 300 Gy, after
which no data could be read out anymore.

4.1.4 LoRa module choice and suitability

LoRa connectivity is realized by the low-cost RFM95W module. This module was tested
as part of an Adafruit Feather M0 evaluation board at PSI in 2018 using 230 MeV protons
with different fluxes between 4.3 · 107 and 2.56 · 108 p · cm−2 · s−1 [28]. The evaluation
board contains the aforementioned module along with a Cortex-M0-based MCU. Only the
module was irradiated.

The device was configured to continuously transmit LoRa packets (the transmission
period is not mentioned in the test report), to which a tester would reply by sending its own
packets. A watchdog was configured on the MCU so that if no packet would be received
for 20 seconds – because the module failed to either sent its packet or to receive the reply
–, the board would reset. On one occasion, a bit was flipped in the transmitted packet.

Over a total of 830 Gy, the device had functional interrupts (summarized in table 4.2), but
was recovered every time by the watchdog. By the end of the test, the current consumption
of the device had risen to about 150 % of the initial value.

Test / type of fault Events Fluence E{σ} 95% confidence
[p · cm−2] [cm2] interval of σ

Watchdog reset 19 4.86 · 1011 3.91 · 10−11 (2.30; 6.14) · 10−11

Data corruption 1 4.86 · 1011 2.06 · 10−12 (0.04; 11.47) · 10−12

Table 4.2: Summary of SEE test results for RFM95W, including calculated cross-sections. Test
at PSI, 230 MeV protons.

4.1.5 Watchdog timer choice and suitability

A good choice of external watchdog timer can increase the node’s ability to recover from a
single-event functional interrupt occurring in the MCU. The chosen TPL5110 has a settable
period between 100 milliseconds and 2 hours. Once per this interval, the timer produces a
rising edge on one of its pins, and expects a similar response from the MCU; if this response
does not arrive before the next interval elapses, the MCU is forcibly reset. For the sensor
node, a 60-second period was chosen as a compromise between recovery time in case of a
fault and impact on power consumption due to the periodic wake-up.

The TPL5110 was tested in 2016 at CHARM (position 13, copper target, no shielding)
[29]. The focus of the test was to verify the stability of timer period w.r.t. TID, to check if it
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MCU: Watchdog reset

MCU: Real-time clock (recoverable)

MCU: Real-time clock (non-rec.)

MCU: External interrupt (recoverable)

MCU: External interrupt (non-rec.)

MCU: Measure-output-save (resets)

LoRa: Watchdog reset

LoRa: Data corruption

Figure 4.4: Comparison of the SEE-induced fault cross-sections for the MCU and LoRa modem,
with 95 % confidence intervals. The generally large uncertainties are due to low numbers of
events in the tests.

retains its ability to cut the power to the device when it receives an end-of-operation (DONE)
signal, and finally, to judge the device’s latch-up sensitivity. 3 chips were simultaneously
exposed to a total dose of 340 Gy.

It was found that up to about 250 Gy, the timer period stayed within 0.5 % of the initial
value. After 280 Gy, the timing error of one of the DUTs3 rose sharply and at 320 Gy it
failed completely (stopped switching the power output). For the other two devices, the
timing error rose gradually beyond 250 Gy. No latch-up was observed during the entire run.

Statistically, the expected dose at which the period deviation exceeds 1 % evaluates to
(294 ± 108) Gy (ssd). The high uncertainty is in large part due to the 35 % dosimetry
uncertainty of CHARM.

4.1.6 Input/output interfaces

BatMon main board

Programming
(SWD, UART)

Deported
sensor

Diagnostics
(GPIO, analog)

Sensor board interface
(3.3 V / 5 V power, SPI, GPIO, analog)

DC in
7 V

USB
Micro-B

LoRa
antenna

Figure 4.5: I/O interfaces of the main board

All of the board’s numerous interfaces are shown in figure 4.5. Some of these contain
redundant signals where needed to enable re-use of previously built accessories.

3Devices under test

41



4. Hardware of the sensor node ....................................
The sensor board plugs directly into a pair of high-density board-to-board connectors

(TE Connectivity 5767096-8). The connectors provide not only electrical connections, but
also all mechanical support. The connectors contain two power rails, an SPI interface and
a limited number of general digital and analog signals.

The main board also includes a USB Micro-B receptacle, connected directly to the MCU
as a possible replacement for the UART interface. However, the USB interface has not been
implemented in software because its principle of operation prevents capturing of diagnostic
output from early boot stage of the MCU (before the USB stack is initialized), which limits
its usefulness.

The deported sensor connector allows a sensor board to be placed up to 50 meters away
from the rest of the system, so that measurements can be taken in high-radiation areas
while exposing only the minimum subset of necessary components.

4.2 Radiation sensor board

SPI	bus

GPIO

FGDOS Port
expanders

To
	m

ai
n	
bo

ar
d

SRAMs

Power	bus

Figure 4.6: Block diagram of the radiation sensor board. Bus widths are only illustrative.

The radiation sensor board (figures 4.6, 4.7) carries the FGDOS (1 chip containing 2
separate sensors) and two sets of 4 SRAM chips each, per table 4.3. This version of the
board does not contain a separate sensor for displacement damage.

Manufacturer, Technology Lot σT hN σHEH

part number [cm2 · bit−1] [cm2 · bit−1]

Cypress 65 nm 1649 < 1 · 10−15 4.461 · 10−14

CY62167GE
Toshiba 400 nm 0013 2.40 · 10−13 4.99 · 10−14

TC554001AF-70L

Table 4.3: SRAMs used on the sensor board. Cross-sections apply only to the specified lot.
σT hN of CY62167GE is provisional.

Because of the limited number of I/O pins available on the MCU, the memories do not
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.................................... 4.3. Peripherals and accessories

Figure 4.7: Radiation sensor board. Notice the same deported connector present on the main
board. FGDOS is the small-footprint chip in the center of the board.

interface to it directly. Instead, three 16-pin port expanders (part no. MCP23S17) are used,
connected to the common SPI bus. This marks a negative impact on scrubbing speed of
the SRAMs – it takes over 3 minutes for all 8 chips.

4.3 Peripherals and accessories

4.3.1 Battery board

The BatMon is build from the ground up to operate without wires, but the main board
does not carry any power source of its own. The battery board (figure 4.8) is a separate
PCB, which would be typically mounted on the bottom of the enclosure, with the main
board on top. The battery board takes 4 size C primary cells based on lithium chemistry,
which have a nominal voltage of 3.6 V and capacity of 8.5 Ah each. They are connected in
a 2s2p configuration (2 in series × 2 parallel) to provide approximately 7 volts. The board
is also equipped with a power switch.

