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Abstract

Recent works concerning QCD sum rules in nuclear matter have provided a new method
for the calculation of the nucleon self-energy in matter. The results of that program depend
strongly on assumptions made concerning the density dependence of four-quark condensates.
If a factorization scheme is used to express the four-quark condensate values in terms of the two-
quark condensates, the (Lorentz) scalar self-energy of the nucleon is small. However, if the
four-quark condensates have only a weak density dependence, the nucleon scalar self-energy is
large and attractive, and is in accordance with Dirac phenomenology. In this work our goal is
to show how the Nambu —Jona-Lasinio model may be used to calculate the density dependence %
of four-quark condensates. As an elementary example, we calculate some of the contributions
to a four-quark condensate containing scalar-isoscalar qq pairs. These calculations suggest only
a very small modification of the value of the scalar-isoscalar condensate in matter relative to the
value obtained in the factorization scheme. However, when we continue our study of the
correlator of operators with the quantum numbers of the nucleon, we encounter some new and
important terms among the four-quark condensates. These have their origin in an exchange
process between diquarks in the nucleon and diquarks present in the nucleons of the nuclear
medium (nuclear matter). These terms may be taken to represent the effects of "diquark
condensates" that are present in nuclear matter. If we use the interpolating field adve :ated by
Toffe, we obtain a correction that eliminates the problematic density dependence of the four-
quark condensates described above, if nuclear matter contains a similar amount of scalar (T = 0)
diquarks and axial-vector (T = 1) diquarks. We believe that our work provides increased

confidence in the use of QCD sum rules in the study of the properties of hadrons in matter.



. Introduction

Properties of hadrons in vacuum and in matter may be studied using QCD sum rules.
The basic quantity of interest is a vacuum (or nuclear matter) matrix of the time-ordered product
of two "currents". In the study of the nucleon, these currents are interpolating fields,
n(x) and 7(y), that have the quantum numbers of the nucleon. For example, 7 (x) creates three
quarks at the space-time point x and 7 (y) destroys three quarks at the point y. The object of
interest is the Fourier transform of i<\I/0|T(n o ('x))'\l/0> , where |\Ifo> is either the vacuum or
the ground state of nuclear matter. For the moment let us concentrate on quark degrees of
freedom. The evaluation of the matrix element of the time-ordered product may be made using
Wick’s theorem. (Note that normal-ordered products are taken with respect to the perturbative
vacuum.) If there were no condensates, we would only need to calculate the fully contracted
version of the operator T(n (O)ﬁ(x)). However, in the presence of condensates, doubly-
contracted terms and singly-contracted terms of T(n (O)H(x)> contribute. The doubly contracted
terms contain the product of two quark propagators, S(0, x) S(0, x). The third quark then goes
into the condensate, yielding an expression proportional to < qq >, in vacuum, or < qq > 08
in matter of density pp.

Proceeding in a similar fashion, we see that the singly-contracted terms of the Wick
expansion of the time-ordered product, T(n (O)ﬁ(x)) , contains a single quark propagator S(0, x),
while the remaining four-quark ovperators appear in condensates such  as
(Yol Uio gy tys| ¥o). Here, the w's are up-quark fields. 7, j ... are color indices and
«, B =1, ..., 4 are Dirac-matrix indices. The present work is mainly concerned with the

proper evaluation of such four-quark condensates as we pass from the study of the correlator in
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vacuum to the correlator evaluated in nuclear matter. (Note that specific forms of the
interpolating fields, n(x), will be described in Sec. IV.)

A very extensive study of QCD sum rules in matter has been carried out by the group
associated with the University of Maryland [4-5]. We are particularly interested in their results
for the nucleon self-energy in matter {5]. The results may be expressed in terms of a number
of condensates. At the two-quark level (dimension-three condensates) one has <qq> , and
<qTq> ,» Where the subscript denotes the fact that we are forming matrix elements between
states of nuclear matter. (The first condensate has the value
<qq>, = <hu>g = <dd>y = (-250 MeV)® in vacuum.) Dealing only with the simplest
condensates, it was found that the nucleon self-energy had a large, repulsive (Lorentz) vector
part and a large attractive (Lorentz) scalar part [1], a result in correspondence with Dirac
phenomenology [7] and with Dirac-Brueckner-Hartree-Fock theory [8]. The Maryland group
then went on to study various quark-gluon condensates, gluon condensates and four-quark
condensates. We are here mainly concerned with the four-quark condensates, since the results
for the nucleon self-energy are strongly dependent on how these condensates are treated [S].

The analysis of Refs. [2-6] makes use of the factorization hypothesis. For calculations in

vacuum, the factorization hypothesis is represented by the approximation
(— ia 18 . qzs>0 = <_ i (]j6>0 @ky (115>0 - <_ io (115>0 @kv qj,3>0 ’ (1.1

where i, j =1, ..., 3 arecolorindicesand o, 8 =1, ..., 4 are Dirac indices. Here
{4 is either an up or a down quark. Using this scheme, values are given in reference [4] for

the condensates (GT,qqTyq), (a0 NqarNg), (T \ddTyu) , (uT NddT Nu),



<ﬁl‘1u21‘2d> and <EI‘1)\Au2I‘2)\Ad>, where T', and T, are Dirac matrices and the
M (4 =1, ... 8) are the Gell-Mann matrices in the color space. The results for these
condensates are expressed in terms of <qq> , and <qTq> ,- For example, we present Eq.

