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Abstract
A new formulation is given for the non-commutative geometry on Z.-discrete

space. This is useful for deriving the Brans -Dicke theory for gravi%y on two-
sheeted space-time.

§ 1. Introduction
Recently, in order to build the standard model of particle physics, the
)

non-commutative gecmetry (NCE)1 has been applied to a two-sheeted space-time
M4 X Z2.2) A nice picture of these studies is that the Higgs scalar field is
introduced as an extended gauge field related to the 22 symmetry.

Besides particle model building there are some works on gravity in terms

of NCG on M, x 2

4 2,3) where a scalar field is coupled to gravity. However, the

scalar fields in these works are different with each other. The reason of this
is partially owing to different torsion-free conditions used in their papers,
but mostly owing to lack of proper formalism of gravity in terms of NCG.

In a previous work4) we gave one of such a formalism. We found a proper
definition of affine connection and then obtained the precise Brans-Dicke theory
on M4 X Z2. In this paper we would like to give another formalism, the vielbein

formalism.

§ 2. Differential caluculus on discrete group Zy
1. Derivative
Let A be the algebra of complex-valued function on M4 X Zz, where M4 is

a manifold of four-dimensicnal space-time and Z2 is a discrete space with two

points e and r. Let xN = (xn, x"), n=1,2,3,4, be coordinates on M4 b4 22,
where x° = x°(g), g e,zz, is a coordinate on Z2. We then define a derivative ;%z
on Z, for any element f(x, x'(g)) & A by
. Af(xg, (x9)) ~F(x*(g2 ~f7
o, F(xgn = 7[(, 9 _ f 9) Fexgy) ’C,’C,, s (20
Za Ax(D) X*(G) — XD X
where
AXG)= x'g)~Xg) = X=x, (%3 & Za) (2.2)

is taken to be an infinitesimally small quantity, but it does not have a zero
limit. From this definition we see that the second-order derivative always

vanishes 92192‘;7[: 922( f::;:_// :2—;—.(%-%):: 0. (2.3)

2. Exterior derivative

Let dZ be the exterior derivative on 22. By introducing a one-form X

2
dual to BZ , §K(Bz ) = 1, the exterior derivative on f is defined by
2 2

df=(o,f)x = ij X. . (24.)

In order that the Leibnitz rule is valid for this exterior derivative, we should

add a condition
X = fagrX= §X. (2.8)

Proof

Let us calculate the exterior derivative for products f1f
X
a4, (Fh)= RGRIX = (F-FE) 2

= (ffi- L5 +AE ) D
5y (B + (GF 5 X. (2.6)

2
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e second term viclates the Leibnitz rule. However, if we set the condition

1.5), then the Leibnitz rule will be recovered
&, ) = Fy s~ Aefi o
The nilpotency dé - 0 will be realized if
2

dZO(:: 0. (2.7)

‘his can be seen as follows:
2
d,f= dy, (3,5 %)= 32 XX+ o f dp . (2,8

Since the second derivative vanishes by (2.3), then we have dZ X=0. The
2
equation d, X =0 is different from the usual condition dZQ( = 29X in NCG.
2

In (2.8) the product XX does not always vanish. in the following we assume
XX F£ 0. (2.2)

Both equations (2.5) and (2.9) are characteristic in NCG.
3, Exterior derivative on M, X 22
let d 4 be the exterior derivative on M 4° Then the exterior derivative

on A is given by

é,fj aggf * aézj:
3, dx" + 3 F X (m=1239) (2.10)

i

il

In the following sometimes we use the notation as
df = 9 F dx¥, nN=(mye), AxXT=X. (2.41)

2
From the requirement of nilpotency of d2= 0, di =0, dz = 0 and hence d4dz +
2 2
dZ2d4 - 0, we get

Axndx™ = - dx™ydzx”,

dxa X = - X adx”

However, the one-form i i
X on Z2 with itself is not anticommutative by (2.9)

§ 3. A vielbein formalism

1. Bases

. n
O d ang pa p at a po. p = ( ’ ) 4 -
Let us consider the t, ent space T t int = (X X & M, x 2
1 A( ) ’ = <21y, l
We denote b Y & P A 2,3,4,5 a set of orthonormal bases of T_ and by

ie (p)r N = (“,' ) n = ,2 3,4 a set of geﬂeral coordinate bases of T . The
N ’ 121 _} i

vielbein e® i
in e N(p) is a transformation between them

e =@ e’ -
N A S N @—@NGN ) (@A,$B>=7AB_ (3.1

A metric G i i
vy OF M4 b4 Z2 is then given by the inner product

63;1 = CE;V, & ;} =9, (§v4 6313
" Y “g = MmN (3.2)

2. Spin connection

A spin connecti A e
ion C()L p is introduced by mapping

&, (1+4%, X°) ~

&, (%,2%) + &, (2,20 (W,24 4 %
=, (20,27 + &y (2,22 oq AXT (m=1234) (3.3)
@ (x, X'+4AX") ~ @ (X
; ,2%) — o *