4.3.2 Break-out board

To aid in development and testing, but also in configuration for deployment, a “break-out”
board has been produced (figure 4.9). This board connects to the BatMon main board via
a flat cable, and makes its I/O interfaces more conveniently accessible:

. standard 4mm banana sockets for power input (7 V DC)
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4. Hardware of the sensor node ....................................

Figure 4.8: Assembled battery board including vertical supports for mounting of the main board

. a USB Type-C connector to access the serial interface (UART) of the BatMon via an
on-board adapter chip. a 10-pin, 1.27mm pitch header for programming
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Figure 4.9: BatMon with a break-out board connected
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Chapter 5

BatMon software platform

The architecture of the software package for the sensor node closely reflects the architecture
of the hardware presented in chapter 4: a modular system with a base Internet-of-Things
platform, upon which different sensor solutions can be implemented. This is illustrated in
figure 5.1. The software package is written in the C language. Components are selected at
compile time and linked to produce a monolithic firmware image.

Hardware – ATSAMD21 MCU

Vendor libraries – HAL, HPL, HRI

LMIC (LoRa)

Sensor
board A

Platform firmware (common)

Sensor
board B

Sensor
board Z

... Legend

CERN code

Third-party code

Figure 5.1: Architecture of BatMon sensor node software

To encourage code re-use, the shared platform firmware implements all functionality
needed by the main board, as well as some auxiliary functions that are generally useful
in development of sensor board drivers. To this end, the platform firmware exposes an
application programming interface (API) that the driver can use to access these functions.
Conversely, the drivers provide a unified interface for integration into the platform.

The modules are shown in more detail in figure 5.2 and some of them are further described
below.
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Sensor board driver

Platform firmware

Vendor libraries, ATMEL Start

Life-cycle API

Timing Configuration Self-test

Public API

Internal API

Non-volatile
memory LoRa Serial I/OPower

management

Figure 5.2: Modules and APIs comprising the platform firmware. Arrows indicate direction of
function calls

5.1 Hardware and vendor libraries

The ATSAMD21 microcontroller is based on the ARM Cortex-M0+ processor core with
up to 32 KiB SRAM, up to 256 KiB flash, and a variety of hardware peripherals. The
Cortex-M0+, in turn, is an implementation of the 32-bit ARMv6-M architecture.

The vendor (Microchip, previously Atmel) provides a collection of software components
comprising the proprietary Advanced Software Framework:

. HRI (Hardware Register Interface) – the lowest layer of abstraction. It provides register
definitions and helper functions (get, set, toggle and others; both for entire registers
and individual fields in them).. HPL (Hardware Proxy Layer) – builds on top of HRI to implement primitive operations
in the hardware peripherals. Provides a higher degree of portability than HRI, at the
possible cost of reduced efficiency.. HAL (Hardware Abstraction Layer) – builds on top of HPL to provide high-level
abstractions. As an example, for communication peripherals, HAL implements buffering
and asynchronous operations. Provides a higher degree of portability than HPL, but
depending on the selected options, can incur high overhead and increase code size.. Atmel START is a graphical configuration tool that enables the user to select options
for peripherals and add high-level software building blocks into the project. It can
significantly accelerate initial project setup and help in areas that are usually tricky
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........................................5.2. Platform firmware

to configure, such as clocks. Atmel START relies on code generation, which means
that only necessary code will be included, however it also means that it is difficult to
integrate into applications requiring high re-configurability. It is directly comparable
to STM32CubeMX, a similar tool for STM32 series microcontrollers.

5.2 Platform firmware

Besides the APIs introduced above and further detailed below, the platform firmware also
implements the main loop of the program. After power-on, all hardware is initialized and
diagnostic information is printed to the serial output. If the device has been configured, it
also begins to connect to the LoRaWAN network. From there onwards, the program runs
in an infinite loop (figure 5.3).

Measurement Transmission Standby

measurement period (MEAS:PERIOD)

Measurement

RTC alarm RTC alarm

Figure 5.3: A measurement cycle

At the beginning of every iteration, measurement is performed. This operation is fully
deferred to the sensor board driver and, depending on the used sensor(s), can take from a
fraction of a second up to several minutes for SRAM scrubbing. Afterwards, if the device
has succeeded in joining the network, a data packet is composed and sent. The rest of the
measurement cycle is spend in standby mode, with most peripherals shut down to minimize
power consumption.

5.2.1 Power management module

Unlike other functional blocks, power management cannot be entirely compartmentalized
– that is, wrapped up in a compact module with a simple interface. Instead, it requires
consideration throughout the design of the entire application; every part needs to be
prepared for the possibility of entering a different power state, losing access to parts of
hardware and so on.

Nevertheless, the firmware does contain a power management module, which performs
transitions between the different power states as depicted in figure 5.4. When it does
so, power management functions of the other modules are called to perform additional
necessary operations (for example, when the BatMon enters standby mode, the SPI flash
module will send an Enter Power Down command to the external memory).
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Figure 5.4: Power states and transitions between them

5.2.2 Communications module

Although the LMIC library (described in section 3.3.2) handles much of the LoRaWAN
protocol, additional logic is needed for power state management, as well as for coping
with network issues and for extraction of useful diagnostic information. Specifically, if
connection cannot be established within a certain period of time, the device backs off from
the connection attempt, goes into standby, an re-tries at a later time to avoid unnecessarily
draining the battery (figure 5.5).
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Figure 5.5: LoRa high-level connection states

In some parts, the library had to be extended to provide access to internal variables
and to allow dynamically configuring some parameters (which would be otherwise fixed at
compile time).
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Packet payload format

Modularity of the platform is reflected also in the payload format: one part of it is defined
by the BatMon platform, while the other is defined by the used sensor.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

packet sequence number

firmware version reserved byte
status/fault flags (bit field)

3V3 rail voltage
5V rail voltage
Vin rail voltage

external watchdog counter


Diagnostic
data

sensor payload
hhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhh

(up to 37 bytes)

Figure 5.6: LoRa payload format (one row = 2 bytes)

The common part carries mostly status and diagnostic information; data valuable for
the application will be embedded in the sensor payload.

It is worth noting that the sensor type ID is not included in the payload. Instead, this
information is encoded in the LoRa port that the packet is sent to. Specifically, a unique
port number is assigned to each combination of protocol version and sensor type.