(A12) of reference [4]:

(arqaTsa), = - (249); [Tr(I‘I)Tr(Q) - Kll—Tr(I‘ll‘z)}

+{qa), (a7,4), [Tr(rorr(v“l“z) - LTr(Ty*Ty + Try*TPTr(Ty) - Nimv“l‘lfz)}

+ <?17#q>p <F['yy(]>p l:T)‘('Yf‘Fl)Tr(-erz) - 7\/1— Tr(')/“FI.Ysz)]

(1.2)
Let us further consider the much simpler resuit that pertains when I'y = T'; = 1. Ifall the g’s
represent either up quarks or down quarks (that is, if (7979) = (uunu),, or

(7999) = (dddd),), we have

(Gaa), - @0 [1 - } , (13

aN

c

- o) (1.4)

for N, = 3. Now, there exists a well-known, model independent, relation [2],

(Gdb, = (@l [1 : ] , 15

mJx

valid to first order in the baryon density pp. Here oy is the pion-nucleon sigma term which
has the value oy = 45 + 8 MeV [9]. Therefore, Eq. (1.5) predicts a reduction of about 35

percent for <(_]q>p relative to <6q>0 . If we insert the relation given in Eq. (1.5) into Eq. (1.4),
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we find that <71(1?1q>p is reduced by about 70 percent from its vacuum value, if we only keep

terms linear in pg. The vacuum value, as calculated using the factorization hypothesis, is
(@ada)y = 111D (g (1.6)
There is an alternative way to perform these calculations. For any operator, O, we may
write [4]
(0), = (0) + (N|O|N)pg + ... (1.7

where pp is the density of symmetric nuclear matter and <N |O|N> is the spin and isospin-

averaged nucleon matrix element of O. [Note that the nucleon states are here normalized such

that <_13/ |ﬂ = @7)°5(P - P').] For example,
@a), = @a)o + WNI7q|N)pg + ... (1.8)

The use of the Gell-Mann—Qakes— Renner relation [10] allows one to rewrite Eq. (1.3) in the

(model-independent) form of Eq. (1.5).

Now, consider the calculation of @(] (_]q>p in this scheme [11]. We have
(qa9a), = aaqade ~ NlaaqalNep = ... (1.9)

It is useful to write the second term in Eq. (1.9) as two terms so that we may identify

corrections to the factorization approximation,
(@aqa), = (Gada)e - AN13q|IN) (Ga)oop + (N1 Taqq | N) cop = .. - (110

If we put (39 qq) = <7](]>3 , the first two terms of Eq. (1.10) are those that would appear in

the factorization scheme. The third term in Eq. (1.10) is a new feature of our analysis and is



defined such that it has its origin in the constituent quarks of the nucleon and does not give rise
to any factors of <§q>0. We suggest that these constituent quarks, and their associated meson
cloud, can give rise to important condensate-like terms, if the momentum of the quarks of the
nucleon is small compared to large momentum, Q2 , characteristic of the sum rule calculations.

In this work, we will concentrate on the calculation of terms such as <N |99 94| N> c and
attempt to understand the size of corrections to the factorization scheme. Therefore, we outline

a method for the calculation of nucleon matrix element of various four-quark operators, making

use of the Nambu-—Jona-Lasinio model [12,13], generalized to include a description of
confinement. To this end, we make use of a quark-diquark model of the nucleon, that is
motivated by the dynamics of the NJL model [14,15]. The organization of our work is as
follows. In Section II we calculate the contribution to <N lqq ?quN)C from the meson cloud of
the nucleon, considering both sigma and pion fields. In Section III we consider the contribution
to (N|qq qq|N) ¢ from the three constituent quarks of the nucleon. We calculate only a direct
term that has a very large statistical factor. The calculation of the corresponding exchange term
is quite complicated. In Sections IV and V we discuss the correlator for colorless interpolating
fields, n(x) and 7,(x), which have the quantum numbers of a nucleon. Section VI contains
some further discussion and conclusions, while various technical details are given in the
appendices. (The reader may wish to proceed directly to Sec. IV, if he is only interested in our
most significant results.)

In our discussion, a problem arises with respect to notation. In the published work on
QCD sum rules in matter, one has (qq), = (uu), = {(dd),, for example. However, in

discussions of the NJL model, the notation used is 7q = uu +dd. Rather than adopt still



another notation, we attempt to make clear, at each point in our discussion, which notation is

being used.



[I. The Scalar-Isoscalar Condensate in Nuclear Matter: Mesonic Fields

In the previous section, upon use of the factorization approximation, we found

(i, = (wu); [1 . } (2.1)

4N,

and

(dddd), = (dd) [1 - ;N] . 2

It is easy to see that (uudd), = (dduu), and that (Gudd), = (uu), (dd), Thus, with

(iu)y = (dd)y

(Wu + dd) (uu + dd)), = 4(uu)y [1 - Tfﬂ (2.3)
At this point it is useful to change our notation and introduce
qq = uu ~dd | (2.4)
so that Eq. (2.3) becomes
Gaddy - @06 |1 - 5| @9

We now write (77q), = (79 q0) + 2(N|7qIN)(3q)ep5 + N17aqqIN) cpp and
concentrate on the evaluation of <N| qq9q9q| N>C , with the new definition of Eq. (2.4). The form
of the operator is such that it is relatively easy to calculate the contribution arising from the

presence of the sigma meson in the nucleon "meson cloud”.



In Fig. 1(a) we represent the operator ¢q qq acting to first destroy and then create a
qq pair. In Fig. 1(b) we show a nucleon composed of three quarks. A string of "bubbles”,
appropriate to the NJL model, is shown. The black dots again indicate the annihilation and
creation of a gq pair by the operator ¢q gq. In Fig. 1(c), the string of quark-antiquark bubbles
has been replaced by a sigma meson via a bosonization procedure {14,16,17]. We remark that
these two pictures may be related by noting the relation

G, _

YT (2.6)

S

which is used in the bosonization scheme [16,17]. (Recall that qq = uu + dd here.) The
coupling constant, G,, appears in the NJL Lagrangian

L0 = GG - g ~ 2 (@7 + GivsTa?]| @7

2
where n”zq is the current quark mass. In Eq. (2.6), g is the sigma-quark (or pion-quark)
coupling constant that arises upon bosonization. ~or the work reported here, we use
m, = 0.30 GeV, G, = 8.40 GeV™>, g =3.05 and m, = 0.50 GeV. Here m, is the
constituent quark mass and m, is an (effective) mass of the sigma meson. (The sigma meson
is a useful degree of freedom if the meson momentum is spacelike [17].)