A 2, (2,20) ~ B (220005, ax, (3:4)
where Adx° = x* - x"' i

X x X is an infinitesimally small quantity as well as 4 n

X

Differential forms of them are given by

— B

i G ©na 427, (3.5)
— B

%= E L. (3.6)



Sometimes they will be used in a single form
= 8 N ax’= X,
A€, = & W Fad%

3, Affine connection

i L i i ed by mapping
An affine connection [0 1S also introduc Y
. L ax?
&, (X147, x*) ~ &y (2,x°) + & (XX ) m y
. L ax’ .
&, (% xetaxt) ~ &, (2,27 ~ &, (2.X) [ op
Differential forms of them are given by
L "
dy €y = & [ mm AT,

L
A @ =E [ ™
or simply . N .
d@M=@L/‘NMa’x dx" =X,

2

Substituting (3.1} into (3.12) we get an expression

A N
de, = §ENL [ @ = Gl 4
where

L
A= €%l wm.

4. Covariant-free equation

Wwe derive the covariant-free equation

4 =58 _eArt =o,
vNeAM=9~eAM+CuNB€M &4, v

proof

i t
substituting (3.1) into the left-hand side of (3.13) we ge

de, = d( et,)= de, el + g de’

N
= & W2, Vet &, 3,64 ax

(3.7)

(3.8)
(3:9)

(3.10)
(3.1¢)

(3.42)

(3.13)

(3.14)

(3./5)

= (& w5, €A + &4 9,7, ) dxV

— ejq (BNE’AM + wNAB e BM/) dx”, 0. /6)

where we have used the non-commutativity

azv e’ g) = €4 gy dx = edl dav fo =

(3.17)
Comparing (3.16) and (3.13) one obtains
L A A /
[Agg= €4 Moy = 3,87+ Wis €87, (318)
Note that this equation reduces to the ordinary form
A _ A L
Ve MT 3 Eht WY ~ €A (./9)
if eBM’ = ey i.e., the vielbein is independent of x".
5. Proof of U)NABz-OJNBA
First we prove a)fB = - CL).BA. Let us assume that the inner product of
basis ﬂfA- &PB be invariant under a change g » g'. Then one gets
— . AN
0= & 8- gleg
— C . .
= G- (G- & WS ax)- (8~ & Wp ax*)
= (G & W+ & & wSs)ax"
= (W4 *+ Wepa) AX" =2 Wepg=—Wegyg. (3.20)

Here we have neglected the second-order term 0( 4x” )2

. In the same way one
gets wnAB + wn.BA = 0.

This completes the proof.

6. Covariant-~free equation for GMN
Both equations of VMeAN = 0 and CONAB = —C()NBA are necessary to prove

the equation

V Gun= 2L Gon Tain = Tvem = 0, (320



where

/—MLN = &NK /—kLN- (3122)

If the affine connection FLMN is symmetric with respect to M and N, then it is

well known that [~ LMN is expressed in terms of the metric Gy @S follows:

FLNN= %&LK(‘;MG'KN+9N@KM—9KGMN). (323)

The equation (3.21) is also derived directly by using (3.2), (3.8) and (3.9).
7. Torsion

The torsions TA and 'I‘L are given by

T= d(@No/xN)= d(@eAN dzN)E d/@ EA)
AR + &, dEA
& W, ~E+ & dE?

H

|

1

&, (1E°+ Wy ES) = T4

)
TA = dff+ W AEB, whE W, dxr, A= €7, dzV (3.2%)
ond T = d& dx¥) = dEyn dxV
L
i.e., = eL FLMN dlMA d‘xN = @L T

Tt= b,y axiadx!
= [ dXadxX™ + (=l bom) AXAX + e XX, (325)

Here we have used asd - 0 and 4, X = 0. Since /"L = /‘L and XX # 0,
22 MN NM

we finally obtain

Th=rhaxx. (3-2¢)

In the same way we have

TA= A, %X, (3:27)

8.
8. Curvature formulas
By using (3.7) and (3.12) we have the curvature formulas
dd €, = & R% .28
dde, = €,R"n - (329
R = awig+ Wit w4 = Cu,_"ad:z:"' (3.32)
R = art, + a0, = Myaxt (330
omdl RMy= €M R%e5y. (332)
§ 4. Concluding remarks
We have given a new formulation of NCG on M 4 X Z2. This will be useful

for driving the Brans-Dicke theory for gravity on the two-sheeted space-time.

Namely , if we take the vielbein of the type

q 5 a
A_(Cw €Y (el o
eM_(e‘.' e?)~(0 A)’ (%)

then we get the gravity action

I=L’lem9

DamA OmA mmJ
= [ g [AR - =522, (4.2)
M .
%
which describes exactly the Brans-Dicke scalar field A coupled to Einstein
gravity. In fact this has been already given in another previous workS)by using

the vielbein formalism, but without its proof. 1In this paper, therefore, we

have given a foundation of the vielbein formalism of NCG.
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