The same format is also used for data logging to non-volatile memory (detailed in
section 5.2.3). In fact, the packet is only composed once and then transmitted and logged
simultaneously.

5.2.3 Non-volatile memory partitioning and formatting

The non-volatile memory subsystem serves two purposes: preserving node configuration
and logging of measurement data.

The node actually contains two non-volatile memories: the internal memory of the MCU,
which also contains its firmware, and an SPI flash memory on the main board. All of the
external memory and a small part of the internal memory can be used by the application.
The available memory regions are divided into partitions, as shown in figure 5.7.

I-Config and E-Config partitions are used to store configuration information (detailed be-
low), while the Data partition is used to log measurements. The design and implementation
of the formatting scheme is driven by specifics of the flash technology:
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MCU program memory

Firmware image I-Config partition

External memory (SPI flash)

Data partitionE-Config partition

16 MiB

(4 KiB)

(4 KiB)

256 KiB

Figure 5.7: Partitioning of the non-volatile memories

.Memory must be erased before it can be written. Writing can only change bits from 1
to 0, an erase is needed to change 0 to 1.. The granularity for erasing is larger than that for writing. For example, the IS25LP128
can write individual bytes, but can only erase sectors of 4 KiB.. Although byte-level addressing is used for writing, it is actually possible to alter
individual bits, by setting the other bits in a byte write operation to 1. As it is not
possible to change bits from 0 to 1 in a write operation, those bits will preserve their
value.1

The partitions are first subdivided into sectors and finally into fixed-size records. From
the point of view of the application, one record is the minimum writable unit. The size
of the record has been chosen as 128 bytes. On the one hand, using records of fixed,
power-of-two size simplifies addressing and many other operations, on the other hand, if
the used length of every record is much smaller than its total size, a significant portion
of the memory capacity will be wasted. However, the latter is not a significant concern
considering the projected measurement frequency and the available memory capacity, so
this trade-off is made with the aim of increasing robustness of the memory subsystem.

The Config partitions will typically not contain more than 2 records (one for platform
configuration, one for sensor configuration and/or calibration), and will be rarely overwritten,
therefore it is not necessary to particularly optimize the storage and erase pattern. The
Data partition, on the other hand, is large enough and will see enough traffic to be a
possible bottleneck in performance or reliability.

Organization of the data partition

On a high level, the Data partition can be understood as a vector of records with constant
time push back and pop front operations, or equivalently a first-in-first-out queue. This

1This does not necessarily hold true for memories from other vendors. Some explicitly warn that
overwritng the same location multiple times may cause unexpected data corruption, or even damage some
bit cells by discharging them too deeply.
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allows, for example, to use the memory as a “back buffer” of data that might need to be
re-transmitted later, until the network confirms reception of a range of records.

On a lower level, the Data partition is implemented as a ring buffer with one pointer
for writing, and another for reading. Upon device start-up, it is necessary to recover these
pointers; a naïve solution might be to simply store them at a fixed address in the memory,
however this brings several issues:

. The minimum erasable unit of the flash memory is one sector (4 KiB), of which only a
few bytes would be used. The number of erase/write cycles of each memory location is limited; for the used
IC, it is 100 000 cycles. For example, with one cycle every 5 minutes, this budget is
exhausted in 348 days.. If the power to the device or the memory happens to be cut before the new write is
completed, the pointers would be corrupted or lost.

A better solution might be to not erase the sector every time, but instead keep storing
the updated pointers at subsequent addresses until the sector is full, and only then erase it.
This solves the issue of erase/write cycles for many realistic applications, but there is still
a small window of opportunity for losing the pointers when the sector becomes full and
needs to be erased. There was also a concern of localized memory corruption or permanent
damage due to ionizing radiation. For these reasons, a more robust solution was sought,
one that would not rely on any single memory location.

Data partition
Sector 0x0000

Sector 0x1000

...

Control record

STATUS BYTE SECTOR USAGE MAP

Record 1

HEADER DATA

Record 2

HEADER DATA ...

Control record

STATUS BYTE SECTOR USAGE MAP

Record 1

HEADER DATA

Record 2

HEADER DATA ...

128 bytes

Figure 5.8: Sector formatting in the Data partition

Figure 5.8 depicts the chosen approach. Instead of storing the value of the pointers,
sectors and records are flagged in a way that makes it possible to recover the pointers, even
in presence of localized corruption.

The first byte in every sector is designated as a status byte. Because erasing the flash
memory sets all bits to 1, the value of 0xFF has been chosen to represent an empty sector.
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5. BatMon software platform .....................................
The first time a record is written into the sector, a bit (U) in the status byte is set to 0 to
indicate that the sector is partially used. When the sector is filled up, another bit (FU)
is cleared to indicate this. Finally, once some records in the sector have been read and
deleted, a third bit (D, for dirty) is set to 0. There is no “fully dirty” (FD) bit; instead,
when the last record in a sector is removed, the entire sector is erased, making it available
for new data.

When recovering the read and write pointers r and w, the following set of rules can be
then used to quickly narrow the search down to specific sectors:..1. Scan the status byte of each sector in the partition. If all sectors have a status of 0xFF,

assume the memory is empty and set w = r = 0...2. A partially used sector (U = 0, FU = 1) is a candidate to contain w...3. A sector with U = 1, FU = 1 (empty) following a sector with U = 0, FU = 0 (fully
used) is a candidate to have w point to its first record slot...4. A dirty sector (D = 0) is a candidate to contain r...5. If there is no sector with U = 0, assume that no records have been written and set
w = 0...6. If there is no sector with D = 0, assume that no records have been marked dirty and
set r to point to the first position of a sector with U = 0 following a sector with U = 1.
If there is no such sector, set r = 0.

Figures 5.9 and 5.10 illustrate some of the expected scenarios. To ensure that the logic
works correctly, certain constraints must additionally be satisfied at all times:

. At most one sector can be partially used (having U = 0, FU = 1).. All used sectors (U = 0), if any, must form one contiguous sequence, possibly wrapping
from the end of the memory to the beginning.. At most one sector may be marked dirty (D = 0).. At least one sector must be either empty or only partially used (FU = 1). This implies
that the capacity of the memory cannot be used in its entirety, otherwise the position
of r and w would be ambiguous under this scheme. This could be worked around, for
example, by using multiple bits for each of the U , FU and D variables, allowing to
make a distinction among two fully used sectors.