For simplicity, we will approximate the calculation implied by Fig. 1(c) by taking the
result to be 3 times the values obtain for a single (on-mass-shell) quark, calculated as indicated
in Fig. 1(d). (Since the contribution of the meson cloud to {N|qqqq|N)c is not large, this
approximation is adequate for our purposes. Similar approximations have been used in Ref. [13]

in another context.) We consider the single quark to emit a sigma meson. That meson is

- 10 -



annihilated by the factor gq on the right of ¢¢qq. The factor ¢q on the left then recreates the
sigma meson which then is absorbed by the quark, as depicted in Fig. 1(d). With the labelling

as in Fig. 1(d), we define the contribution to <N| qq9 499 |N>C as

2 gt a1l - ks mHADD)
A, = 382 li] IJ d*k r[@ mIA)] (2.8)

G 4 .
(27) *®2 - m;)z [(p - k2 - m;]

In this calculation the quark is taken to be on-mass-shell. Here,A(")(p) =@ + mq)/ 2mq
appears since we have averaged over the direction of the quark spin.  Recall that
AP () = Yy u(p, s)u(p, s), where the u( p, s) are positive-energy spinors for the quark. The
factor of (g/sGs)2 appears when relating the ¢q operator to the sigma field, as in Eq. (2.6), and

the factor of 3 arises because the nucleon contains 3 quarks. Note that Eq. (2.8) contains two

sigma propagators and a single quark propagator in accordance with Fig. 1(d). We have, for

0

p=0,p°=m,
1 0 0]
A, =3-28%G% | xdx | d4k4 B “* @9
0 (2m) [xkz —xm;+(1-0)@ -k? - (1 —x)m;]
1 0 0
4 m_ +p -k
- 3-24%G%i [ xax | dr 7 L= e
0 (2m) {(k - (1 =x)p)? - xm; - (I-x)mg + x(1 -X)Pz]
P a%! my + xp’
= 6g%G. i J xdx[ ; — S (2.11)
0 (2m) [k’z - Bd}

with B, = xmf + (1 —x)m:; - x(1 —x)pz. Finally
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1

A, = 6g4G;2 i j xdx(m, + xp®)LB,) (2.12)
0
where
L(B,) = J 2124:); [k’2 IB ]3 : (2.13)
p
I N S (2.14)

We find A, = 0.0317 GeV> upon making use of the various parameters listed above.

To estimate the contribution to (3¢ 7¢) , Wwe put

—_ — A7
@gaq), = @ay [1 - ;] L+ o (2.15)
(

a0 ll -

8N,

With pp = (0.108 GeV)’ and {qq) = (u + dd), = -2(0.250 GeV)® , we find that the second

term in the large bracket is equal to 0.0427. That is, we have a 4 percent increase of

<(—]q (_1q> , over its vacuum value due to the sigma mesons of the nucleon’s meson cloud. That
is, of course, a quite small correction compared to that arising from the second term of Eq.
(1.10).

In order to calculate the contribution of the pion, as shown in Fig. 1(d), it is useful to
perform a Fierz rearrangement of the operator gqqq. [See Appendix A.] The relevant
(rearranged) operator is (1/22) [ﬁi'ys q - ﬁi'ys_r.q}, where the factor (1/24) arises from the Fierz
rearrangement. With respect to Fig. 1(e), we have for the contribution to <N| qq 71(1\N>C of

the pion cloud of the nucleon,
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(2.16)

b

< i f k0 (1/2) Tr{w(xﬁ-lt * mq)vsA*(?J')]

Qm* k2 -mk? (@ - k2 - m]]

where the new factor of 3 has an origin in the isospin trace and the factor (1/24) is that arising

from the Fierz rearrangement. Further, with p0 =my and p = 0,

2 J L my - k0 2.17)
Q2w (kz - m72r>2 [(p -k)? - m;]

d* m, + k% - p
@)t [(k - (1 -0pf - xm? - (L-0m; + x(1 —x)pz]3

b

(2.18)

1
i J xdx (m, - xpOL(B,) (2:19)
0

(9]

where B_ is the quantity defined after Eq. (2.11) with m, replaced by m,. We find

A, = 0.0045 GeV3, which is an order of magnitude smaller than 4, and may also be

neglected.
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[II. Calculation of the Scalar-Isoscalar Condensate in Nuclear Matter: Quark Fields in the Nucleon

In the last section we have seen how the use of a Fierz rearrangement simplifies the
calculation of processes that proceed through exchange terms of the scalar-isoscalar operator
qqqq. To study the contribution of the three (constituent) quarks of the nucleon to the
evaluation of (N lgq qq| N> ¢ » itis useful to perform a Fierz rearrangement. This transformation
is then the same as that used when studying the diquark sector of the NJL model [13]. (See the
appendices for further details.)

In order to evaluate <N lgqqq| N>C , one needs a relativistic model of the nucleon. One
model of nucleon structure that is relatively easy to use is based upon the NJL model. In the
study of the diquark sector of that model, one finds a strong attraction in the case of J = 0 and
T = 0 (scalar-isoscalar) diquarks [13]. The energy of the scalar diquark is calculated to be
about 400 MeV in our work. In addition there is a J = 1, T = ! (axial-vector, 1sovector)
diquark whose energy is about 800-1000 MeV. While a satisfactory description of nucleon
magnetic moments will require a significant amount of the axial-vector diquark in the nucleon,
in this section we will study a simple model where the nucleon is composed of a constituent
quark bound to a scalar diquark. For quark masses of about 300 MeV, and a diquark mass of
400 MeV, one needs to provide a model of confinement. We have carried out a study of this
quark-diquark model of the nucleon; however, we will not discuss the details of our calculations
here.