When one of more of these constraints are broken, the algorithm may yield multiple
candidate sectors. In that case, it is assumed that memory corruption has occurred, and a
slower fall-back algorithm must be used to scan individual records, determine which are
valid, and restore the constraints before more records can be written or read.
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Starting in an empty memory
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Continuing in a partially used sector
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Figure 5.9: Narrowing down the search:
write pointer

Read pointer within a dirty sector

1 2 3 4 5 6
U

FU

D

Read pointer when no sector is dirty

1 2 3 4 5 6
U

FU

D

Figure 5.10: Narrowing down the search:
read pointer

Once the search has been narrowed down, the corresponding sector usage map is read
(see again figures 5.8 and 5.11). This map tracks the usage of record slots within the sector,
in a manner very similar to how sector status bytes track the usage of sectors. Because
records cannot be written partially, record slots can only be in one of 3 states: empty
(U = 1, D = 1), used (U = 0, D = 1) and dirty (U = 0, D = 0).

The read and write pointers can be finally found by finding the first non-dirty (D = 1)
and non-used (U = 1) records, respectively, within their candidate sectors (figure 5.12).

Record slot format

Figure 5.13 shows the structure of record slots. A fixed-length area is provided for the
contents of the record, but the actual number of used bytes is noted. The application-level
record type is encoded by a combination of two fields: the 1-bit C determines if the record
contains configuration (1) or data (0). The tag field then encodes the sub-type (for data,
the same assignment as for LoRa port numbers is used).

A CRC-16 checksum is also included so that integrity of the record can be verified. The
checksum is computed over the header and the valid part of the payload, however this
introduces a self-referential problem, because the checksum field itself is part of the header.
The issue is resolved by setting the CRC field to 0 for purposes of checksum calculation.
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used records containing valid data

dirty records (read and deleted; space
will be reclaimed when sector is erased)

write pointer

read pointer

Figure 5.11: Various record states and cor-
responding read/write pointers

Read pointer in dirty sector
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U

D

Write pointer in partially used sector
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D

Both pointers in the same sector

1 2 3 4 5 6
U

D

Figure 5.12: Recovering the exact pointers

5.2.4 Serial interface for control and configuration

Operation of the node is controlled by several variables. Their values may vary between
deployments (e.g. the chosen measurement period) or may even need to be unique for each
device (LoRa DevEUI and authentication keys).

The default values for these variables are specified in the firmware source code. This
would mean, however, that for every deployed device, a unique firmware build was needed.
Not only this adds extra work, it also makes version tracking more difficult.

For this reason, these variables can be changed independently of the firmware and saved
in one of the Config partitions described in section 5.2.3. The device exposes a text-based
command interface, where the command structure and naming conventions are inspired by
the SCPI standard [30]. This interface can be used to query or set the variables (5.1) and
to invoke a few general commands (5.2).

The interface is line-oriented, with the following syntax:

. variables can be queried by specifying the name of the variable, followed by a question
mark; e.g. LORA:DEVEUI?. variables can be set by specifying the name of the variable, followed by a space and
the new value; e.g. LORA:DEVEUI 1122334455667788. commands may be sent using their respective syntax as per table 5.2
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

version marker (0xBA) reserved byte
valid length

reserved C E tag

CRC-16
contents

hhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhh

(120 bytes)

Figure 5.13: Record slot in non-volatile memory (one row = 2 bytes; 128 bytes in total)

Variable Access / type Default Description
LORA:APPEUI R/W uint64 N/A LoRa application ID
LORA:APPKEY R/W byte[16] N/A LoRa authentication key
LORA:DEVEUI R/W uint64 N/A LoRa device ID
LORA:DR R/W enum automatic LoRa data rate
LORA:LINKCHECK R/W boolean false Enable adaptive data

rate (ADR)?
LORA:JOINDR R/W enum SF7/BW125 Initial data rate
LORA:PORT R/W uint8 N/A LoRa port number for

data packets
MEAS:PERIOD R/W uint32 300 seconds Measurement period
SYSTEM:FWCRC R uint32 N/A Firmware image checksum

Table 5.1: Variables exposed by the firmware

Implementation details

The board is equipped with two interfaces for serial communication: duplex UART (Rx/Tx)
and USB. The considerable additional complexity of USB can be mostly abstracted by the
vendor libraries, but both interfaces share a common caveat: the data is sent by the host
computer asynchronously with respect to the program running on the MCU. To ensure that
no data is lost, reception of the data in the MCU is handled in a high-priority interrupt
service routine. (An alternative would be to use Direct Memory Access – DMA – to buffer
incoming data automatically. Interrupts were used because they are simpler to configure
and their additional processing load does not negatively affect the application, due to low
amount of data exchanged)

When substantial work is to be performed in an interrupt routine, careful synchronization
with the main thread is needed to ensure that shared data structures are not overwritten
or corrupted in the middle of another operation. Similarly, hardware resources such as the
SPI bus have to be protected from conflicting access. Not only can the amount of extra
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Command Description
CONFIG? Output the current values of all configuration variables.
CONFIG:SAVE Save current configuration to non-volatile memory.
CONFIG:SCAN? Output the checksums of any saved configuration records

and the checksum of the current configuration (in RAM).
ERASE Erase all writable partitions. (figure 5.7)
RESET Restart the node. Any unsaved configuration changes

are discarded.

Table 5.2: General commands

code be substantial, it is also extremely difficult to verify its correctness, as multi-threading
is subject to various race conditions and synchronization errors. To minimize these risks,
the routine is tasked with only storing the input, and command execution is deferred to
the main thread.

C O N F I G ?

L O R A : P O R T   5

C O _

read pointer

write pointer

writing direction

this command has just been received and is awaiting processing

this command has been fully dispatched

the next command is being received here

Figure 5.14: Buffering of the serial input

The data is stored in a ring queue of fixed-size buffers (figure 5.14), where every entry
represents one command to be processed. When the end-of-line marker is received, the
current buffer is marked as complete and handed off to the main thread for parsing and
processing of the command. Further received data is stored in the next buffer. After
the command has been processed, the buffer is marked available, and can be used again
for reception. This way, only a minimum amount of information (namely, the read/write
pointers) needs to be synchronized carefully.

Two parameters need to be selected: the capacity of each buffer must be sufficient to
accommodate the longest permitted command,2 and the queue depth (number of buffers)
will determine how many commands can be “bursted” at once without losing any data. In
practice, 4 buffers of 64 bytes have yielded satisfactory results.

2In practice, the longest command is LORA:APPKEY <value>, with 44 characters plus termination.
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5.2.5 Timekeeping services

The platform provides two clocks: firstly, a monotonic clock with millisecond resolution,
which starts as 0 at boot time and counts up whenever the MCU is running in active mode;
secondly, a real-time clock with 1-second resolution, which continues to run also in standby
mode.

Millisecond-resolution clock

The millisecond-resolution clock can be used for many timing-related tasks. Its caveat is
that it is paused when the MCU is in standby mode – from the clock’s point of view, no
time passes when the node is asleep.

The resolution of the clock is 32 bits, which means that it will overflow every 232 milliseconds,
or 49.71 days of accumulated run time. The severity of this figure will depend on the
deployment configuration – a node that wakes up for 5 minutes every day would need
almost 40 years to accumulate such run time. However, if we accept the possibility of nodes
supplied with wall power, and taking measurements several times a day, clock overflow
becomes entirely realistic.

Therefore, the value of the clock is interpreted using modular arithmetic; the absolute
value of the clock loses any meaning, and the only permissible operation is subtraction of
two timestamps, t2 − t1, where t2 was taken after t1. The difference of the two timestamps
is taken modulo 232 to obtain the number of milliseconds elapsed from t1 to t2.

Real-time clock

A real-time clock (RTC) is typically used to keep track of calendar time. However, the
BatMon does not have a source of absolute time information (such as a GPS receiver), nor
is it able to track time when the device is turned off. Therefore, when the device is powered
on, the real-time clock starts on an arbitrarily chosen date, and is only used to track time
incrementally, to schedule the periodic measurement cycles.

The RTC in the MCU provides an alarm functionality, which triggers an interrupt when
the specified date and/or time is reached. At the end of a measurement cycle, before
low-power mode is entered, the alarm is set so that the device wakes up for the next cycle.

5.2.6 Self-test functions

While high confidence in device reliability can only be established by extensive testing,
some issues may be easy to discover by the device itself. A self-test is implemented for
quick validation before deployment. It is not exhaustive, but it is very cheap. However,
the test is invasive, in that it modifies the configuration of the sensor, writes to the flash
memory etc. Therefore, it is not suitable to be executed periodically in the field, as it might
create measurement errors and pollute the data log.

59



5. BatMon software platform .....................................
The results of the test are output through the serial interface, in a format that is human-

readable (“engineer-readable”, to be more precise), but also sufficiently structured to allow
a hypothetical automated tool to parse and categorize detected errors in mass production.
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5.3 Radiation sensor board

5.3.1 Sensor data processing

The sensor board driver is activated every time the measurement period elapses. Due to the
drawbacks of the autonomous mode of the FGDOS, outlined in section 2.4.5, it is operated
in manual mode, and thus its remaining charge must be sampled and, if needed, a recharge
performed.

At the beginning of a measurement cycle, the SRAMs are overwritten with a predefined
pattern. Due to the symmetrical nature of 6T SRAM, the probability of bits flipping from
0 to 1 is expected to be the same as for 1 to 0. In our implementation, a balanced pattern
(equal number of 0s and 1s) is used, so this expectation can be verified in practice.

After a certain amount of time, the memory is read back and the data is compared with
the pattern and the flipped bits are counted. Afterwards, the memory is overwritten again
and the cycle can restart.

5.3.2 Payload format

As mentioned in section 5.2.2, the LoRa packet contains a dedicated space for sensor data.
Its structure in case of the radiation sensor board is indicated in figure 5.15.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

status/fault flags (bit field)

sensor 1 TID
100 µGy (32 bits)

sensor 2 TID
100 µGy (32 bits)

SRAM 1 bit flip count
SRAM 2 bit flip count
SRAM 3 bit flip count
SRAM 4 bit flip count
SRAM 5 bit flip count
SRAM 6 bit flip count
SRAM 7 bit flip count
SRAM 8 bit flip count

Figure 5.15: Sensor payload format (one row = 2 bytes; 26 bytes total)
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5. BatMon software platform .....................................
The TID of the two FGDOS sensors is transmitted as a 32-bit value with 1 LSB3

corresponding to 100 µGy. This gives a range of 429.5 kGy. For the SEU measurement, the
counts for the 8 chips are sent directly. This is likely to change in the future to transmit
the evaluated fluxes and uncertainty, but at the time of writing, the required resolution
and range have not been specified.

5.4 Central database and user interface for data retrieval

Historically, data from the RadMon system would be logged into the CERN Accelerators
Logging Service (CALS). This is a massive database focused on recording time-series data
from CERN’s particle accelerators and a wide range of accelerator support systems. This
includes beam quality, cryogenics, power distribution, radiation protection, and others, but
does not include physics data from experiments. CALS is universal and extremely scalable,
accumulating 2.5 TiB of data per day from over 2.3 million signals [31]; however, that is
also the source of some of its drawbacks, such as lack of in-depth documentation and clunky
API for data retrieval.

While there is high probability that BatMon measurements will be eventually incorporated
into CALS, one of the goals of the project is to re-think how data is presented and explore
other technical possibilities. In recent years, two free software projects relevant to this
task have risen to popularity: InfluxDB and Grafana. InfluxDB is a time series database,
making it similar to CALS. It is not optimized for such large throughput, however it is
lightweight, widely deployed, and boasts high-quality documentation. InfluxDB can store
time series of integer, floating-point, boolean and text data. It provides a SQL-like language
for querying and statistical processing, named InfluxQL.

Where a traditional RDBMS4 has tables and rows, InfluxDB has measurements and points.
A point represents a single data record that has four components: a measurement, tag set,
field set, and a timestamp. A point is uniquely identified by the measurement it belongs
to, its tags and the timestamp [32]. A suitable database schema for the demonstration
prototype has been implemented in InfluxDB. The schema consists of 3 measurements: one
for the estimated parameters of the radiation field (batmon_meas), one for node diagnostic
data (batmon_diag), and one to track deployment location (batmon_deploy). All of them
use a tag, DeviceID, to pair each data point to the correct node. batmon_meas and
batmon_diag are filled with data from the LoRa packet, while batmon_deploy must be
updated manually whenever a node is commissioned and installed. Figure 5.16 shows this
structure.