In Fig. 2(a) we show the vertex for a nucleon to go into a quark and a scalar-isoscalar
diquark (double line). In Fig. 2(b) we show the same vertex with the quark on mass shell

(indicated by a cross on the quark line). In general, for an on-mass-shell nucleon of momentum
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P, we may write the vertex as f(P, Q)u(_ﬁ, 5) = [A + BQ]u(—ﬁ, s), where A and B are
functions of two scalar variables. However, since we consider the quark to be on-mass-shell in
our model, we only need matrix elements of the form A(+)(—Q.)IA‘(P, Q) with
A(+)(§) = (Q + mq)/2mq. With that in mind, we can parametrize the vertex by a single
function. We introduce

2E(Q)

re, Qu(P,s) = | —r—
E Q) + m,

172
} (P-0? - mieOP, QuP, 9 .  GD

where ¥(Y(P, Q) is a wave function. Equation (3.1) is valid in the space defined by the
projection operator A{”(Q). In Fig. 3 we show the values of ¥(| Q1) calculated in the
nucleon rest frame (_P. =0, Pl = myy) .

Now, consider the evaluation of the diagram shown in Fig. 4(a). Though a

generalized Fierz rearrangement we relate the operator gqqq to the operator

(Fj—ystcrzC?]T)(qTC'17-2~Y5th) where 5, = iE € Here ey, is the completely

antisymmetric symbol, with €53 = 1, and C =i 70 'y?‘ is the charge conjugation operator [13].
That operator connects the two quarks in the first diquark to the vacuum, as in Fig. 4(a), and
then creates the quarks of the second diquark. We are motivated to study that operator, since
we are here using a quark and scalar-diquark model of the nucleon. T herefore, the matrix

element <N| ((—]75 t.7,Cq T) (q o Tz'yslc(]) | N> will be large. We find upon rearrangement

that
(@9) (@9) = 5 (@vste2CqN(@TC sty + (3.2)

Using Eq. (3.2) in the evaluation of the diagram of Fig. 4(a) yields the expression

- 15 -



2
s ap [dAe-0f]
Ap = ‘4quq J (27r)3 { i (ﬁ)
(3-3)

0 - m 2E (O _
x (3)7r H}Z_”Y} A“’(Q)} s L T
EfQ) E[Q +m,
in the nucleon rest frame. Here, the factor of 4 is a statistical factor and the factor of (1/24)

is that appearing in Eq. (3.2). We have used the fact that the quark of momentum Q is on-

mass-shell so that we may make the replacement

L L M (cams(e0 - E DD (3.4)
Q- mg~ie  EJQ)

Further, J 7(((P - Q)z) is a basic quark-loop integral of the NJL model [13],

d*k

o P2 bysSkyvs (3-3)
T

J(P-0)?) = NCNfTriJ

Here Nf =2 and N, =3. In the nucleon rest frame, we have the contribution to

(N179949|N) ¢,

2
ap = 24 [ oo (-0 PP -9
™

where Q = |§| . Here the factors (m/E ) [2E q/ (E,+m q)] have been cancelled by the factor
arising from the evaluation of the trace that appears in Eq. (3.3). We note that for small
qz, Jw(qz) = 0.118 + 0.132(12 (GeV?) with q2 in units of GeV?. From our other studies,

we found that g5, = 7.57 GeV™*. With m, = 0.305 GeV , we find Ap = 0.0276 GeV?3 .

We may now generalize Eq. (2.15) to read
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- = - 1 A_+Aplo

(7939), = (q0)% [1 "Wl |t ) f + 3.7)
— \2
(qq) | 1 T

(Recall that here qq = uu + dd .) The second term in the large bracket is small and may be

neglected.

For future applications, it is useful to introduce Csp = (24)Ap, where

Cop = (¥1[1e7235¢7 ][ 7€ 15matc0] 1) e

= 0.662 GeV? . (3.9)

As we will see, Csppp plays the role of scalar-isoscalar diquark condensate of dimension 6 and

is to be classed with other four-quark condensate terms.
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IV. Nucleon Correlators for Nucleons in Nuclear Matter

As usual, we define the Fourier transform of a time-ordered correlation function of

nucleon interpolating fields, 7 (x) and 7(0), to be a nucleon correlator [1-6],

(W = i d“xe"q'x<\1/0|T[n(x)ﬁ(0)H\1r0> . “.1)
A four-vector u* is needed if |\Ifo> represents the ground state of nuclear matter. This vector
describes the flow of the matter. In this case there are two Lorentz-invariant quantities, q2 and
qg-u. If |\I'0> denotes the vacuum, only q> appears as a Lorentz-invariant. Note that
TI(qg, 1) has two Dirac indices corresponding to the Dirac indices of the operators 7(x) and

7(0). Various forms for n(x) may be used. Some found in the literature include

M) = eapefita (0 Crsdy () U@ 4.2)
T
M) = €qpefity (0 Cdy(0) s ® (4.3)
and
T
1) = Capeltta () Cr, i, 1574 dc() (44)
Here a, b, ¢ . . . are color indices, u(xj is the up-quark field, d(x) is the down-quark field, and

C=1i 70 'yz is the charge conjugation operator. We will call n(x) the Ioffe current [18]. (Note
that 7(x) = 2[n,(®) -1, 1)
In this work we will study the nucleon correlators for the fields 7, (x) and 7n(x). First,

we note that in the study of nucleons in nuclear matter we can write
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(g, u) = (g%, ¢ - w) + %, q - wd+T,(q%, q - Wi (4.5)

where, as above, u, is the four-vector describing the flow of nuclear matter. Following, Ref.

[4], we may also divide II(q, ) into parts that are even or odd in ¢q - u:

L(g2,q-uw = (g%, (- w)+ (- wI (g2, (- w?) . (4.6)
0% ¢ w = Io(g% (g - w?) « @ - w1 (g%, (g - w?) @.7)
g2, q-uw = (g2, (g - w?) +(q - (g%, (- w?) . 4.8)

For ease of reference, we reproduce some results of Ref. [4] for the even functions of
(q - u). (We present only the most important quark condensate terms and a familiar gluon

condensate term. The complete expressions are given in Ref. [4].) We have [4]

Hf(qz, (q- u)z) = _.1_2q21n(— q2) < aq>ﬂe ... 4.9)

dx

E
M (g% (g - w3 = - ——q*In(-¢?
6471

- in(-¢Y <ﬁc;2> (4.10)
2% 7(' op
2 =N =N
3qz<(1(1>p3 ?<qﬁq>pg
E —
(g% (q - W?) = 3—2,(121n(—q2)<qwq>p8+... . @.11)
T

Note that here < qq > g = <uu> op = <dd> pg EIC: Also, all polynomial terms that vanish
under a Borel transformation have been neglected in these expressions. The four-quark

condensates have been obtained using the factorization approximation. The problematic term
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: . E . . - 2. . - 2
is the third term of II. Itis seen thatif <qq > g 10 Eq. (4.10) is replaced by < gg > the

satisfactory results of Ref. [1] are preserved [5]. In this work we will discuss corrections to
Eqs. (4.9)-(4.11) that involve "condensates” that have not been considered previously.