Data logged into InfluxDB can be conveniently visualized in Grafana, a web-based
application that lets the user build live dashboards from graphs, tables, and other widgets.
These dashboards can be published for other users; thus an entire class of custom applications
can be replaced. Figure 5.18 shows the implemented data visualization for the BatMon
system, implemented as a set of Grafana dashboards. Data (TID, flux, device status) is
queried directly from InfluxDB based on the user-selected display interval. A server-side

3Least significant bit
4Relational database management system, such as MariaDB or Microsoft SQL Server
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Measurement
batmon_meas

Tags
DeviceID

Fields
timestamp
TID
FluxThN
FluxHEH

Measurement
batmon_diag

Tags
DeviceID

Fields
timestamp
V_bat
V_ref
V_aux
ErrorCode
SensorErrorCode

Measurement
batmon_deploy

Tags
DeviceID

Fields
timestamp
Location

Figure 5.16: The three measurements (in InfluxDB terminology) providing the data back-end
for the prototype application

Sensor node LoRaWAN gateway Packet decoder 
(Python script)

InfluxDB Grafana

LoRa MQTT InfluxQL InfluxQL

Figure 5.17: Data flow in the demonstration software stack

component of the solution listens for packets forwarded from the LoRaWAN Network Server,
extracts device status and measurement data, and inserts them into the InfluxDB instance.
The overall flow is depicted in figure 5.17.

The proposed solution has been implemented as a demonstration prototype, not a
production-scale application; it is yet to be determined whether this proposed light-weight
approach will be able to meet the needs of all users.
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5. BatMon software platform .....................................

Figure 5.18: The interactive dashboard created in Grafana. On the top left, the user can select
the device for which data will be displayed. On the top right, the time interval can be changed.
Rest of the screen real estate is dedicated to intuitive visualization of the measurement and
status data.
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Chapter 6

Tests and validation

To gain confidence in the reliability of the system, functionality of the sensor node must
be thoroughly tested. This is achieved through a combination of targeted artificial tests
(e.g. accelerated exposure to radiation) and tests carried out in more realistic conditions,
exercising many different aspects of the device at the same time. The most extensive of the
test campaigns carried out was at the CC60 facility where multiple devices were irradiated
over several weeks.

6.1 Overview of the CC60 facility

At the CC60 (CERN Cobalt-60) irradiation facility a 60Co source is used to provide gamma
rays for radiation testing of electronic devices (figures 6.1, 6.4, 6.3). The dose rate can be
set between 120 mGy/h up to 20 Gy/h by adjusting the distance between the DUT and
the source by means of a moving table (from 20 cm up to 5 meters).

Figure 6.2 depicts the nominal calibration curve – the relationship between position in
the room and the dose rate at the time the source was installed (2014). However, as the
half-life of 60Co is only 5.27 years, the source activity – and thus also dose rate for any
chosen position – decays fairly quickly. The up-to-date dose rate can be calibrated much
more precisely using a portable ionization chamber.

Calibration. The ionization chamber is first mounted at the desired DUT position, and a
cable is ran to the control room, where a data acquisition system is located. The chamber
is exposed to the source for 10 seconds and the measured dose rate is recorded. Because
the pneumatic mechanism for exposing the source is not perfectly predictable, the dose rate
will vary slightly every time the source is exposed. For this reason, the expose-return cycle
is repeated several times and the result is processed statistically; the standard deviation
is typically about 2 %. Finally, after enough samples have been collected, the ionization
chamber is replaced with the DUT without moving the fixture and the test itself can begin.

Other equipment. General-purpose cabling between the irradiation room and the control
room makes it possible to apply power to the DUTs and perform measurements as they are
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6. Tests and validation........................................
being irradiated (gamma radiation does not scatter, so this cable conduit does not create
additional concerns for radiation protection).

Figure 6.1: Layout of the CC60 facility

Figure 6.2: Calibration curve of the CC60 facility source
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Figure 6.3: A view into the CC60 irradiation room. On the left, a 5-ton “sarcophagus” houses
the 10 TBq gamma radiation source. The source is normally stored in the heavily shielded
bottom part, and is pneumatically lifted to a height of 1.5 m when irradiation is being performed.
A collimator is installed on the front (obscured in this picture) to shape the beam into 30◦

horizontally by 30◦ vertically.

Moving table

60
Co Source

DUT

Figure 6.4: Side view of the CC60 irradiation setup
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Often, USB connection to the DUT is desirable. However, the USB 2.0 specification

limits cable length to 5 meters, which would be insufficient to make connection between
the irradiation room and the control room. For this reason, a pair of active adapters
is provided, enabling tunneling of up to 4 USB devices over an Ethernet cable. This
significantly increases the possible distance. On the downstream computer, the USB devices
are presented as if they were connected directly and no extra software drivers are required.

6.2 Dose irradiation tests of the BatMon

6.2.1 General setup

Two test campaigns have been carried out. The test was set up to mimic standard operation
of the device, with some exceptions. An assembly of the main + sensor boards was used,
however power was provided by a lab power supply to ensure constant monitoring and a
defined current limit. In terms of software, the full functionality was enabled (measurement,
transmission, logging), but the measurement cycle was shortened to collect more samples;
for most of the test, the measurement period was 5 minutes.

The campaigns are summarized in table 6.1:

Campaign Date DUTs tested Dose rate TID to total failure
[Gy · h−1] [Gy]

#1 10/2019 1 2.86 1008.3
#2 01/2020 3 4.00 615.3

820.2
525.2

Table 6.1: Summary of test campaigns carried out at CC60.

Note that in the following plots, the x-axis denotes absorbed dose. As the dose rate was
constant during each campaign, the dose directly corresponds to elapsed time, except for
intervals when irradiation was interrupted.

6.2.2 Evaluation of sensor node lifetime

During campaign #1, the device was working up to a TID of 1008.3 Gy when it suddenly
stopped responding and did not recover even after a power cycle. However, it must be
noted that from 95 Gy onward, the device was running continuously. It was later observed
that the dose after which the device is unable to start up anymore is often lower than the
TID achievable in continuous operation.

For this reason, in campaign #2 the tested devices were power cycled every day (ap-
proximately every 100 Gy). Indeed, the TID before total failure was lower for all devices,
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namely 615.3, 820.2 and 525.2 Gy. The mean lifetime of a BatMon sensor node can be
thus estimated as (654± 151) Gy (sample standard deviation). However, as detailed below,
parts of the functionality degrades or fails at a lower dose.

6.2.3 FGDOS characterization

One of the primary aims of the test was to validate if the FGDOS is performing as expected
and the data is being processed correctly by the MCU. Based on the measured frequency
over time, and the calibrated dose rate at DUT, sensitivity curves were constructed for
several tested devices (figure 6.5).