Let us now consider the evaluation of Eq. (4.1) in the case that the Ioffe interpolating
field of Eq. (4.4) is used. We now calculate the four-quark condensate terms that do not appear
in Eqs. (4.9)-(4.11). One such term is obtained if we consider a contraction between the two
down-quark fields, 2(0) and d(x), with all the up-quark fields appearing in the nucleon matrix

element. To carry out this calculation it is useful to write the Ioffe current as

n() = - E [q T@(Cv,)

We insert this expression into Eq. (4.1) and consider a single contraction between the down-

%

1+T3

2

] (i@q(x)] (vsv*d ) (.12)

quark fields to obtain

g0 = 5@ [?1(0)(7“C> [ ‘ ;_’*‘} (z‘u)?ﬂ«»} [q o (c,) [‘;’3] <itc>q(0>]>

Pp
\

«(wl 700+ [ 1;’3] <irc>?1T<0>} [q To)(c,) [ s

] (z‘rc)qm)} | ) o5

(4.13)
with S(q) = q/qz. The first term of Eq. (4.15) is evaluated using the factorization

approximation and the result is

M (qu = -2 4 <uu> (4.14)
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—~ .

4 (<uu>g-2 <N|uu|N> <uu>gopt...) . (4.15)
.

Wit

Consideration of other singly-contracted terms does not change this answer. The expression

given in Eq. (4.14) appears In Hg of Egq. (4.10), where the notation
<qq> = <uu>y = <(_id>0 is used.
It is useful to define
- —T - =, 4.1
Cop = (M(3ar) Fror0a?) - (g7 L) @B gy . @19

In a calculation to be reported elsewhere, we found Cyp = 0.380 GeV?. (Note thatCypop
plays the role of an axial-vector diquark condensate.)

The evaluation of the second term of Eq. (4.13) yields a contribution to II(q, u) that we
call TI,(q, u). Both II,(g, u) and TI,(g, u) contribute to TI. of Eq. (4.10). We note that the

nucleon matrix element in Eq. (4.13) may be shown to equal Cyp/6. Therefore,

I, (q, u) = %4 CvpPp (4.17)
.

4.18

= 0.0211 4 pp (3.19)

q

Inclusion of all other singly-contracted terms adds a correction to Eq. (4.17), so that Eq. (4.17)

is replaced by

Hz ((], U) = 3_16 i’, CVDPB . (4~19)
g2

Now let us continue to use the Ioffe interpolating field, but allow for the presence of

scalar-isoscalar diquarks in nuclear matter. After some calculation, we find



(g, ) = - [‘Z‘ :7‘ CSDPB] o + {%%CVDPB} 6 (4.20)

with o +B8% = 1. Here, o represents the probability of finding a nucleon composed of a
scalar diquark and a quark, while % is the probability that the nucleon contains a quark coupled
to an axial-vector (T = 1) diquark. A study of nucleon magnetic moments in a quark-diquark
models leads us to believe that ot = 62 ~ (.5. With that in mind let us write Hg(qz, g - u) of

Eq. (4.10) as

(g% (g w?) = —a‘jmzﬁm-qz)

1 2 Ay ~2
- L) <=G >,
327 L

- _3;_ (@) +2 (NlTul N) (oo (4.21)

- {%CSDPB] ot + { 1ﬂCVDpBlBZ
9q~ 36q-

- ";ﬁmﬁig

3
Upon using Cgp = 0.662 GeV3, Cyp = 0.380 GeV>, <Nluu[N> = 4.08,
<uu>g = -(0.25 Ge\/)3 and o = g2 = 0.5, we find that about 75 percent of the

problematic term in Eq. (4.21) is cancelled. Thus, we can write
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mg(g2 (g w?) = -

1

— (¢ In(~¢?)

-_Ln-¢h<Zac >,
T

5
327"

(4.22)

B

2 /= \2 4 /= 2
- 2 (uu)y - gwfﬁps

to a good approximation if the parameters are as we have indicated.

This is a most satisfactory result, since it implies that, while < qq>, goes over to

<qq> o8 in matter, the four-quark condensates effectively remain at their vacuum value. This

is the situation in which the properties of the nucleon in matter found by QCD sum-rule

techniques agree with the results of Dirac phenomenology. (See the discussion of Section III

of Ref. [5].)
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V. Interpolating Fields Containing Scalar-Isoscalar Diquarks

In this section we will use some of our previous results to investigate the dynamics of
four-quark condensates when we use a different interpolating field. To this end, let us recalln, (x)

of Eq. (4.2) and write

T -
M) = - g0 C s dy 0|4 @eae (5.1a)
and
= - =~ —T
T = = ) dy ()75 Clt, (O)egrpr o (5.1b)
as a proton interpolating field. (Note that cl=-C-=- i'yoyz here. Further C' = -C.)
With our definition of (r.),, = iy3/2 €., and noting that CcT = - C, we may also write
- 2
10 = -_;E[q T Cl syt g -2
and
- - = - 5.2
7 () = —;Ew)[q(x)rcrm c7’w] . 5-20)

We see that Eq. (5.2) describes a scalar (T = 0) diquark coupled to an up quark. Now define

the correlator for the fields 7, (x):

. (] * - 5.3

(g, = i | dxe (%o |7l 07, 0) %) e

Again, |‘If0> may be either the vacuum or the ground state of nuclear matter. We will first
concentrate on the term where the large momentum, g* , is carried by the up quark on the far

right of Eq. (5.2a) and by the up quark on the far left of Eq. (5.2b). Thus, we have a

contribution to I1(q, u):