The qualitative shape of the sensitivity curves agrees with previous findings in [18], but
the spread in the initial sensitivity is somewhat higher than expected. The specified initial
sensitivity of the sensor is 60 kHz/Gy [15], while the statistically derived sensitivity is
(64.33± 6.78) kHz/Gy (ssd).

It worth noting, however, that uncertainties on the order of 10 % and more are not
uncommon in dosimetry, in part because the measured quantity often spans several orders
of magnitude. For example, the beam flux in the CHARM test facility is specified with a
tolerance of 30 %.

Figure 6.5: FGDOS sensitivity vs absorbed dose up to 600 Gy during campaign #2.

6.2.4 LoRa communication

It was shown in test [28] that the used LoRa module performs well even in a high flux of
protons. To complement these findings, quantitative understanding of dose effects on the
module was also sought.
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6. Tests and validation........................................
A LoRa gateway was placed in a cable conduit above the door to the irradiation room at

CC60 (see figure 6.1). The line of sight between the antenna of the gateway and the DUTs
was obstructed by corner of the concrete wall, which explains why the absolute RSSI is low
despite the short distance. Two variables were being monitored:..1. the Relative Signal Strength Indicator (RSSI) of every packet as evaluated by the

receiving gateway..2. packet loss

Figure 6.6 is a plot of packet RSSI over time. Because of the high number of samples,
each sample is plotted with a low opacity. Thus, the RSSI probability distribution at any
given time can be judged from the shading pattern. From the results, it would seem that
towards the end of the test, the RSSI dropped by about 2 dB on average. Due to the high
sample variation and low RSSI resolution, it is not certain if this is due to degradation of
the device, or simply an artifact of the test. In any case, the result is more than acceptable.

Occasionally, one or multiple consecutive packets were not delivered (figure 6.7). This
is especially notable around the 100 Gy mark, when the measurement and transmission
rate was temporarily increased. Because the gateway was placed in the heavily shielded
irradiation room, the test setup presented almost ideal conditions, and the expected
packet loss would be 0 %. Further tests will be needed to narrow down the issue between
hardware, software and the gateway. The used gateway only logs packets that were received
successfully; it is not possible to determine, for example, the percentage of CRC errors.
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Figure 6.6: LoRa RSSI vs absorbed dose up to 1000 Gy during campaign #1.

6.2.5 Flash memory

When communication fails, it becomes the job of the flash memory to preserve the measured
data. Every time a packet is composed for LoRa transmission, the same packet is saved into
the flash memory. The written data is immediately read back and verified; if the writing
was unsuccessful, it is retried up to 10 times in subsequent memory locations.
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Figure 6.7: LoRa packet loss during campaign #1.

Figure 6.8 shows the number of write errors per packet; after 10 errors, further attempts
are not made for that packet. As mentioned earlier, the devices were restarted several times
during the campaign. On boot, the device attempts to detect the flash memory capacity; if
this fails, no attempts are made to read or write any data. In the figure, this is indicated
by a dashed vertical line.

On average, the dose before first failure was (428± 20) Gy.

While this test provides useful data, it is now understood to be insufficient; it will not
detect a hypothetical failure mode whereby already written data was corrupted by radiation.
To check this, the full contents of memory need to be read out and validated periodically
(for example, every 50 or 100 Gy).

6.2.6 Summary

In the tests carried out, the device exceeded expectations by a wide margin. The number
of tested devices was not sufficient to provide full confidence in the quantitative results, but
important lessons have been learned (both regarding the test procedure and device failure
modes) that will be useful for larger-scale qualification. It was found that the flash memory
fails earlier than the rest of the system, and as a result, we recommend that a power gating
transistor be added in the next hardware revision, to improve the lifetime of the memory.

71



6. Tests and validation........................................

380 400 420 440 460 480 500 520 540
0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

rs
 p

er
 m

ea
su

re
m

en
t c

yc
le

Device 1

380 400 420 440 460 480 500 520 540
0

2

4

6

8

10

Er
ro

rs
 p

er
 m

ea
su

re
m

en
t c

yc
le

Device 2

380 400 420 440 460 480 500 520 540
Absorbed dose [Gy]

0

2

4

6

8

10

Er
ro

rs
 p

er
 m

ea
su

re
m

en
t c

yc
le

Device 3

Figure 6.8: Flash write errors vs absorbed dose during campaign #2. The vertical dashed lines
indicate restarts after which the flash memory was found unresponsive (more specifically, the
Read JEDEC ID command did not return a valid value)
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6.3 Test of LoRa reception in the LHC

In January 2020, two LORIX One LoRaWAN gateways were installed in RE18, a shielded
cavern adjacent to the LHC tunnel (figure 6.9).1 Instead of a traditional antenna, which
suffers from a free-space path loss proportional to the squared distance (and if placed in
the cavern, would be completely attenuated by the heavy shielding), a pair of leaky feeder
cables (figure 6.10) was installed, each connected to one of the gateways, leading out into
the tunnel and then continuing in opposite directions. Leaky feeders are commonly used in
tunnel environments, where only short range is needed in directions perpendicular to the
conduit, but a long segment without active electronics is desirable.

MB.C21L2
2372 m
-98 / n/a

MB.B29L2
1960 m

-86 / -120

MB.A32R1
1517 m

-67 / -103

RE18
Location of gateway

945 m
-71 / -63

MQ.19R1
865 m

-90 / -56
MB.A13R1

502 m
-117 / -94

TCL.6R1.B1
219 m

-114 / -85

MBXW.B4R1
66 m

-118 / -92

UL16

-120 / -92

Legend

Location
Distance from IP1 (ATLAS)

RSSI at gateway fcc23dfffe0ab9a8
RSSI at gateway fcc23dfffe0b9cc6

Figure 6.9: Layout of the tunnel around RE18 and the sampling locations. Colored arrows
indicate the direction of the two leaky feeder cables. For each highlighted position, the magnet
name, DCUM, and the two RSSI values are stated.

A BatMon sensor node was configured to transmit a packet every 60 seconds and was
then carried from the entry at IP1 (far east in the map) westwards for about 2.4 kilometers,
stopping regularly to evaluate stable RSSI at selected positions (names of nearby magnets
are reported). The position is reported in terms of DCUM (cumulative westwards distance
from IP1). The results are reported as RSSI of uplink packets seen by each of the gateways,
in figures 6.11, 6.12 as a function of time and DCUM, respectively. From the plots, we
can deduce that the gateway labeled 9A8 is connected to a feeder extending westwards
(direction of increasing DCUM) and conversely for CC6 eastwards from RE18.