O(g,u) =i J d4xe'd °X<T(u(x) E(O))>(_é) 5.0

X <\P0|[5(0) CysTyl.q T(O)] [(1 Toyc! 75fc72(1(0)]l‘1’0>

- -¢5@ {<[71(0)0751sz5 "olldToc 75‘CTZQ(O)]>

Pg

(5.5)
+<N|[6(0>Cv5rztcr7T<0>Hf1T<0>C"vsfcfz<1<0>]lN>ch} ’

where S(q) = ¢/q? is the Feynman propagator. The first term of Eq. (5.5) will contribute to
II,(q,u), as in Section IV. That term is calculated in terms of <5 (O)q(0)>p3 and
(qT(O)q(O)>pB by using the factorization scheme, while the second term is defined such that it
does not contain a factor of <6(O) q(0)>0 . The second term, which contributes to II, (g, u), may

be easily evaluated, since we have given a value for the quantity Cgp, in Eq. (3.8). Thus, with

II(g,u) = II;(q,u) +II,(q, u) , we have for the second term of Eq. (5.5)

Mg, u) = ~ =L Csprg (5.6)
6 2

= -0114 0, (5.7)
o

upon using the value Cgp = 0.662 GeV> found previously. As we will see, this term is
large compared to the vacuum value of II,(q, u) to be given in Eq. (5.13). (Other singly-
contracted terms significantly modify this result - see Eqgs. (5.14) and (5.15).)

Now let us wuse the factorization scheme to calculate
<[2 ©0) Cyst.it TO)][uT(©) € ys2,d(0) ]>p3 . (If we multiply the result of this calculation by 4,

we obtain the first term in the bracket in Eq. (5.5).)
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We note that, with gq either uu or c—ld,

dap -
(Goatln),, = 2| <7903 o <T1,0> 05 P 5.8)

when N, = 3. For simplicity, let us keep only the first term on the right-hand side of Eq. (5.8).

Then

<[2(O)C75tcﬁ T |[u T(O)C'1~/5tcd(0)]>p3 = (CY5)ag U )ap(CT5)35 (1 ear

= -T T
< (1,000, Oy @) s .
- (C’Ys)ag(tc)ab(C'l75)75([6)[1/1)/[ «50ay" 08y Opa ] (12)(12) (dd >ps<uu . (5.10)
= L(au)g - 2w (NIl Moy -] (5.11)

where we have used <2d>0 = (Eu}o. Thus, to first order in pg,

I,(q, u) = —é_‘%{(ﬁu\/g+2<Eu>O<N|Eu|N>pB} , (5.12)
q
- -l A4 Gy 001 L 1 : (5.13)
6 q° (]

Again, other singly-contracted terms modify this result. If we include all possible singly-

contracted terms in the calculation of Eq. (5.3), we find that Eq. (5.6) is replaced by

(g, u) = - 24 Cspop (5.14)
q-
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= 0172405 . (5.15)
2

The contribution of an axial-vector condensate is very small if the interpolating field
n,(x) isused and we drop that contribution from consideration. (We found
I (q, ) = (1/576)Cyp(4/q*)pp.)

If we include all possible singly-contracted terms we also find that Eq. (5.12) is replaced

by
(g, ) = - 2 L {(au)y - 2iau)o (N au Nz} (5.16)
e
- "5’%%<Eu>g+0.037—&%p3 , (5.17)

to first order in pp. The result for II, (¢, u) given in Eq. (5.16) agrees with the corresponding
term that appears in Eq. (2.18) of Ref. [5]. There the value of the correlator is presented for

the current

7,0) = 20, () + 9,0} . (5.18)

By taking r = -1, one obtains the result for the Ioffe current. One can also obtain the result for
the current 7, (x) by isolating the terms of order 1 in Egs. (2.16)-(2.21) of Ref. [3].

The result given in Eq. (5.7) is quite large when compared to the second term in Eq.
(5.17). If we were to put o* = 0.20 and 8% = 0.80 we could eliminate the density dependent
terms from Il(q, ) = II,(q, u) +1I,(q, u). However, we have argued that o® = 0.5 and
B% =05 is probably close to the actual situation. With the latter choice, we would still have

a large density-dependent term of sign opposite to that in Eq. (5.17). It may be that the
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coupling of the interpolating field n, (x) to the scalar condensate is so large as to preclude the
use of that field in these calculations. For example, II,(q, «) of Eq. (5.15) is about 3 times the
vacuum value of the four-quark condensate. (Note that (- 7/24) < Eu>g =071 x 107* GeV6,
while from Eq. (5.15) we have -0.172pp5 = 2.17 X 1074.) Therefore, it is not possible to
assume that we are calculating relatively small corrections to the vacuum value of the four-quark

condensate in this case.
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VI. Discussion

Of the various results presented in this work, that of most interest was given in Section
IV. There we saw that, if we use n(x) of Eq. (4.4) as the interpolating field, and we also use
a model of the nucleon in which a quark is coupled to both a scalar and an axial-vector diquark
with equal probability, we obtained a density-dependent term that cancelled the density-
dependence of the four-quark condensate that arose in the factorization (or mean-field)
approximation. This was a particularly satisfactory result in that it corresponded to the situation
where the QCD sum rule studies reproduced the results of Dirac phenomenology [5].

In this work we have stressed the importance of the proper calculation of four-quark
condensates in studies of the nucleon self-energy in matter. Another example where one can see
the importance of the four-quark condensates is in the calculation of the properties of the rho
meson in nuclear matter [20]. Jin has recently provided an expression for the change in the
longitudinal part of the rho polarization operator in matter [21]. If one includes condensates up

to dimension six, the terms linear in pg are (with Q2 = - qz) ,

ATI(Q?) = T,(Q2, pp) - I,(Q%, pg = 0) 6.1)
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= _2(N|qq|N)og

Q4
- — (M2 6, 6# 1N
24Q* T
(6.2)
My u+d 224 - _
« oy g - 22 wa{qq)y (N179IN)eg
40 810
3
5mN u+d
3 Ay Pp
240

In Eq. (6.2) and in Ref. [21], the notation {gq), = (uu), = (dd), is used, as well as
<N|?1q|N> = <N|ﬂu +(_1d|N>/2. In Eq. (6.2) Aé”d and A;”d are moments of structure
functions that may be obtained in the study of deep-inelastic scattering and s, is the current
quark mass. The fourth term in the above expression arises from the approximation
<71q>i - <71q>§ = 2<71q>0 (V| 7](1{N>p3. The values for the various quantities appearing in Eq.
(6.2) are given in Ref. [21]. One has (N|gq|N) = oy/(2/m,), with oy = 45 MeV and
M, = 5.5 MeV. Further <N|(as/7r)GWG“”|N> = -0.650 GeV, Aé”d = 0.938 and
AYT4 = 0.121 (ata scale x> = 1 GeV2.) The value (qq), = (- 0.245 GeV)? is used, as
well as oy = 0.3.

If we evaluate the right-hand side of Eq. (6.2) using the numbers given above, one finds
that the fourth term, which is calculated in the factorization approximation, is at least five times
larger than any other term, if we take 0% = 1 GeV?. This observation again points to the need

for a proper calculation of the four-quark condensate terms. Some discussion of four-quark

condensates and their importance in the calculation of a vector-isovector current correlator is

given in Appendix C.

- 130 -



Acknowledgement

This work was supported in part by a grant from the National Science Foundation and

by the PSC-CUNY Faculty Award Program of the City University of New York.

- 31 -



Appendix A

In this appendix we indicate how the Fierz rearrangement of various operators of the

form qT';q qT',q may be made. Here we adopt the notation of reference [19] and define

Supsa’g = lagla’p’
Pug.o'g! = Urs)agi¥s)y/ g/
VaBia/ g = (7#)0,5(')’#)&/6/

Aug.o’g = (Vu¥)ag (Y Y5)y/ g/

[QB;Q/B/ = (U‘LV)QB(U‘“/)Q/B/
One has [19]
_ 1 1
[S]aﬁl;a/B = z[s +V o+ El‘—a—p}

OIB, a/B/

1 1
Plagafs = =55 7V * 304

o8, a/B/
1
Mgl ols = Z[45 -2v -2a + 4p]a6’ o' B!

[,y .ol = -%[43 + 2y +2a + 4pLBy o5

We also need the relation for SU(2) isospin:
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(A2)

(A3)

(A4)
A

(AS)

(A6)

(A7)

(A8)

(A9)



1 .z A
lfg/lgf/ =3 lff/ lgg/ T T Tl (A10)

and the relations for SU(3) color:

8
- 3 : Dt N All
lgtles = 3l legr 5; Nt Wt (Al1)
8 16 LS "
i i - _ ; ; A
Z;O\ )fg’ (A )gf/ - 1ff/ lgg’ 3,2___; 0N )ff/ A )eg! - (A12)

As an example, we now consider the operator qq qq and obtain the part of the Fierz
rearranged form that is proportional to 711'757(] . ﬁin?q. Using Eq. (A6), (A10) and (A11)

- F.R [ W\[it\M[1\y=: = = Al
qq9qq " _ ( Z)(E)(?)MWS 7q) - (qivsTq) + ... (A13)
- _2%@'75?(1) (qivsTg) < ..., (Al4)

where a minus sign appears due to the change in order of the fields.

Now consider the rearrangement of the operator (gq)(gq) into a diquark-diquark

structure. Keeping only the term proportional to (q7,¢,.v5Cq (g Tc "175 t.7,q) we find

(M@ @oln) LCpeo.. . (ALS)

0.023 GeV3 (A16)

b

using the value Cgp = 0.662 GeV? given previously.



Appendix C

As an example of the modification in the calculation of four-quark condensates implied
by our formalism, let us consider some contributions to the vector-isovector polarization tensor

defined in Ref. [24]. In this case the current is J “ x) = q) 7#T3q(x). We also put
Q) = (@*q” - ¢*q*),g?) €

and consider the calculation of II;)(q 2y The contribution of the two diagrams of Fig. 5(a) (and
the ones with the fermion lines reversed) is denoted as Hgg(qz) in Ref. [24]. For ease of
reference, we use the notation of Ref. [24] in this appendix. There, 4, B, . . . are flavor
indices, «, 8, . . . are color indices and i, j . . ., are Dirac indices.

Central to the calculation of Ref. [24] is the factorization of the matrix element of a

general four-quark operator. The vacuum matrix elements are approximated as
—4—-B C D 1 o « [N & —A_ A —B _B
<qaaq3bqycq5d>0 = 2210409804508y 0adlbe ~ 0‘4c031)5w5350ac5bd]<(1 a0 a8q8), . (€2

where <(_1AqA> contains an implicit sum on color indices.

With the approximation of Eq. (C2), it is found that

M, 2y _ g2 = \2 A A
T, N(q7) = ~ ——=— W) \16Triy gy y\dv, | = 16Tr|v dr\y 47" (C3)
®) (144)(12)(13\ /0{ [ >\17u] [ 7 0N ]}
- _._131 g (@u)y _q16 . (C4)

On the other hand, our analysis requires that we expand the operator on the left-hand side
of Eq. (C2) in such a manner that one can sum over the color, flavor and Dirac indices. In that

general expansion, let us pick up only the term proportional to the operator qq ¢q. We write
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IT

—-A-=B Cc D N IN N - .
Daa9p9ycdsd = %,OADOBC‘Baa%yoad‘Sbc((l qqq *--. - (©5)

To obtain the factor I/N, weputA =D, B=C,a =§,8 =+v,a =d, b =cand sum
over A, B, o, 8, a, b. Thus, we find that N = 4(144). In Eq. (C5) the dots indicate that there
are a large number of operators in the expansion that are not shown.

Now we use Eq. (C5) in equation VI.52 of Ref. [24], with the result that

2
1 —_ =
@ = - S .. <(1(1(1(1>p{16Tr[7"417“wfnu]-16Tr[vu47wxdn"]}*--- (C6)
(4)(144)(12)q ’
16T - = 1
- 1oT < > el 7
Sy o <1979>, = + ©

We write, for nuclear matter,

<qqqq>,, = <q9qq>q + 2<N|qq|N> <qq>gp + <N|qqqq|N>cop ~...