Based on the observed attenuation slope between -75 (conservative) and -30 (optimistic)
dB · km−1, peak RSSI at -60 dB close to gateway and a sensitivity of -110 dB for reliable

1Due to the accelerator having been shut down since December 2018, the background radiation in the
tunnel was sufficiently low to disregard its effects on the test.

73



6. Tests and validation........................................

Figure 6.10: Leaky feeder cable. From [33].

reception, the maximum gateway spacing will be between 1.3 and 3.3 km, assuming feeders
spreading in both directions from pairs of gateways. For the LHC circumference of 26.7 km,
we estimate that between 17 and 42 gateways would be required to achieve full coverage.

74



................................ 6.3. Test of LoRa reception in the LHC

11:00 11:15 11:30 11:45 12:00 12:15 12:30 12:45 13:00
Time

160

140

120

100

80

60

R
SS

I [
dB

]

U
L1

6

M
BX

W
.B

4R
1

TC
L.

6R
1.

B1

M
B.

A1
3R

1

M
Q

.1
9R

1

R
E1

8

M
B.

A3
2R

1

M
B.

B2
9L

2

M
B.

C
21

L2
M

B.
C

21
L2

 b
el

ow

9A8
CC6

Figure 6.11: RSSI over time. Magnet names are noted for stationary intervals.
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Figure 6.12: RSSI as a function of longitudinal position.
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6.4 Power consumption test and battery lifetime estimation
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Figure 6.13: Current consumption test result with different operation modes highlighted.
Compare to power state design in figure 5.4. The terms standby and sleep are used here
interchangeably.

The power consumption was tested using a short measurement cycle; however, under-
standing of the device operation permits extrapolation of the results. From the results in
figure 6.13, we can establish:..1. standby current Is = 0.83 mA..2. active current Ia = 15.06 mA..3. active time per measurement cycle ta = 200.6 s (dominated by the time needed to

scrub all memories)..4. charge consumed during initialization Qboot = Iboot · tboot = 1.36 C

Then, for a given measurement period Tmeas, the sleep time will be

ts = Tmeas − ta. (6.1)

We can evaluate average current consumption (post-initialization) as a weighted average

Ī = ta · Ia + ts · Is

ta + ts
, (6.2)

and the expected battery lifetime
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τ =
n ·Q

(
Ī
n

)
−Qboot

Ī
, (6.3)

for n cells of capacity Q connected in parallel. Per [34], the effective capacity of the used
battery depends on current sourced from each cell, and we express Q as a function of the
average current (which might not be strictly correct, but a more accurate physical model
of the cell is not available). Note also, that as a result of this dependency, doubling the
number of parallel cells will not exactly double the lifetime.

Table 6.2 shows the results for selected measurement periods, assuming n = 2 batteries
in parallel. While the results are very encouraging, they will need to be validated also by
long-term (not accelerated) testing.

Measurement period Ī Q Lifetime τ Lifetime τ
[mA] [mAh] [days] [months]

5 minutes 10.31 7900 64 2.1
1 hour 1.62 8200 434 14.5
1 day 0.86 8450 791 26.4

Table 6.2: Predicted battery lifetime at 25 ◦C with 2 cells in parallel. Q corresponds to Ī
2 ;

uniform distribution of the current among cells is assumed.
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Chapter 7

Conclusions

The objective of this work was to advance the BatMon to a stage where the system is
complete enough to enable pilot deployment of nodes in selected areas, mainly by completing
the software package, carrying out artificial tests and discovering potential issues. The
starting point was a conceptual vision for the system, a sensor node hardware prototype
and accompanying basic firmware. During the following months,..1. the remaining required features were implemented in the sensor node software, including

sensor calibration and conditioning, more robust wireless communications, data storage
in flash memory and API for sensor board drivers;..2. additional features were proposed and implemented: serial interface for configuration
using the flash memory as storage, built-in self-test;..3. several tests were carried out, with the side effect of producing a considerable amount
of re-usable utility software, in the form of Python scripts, JupyterLab notebooks and
dynamic spreadsheets;..4. new accessory hardware was designed and produced: battery board, break-out board;..5. documentation of the software and certain processes was updated and extended;..6. a demonstration user interface was developed, which can serve as a basis for a user-
facing application.

The test results demonstrate that the system is able to stand up to the requirements,
sometimes exceeding them by considerable margin (428 Gy TID without degradation;
2 years of battery lifetime with daily measurement). Where problems and limitations were
discovered, improvements to hardware and/or software were proposed. Undeniably, further
tests will be needed, particularly to establish the reliability in SEU-producing radiation
fields and to validate results extrapolated from accelerated tests.

Unfortunately, the worldwide health crisis in Spring 2020 and consequential lock-down
disrupted the planned test campaigns and changed the focus of CERN when it began
re-opening in May. Although this means that the work presents fewer test results than
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originally intended, the additional room allowed deeper discussion of the context and
relevant theory, which may make the work ultimately more appealing for readers without
background in radiation effects and dosimetry.

Nevertheless, the goal of the work, to ensure the BatMon’s readiness for pilot deployment,
has been fulfilled.

Figure 7.1: An assembled prototype of a BatMon sensor node.
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Appendix A

List of acronyms

Acronym Meaning

API Application programming interface
CC60 CERN Cobalt-60
CRC Cyclic redundancy check
DCUM Distance cumulée (distance along an accelerator from a reference point)
DUT Device under test
FGDOS Floating-gate dosimeter
HTTP Hypertext transfer protocol
LHC Large Hadron Collider
LPWAN Low-power wide area network
MCU Microcontroller
MQTT MQ Telemetry Transport, a publish-subscribe network protocol
PCB Printed-circuit board
PSI Paul Scherrer Institute
RSSI Relative Signal Strength Indicator
SEE Single-event effect
SEU Single-event upset
SPI Serial peripheral interface
SRAM Static random-access memory
ssd Sample standard deviation
TID Total ionizing dose
UART Universal asynchronous receiver/transmitter; also used to refer to an

asynchronous serial communication interface consisting of Transmit and
Receive signals.
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Appendix B

Contents of the attached CD

Photos Photographic documentation of hardware and test campaigns
Test_protocols Cited test protocols that are not available publicly
thesis.pdf Full text of the thesis
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