(C8)

so that, keeping the term linear in the density, we find

! 16 T
T = - p i

<z7u>(2) +2<uu>y < Nluu|N>pp +% <NIqqqq|N>cpg| (C9)

The expression given in Eq. (C9) is to be compared to the result for nuclear matter based upon

the factorization scheme,
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my, 2 16 TQ - 2
H@)((I )=? (16S <uu>p

(C10)

b

16 Qg

(]6

. (<Eu>g+2<ﬁu>0<N|Eu|N>pB+...> : (C11)

(Equation (C10) follows from Eq. (C4) upon replacing < uu>, by <uu> ,-) We note that
for a complete calculation one should estimate the contribution of the various operators (other
than ¢q qq) that contribute to the expansion indicated in Eq. (C5).

As another example, consider the result for the mixed condensate shown in Fig. 5(b).

The result given in Ref. [24] is

327(‘ as

2, 2. _ - 2
q
for a calculation made in vacuum. This result arises from the evaluation of
_ x(l _ a
<q'y'“7 qq 7#_2_ q> using the factorization scheme.
0

We now consider the matrix element of that operator taken between states of the nucleon.

Upon use of Eq. (A15), we may obtain the value of that matrix element as

_— )\(1 —_ I\(l
<quv“7quu7_q IN>C = -%CSD+... , (C13)

where Cgp, was defined in Eq. (3.8). Upon making use of our previous result given in Eq.

(3.9), Csp = 0.662 GeV>, we have

<N| gy, Xq N> = -0.074 GeV® . (C14)
2 ) C
This result may be used in the evaluation of the mixed condensate term of Fig. 5(b). (See pages

237 -



184-185 of Ref. [24].)

As another example, we discuss another contribution to the polarization HEB(qZ).
Consider the term in the expansion of the general four-quark operator of Eq. (C5) that is of the
torm,

-A-B C D . . - —.
Q9a 966 Dyc D3a = %(l’Ys)da(l‘Ys)cb(Tj)DA(Tk)c35a5537 ((Il’YsTj(I) (qivsmq) + ... (C15)

with N = 4(144).
We use this term in Eq. (VI.52) of Ref. [24]. Since the calculation of Ref. [24] is made
tfor the polarization tensor of the p® meson, we need to evaluate

Tr[7'3 TjT3 Tk} = = 25]1( + 453153,( . (C16)

Further, in the case of symmetric nuclear matter we can write
(N1(@ivs739) (qivsT39) | N) . = < (N(qivs ) - (qivs ) [Ny . . (CIT)
Then using Egs. (C16) and (C17) we have

_ gX(-213)(8)

1148 (12)¢° {Tr [VX"I v (i75)7>\'/17“(i75)] - Tr [vuﬁ'y)\(i'ys)'y)‘ﬂ'y“(ik)]}
q

M, 2y _
I, (g9 =

X (N|(qivs7q) + (qivs 79) | N) .op

(18)

Here the factor (-2/3) is an isospin factor and 8 is a color factor. Now use
Tr[vmv““yxﬂv,i = 16q° (C19)

and
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Tyt = 640> (20

to obtain
1, 2, . 4w o5
H(p)(q ) = —ﬁ-gcvrpB s (C21)
q
41 Qg
= ﬁ? 08 (C22)

where C_ = <N|((_]i'y57q) . (5i'y5—r}])|N>C. From our previous work, we had found
C,. = 0.108 GeV> . Then, we see that the contribution of Eq. (C21) is quite small compared
to the fourth term on the right-hand side of Eq. (6.2) and, therefore, may be dropped from
consideration.

A more complete discussion of QCD sum rules for the vector-isovector current

correlator, H?p’;, will be presented in Ref. [25].
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Fig. 1.

Fig. 2.

Fig. 3.

(b)

©)

(d)

(e)

(b)
(©

Figure Captions

Schematic representation of the operator qq qq, which annhilates and then
creates a (¢ pair.

A nucleon (heavy line) is composed of three constituent quarks (light
lines). The string of gq "bubbles" may be summed as in the NJL model.
Alternately, a bosonization scheme allows one to work with meson fields
that are represented by a wavy line.

The calculation implied by figure (c) may be simplified by considering the
contribution of a single quark. (See text.)

Similar caption to (d), except that we here consider the contribution of the
pion field. That contribution to the scalar-isoscalar condensate is nonzero
only due to exchange matrix elements.

The vertex for a nucleon of momentum P to decay (virtually) into a quark
of momentum Q and a diquark of momentum P - Q.

The cross denotes an on-mass-shell quark with QO = [@2 + m;]l/z.
An equation to determine the vertex shown in (b). Here V, is a confining
potential and the last term is the exchange interaction extensively studied
in the literature [15]. (Here the wavy line denotes a photon and crosses
again denote on-mass-shell quarks.)

The wave function ¥¢*(} Q|) that parametrizes the nucleon-quark-diquark

vertex when the quark is on-mass-shell. [See Fig. 2(b).]
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Fig. 4.

Fig. 5.

AT (P, Qu(P,s) = A (Q) [

(b)

(a)

(b)

2@(@)

E Q) +m,

} (P~ -mi[¥ P, QuP,s) ,
where A(+)(§) = (Q+m q)/ 2m q) . In the nucleon rest frame we write
¥UP, Q) as ¥ Q).

Evaluation of the direct term for the operator of Eq. (3.2). Here the
double line is a scalar-isoscalar diquark and the heavy line is a nucleon.
The filled circles were defined in the caption to Fig. 1.

An exchange term that appears when evaluating the matrix element
(N7qq4IN).

Two diagrams that contribute to the rho polarization tensor in vacuum.
(See Ref. [24], page 177.) There are two additional diagrams with the
fermion lines reversed.

A mixed condensate term that contributes to the rho polarization tensor.

(See page 184 of Ref. [24].)
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