EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Letter of Intent to the ISOLDE and Neutron Time-of-Flight Committee

Development of neutron-rich Tl beams for nuclear structure studies beyond $$^{208}\mathrm{Pb}$$

21 September 2020

A.N. Andreyev¹, S. Antalic², A.E. Barzakh³ D. Bazzacco⁴, G. Benzoni⁵, A. Blazhev⁶, J. Billowes⁷, C.
Clisu¹⁵, T.E. Cocolios¹⁰, J. Cubiss¹, T. Day Goodacre⁷, G. de Angelis⁹, H. De Witte¹⁰, D.V. Fedorov³, V.N.
Fedosseev¹¹, K.T. Flanagan⁷, G. Georgiev¹⁷, A. Goasduff⁹, A. Gottardo⁹, T. Grahn¹², P.T. Greenlees¹²,
R. Heinke¹⁰, M Huyse¹⁰, Z. Janas¹³, P. John⁹, J. Jolie⁶, R. Heinke¹⁰, R. Lica¹⁵, S. Lenzi⁴, N. Marginean¹⁵,
B.A. Marsh¹¹, C. Mazzocchi¹³, D. Mengoni⁴, C. Mihai¹⁵, D. Napoli⁹, G. Neyens^{10,11}, C. Nita¹⁵, J.
Pakarinen¹², S. Pascu¹², R. Perez⁹, Z.Podolyak¹⁶, R. Raabe¹⁰, P. Rahkila¹², E.Rapisarda¹¹, P.H.
Regan¹⁶, P. Reiter⁶, S. Rothe¹¹, C. Shand¹⁵, M.D. Seliverstov³, C. Sotty¹⁵, I. Strashnov⁷, J.J. Valiente-Dobon⁹, P. Van Duppen¹⁰, P.M.Walker¹⁶, N. Warr⁶, K.D.A. Wendt¹⁴ and K.Wrzosek-Lipska¹⁰, N.
Pietralla¹⁸, V. Werner¹⁸, J. Wiederhold¹⁸, I. Zanon⁹, D. Brugnara⁹, G. Pasqualato⁹,
R. Zidarova¹⁸, U. Ahmed¹⁸, R. Kern¹⁸, T. Stetz¹⁸, T. Beck¹⁸

¹University of York, U.K., ²Department of Nuclear Physics and Biophysics, Comenius University, Bratislava, Slovakia, ³Petersburg Nuclear Physics Institute, Gatchina, Russia, ⁴INFN, Sezione di Padova, Italy, ⁵INFN Milano ⁶University of Köln, Germany, ⁷University of Manchester, U.K., ⁸University of Surrey, U.K., ⁹INFN, Laboratori Nazionali di Legnaro, Italy, ¹⁰IKS-KULeuven, Belgium, ¹¹CERN-ISOLDE, Switzerland, ¹²University of Jyväskylä, Helsinki Institute of Physics, Finland, ¹³University of Warsaw, Faculty of Physics, Poland, ¹⁴Institut fur Physik, Johannes Gutenberg Universitäat, Mainz, Germany ¹⁵IFIN-HH, Romania, ¹⁶University of Surrey, UK ¹⁷IJCLab/IN2P3/CNRS, Orsav, France ¹⁸TU Darmstadt, Germany

> Spokesperson(s): Andrea Gottardo [andrea.gottardo@lnl.infn.it], Razvan Lica [razvan.lica@cern.ch], Reinhard Heinke [reinhard.heinke@cern.ch]

A.N. Andreyev [andrei.andreyev@york.ac.uk] Local contact: Razvan Lica [razvan.lica@cern.ch], Sebastian Rothe [Sebastian.Rothe@cern.ch]

Abstract

We ask for the development of ²¹⁰⁻²¹⁶Tl beams. This will pave the way for future studies of the structure of neutron-rich nuclei beyond ²⁰⁸Pb, by means of isomer and beta-decay spectroscopy at the IDS decay station. Availability of Tl beams will also open the possibility for nuclear radii, moments and masses in this relatively unexplored region.

Requested shifts: 9 (one per isotope)

Introduction

The region east and north-east of ²⁰⁸Pb (trans-lead region) has been difficult to access as only very specific production techniques can be applied here. Isotopes in this region can be effectively produced by ²³⁸U fragmentation at high energy. The only facilities in the world with such capabilities are GSI-FAIR and ISOLDE, at the present time. After LS2, ISOLDE will provide a unique opportunity to study the beta decay (and isomer decay) of neutron rich Tl and Pb isotopes. The present LoI originates from the previous IS584 proposal, which was approved but never run. It was finally cancelled by the INTC given the absence of Tl beam development, asking to present a new LoI and recognising the physics case is well motivated.

The neutron rich Hg, Tl, Pb and Bi isotopes are of exceptional interest to map the evolution of the nuclear structure and single particle levels away from the double magic nucleus 208 Pb (Z=82, N=126) towards the neutron-rich side of the nuclear chart.

Despite the wealth of experimental data available for the doubly magic nucleus ²⁰⁸Pb (Z=82, N=126) and its closest neighbours, the more neutron-rich quadrant defined by Z<=82 and N>126 remains poorly explored. Yet, such nuclei, representing the particle-hole sector surrounding ²⁰⁸Pb, are critical for understanding effects of seniority, the onset of proton-neutron configuration mixing that drives collectivity and nuclear deformation.

The reason for the limited spectroscopic information lies in the experimental difficulties to access this region of the nuclear chart. The synthesis of neutron-rich trans-lead nuclei in fusion-evaporation reactions is experimentally problematic due to the strong competition with fission; on the other hand, spallation reactions suffer from high contamination levels from more abundantly produced isobars. Over the years, other techniques have been used to explore this region. At GSI-FAIR fragmentation reactions have provided an effective mean to reach this unexplored region [1,2,3,4,5].

Very recently, multi-nucleon transfer reactions using neutron-rich unstable beams accelerated by HIE-ISOLDE have been proposed by J. Valiente-Dobon and collaborators [6] to populate ^{212,214}Pb and ^{208,210}Hg.

At ISOLDE spectroscopic studies of ²¹⁵⁻²¹⁸Bi, ²¹⁵Pb and ²¹⁴⁻²¹⁸Po have been carried out successfully at IDS [7,8]. Heavy Hg, Bi, At were also produced [9] and studied [10-15]

Physics Case

Long-lived isomers in 210,211,213 Tl and β -decay of $^{211-216}$ Tl

Naively, one would expect the thallium isotopes to follow the seniority scheme of the lead isotopes, with the proton-hole being a spectator in the $s_{1/2}$ orbital and coupling to the $2^+, 4^+, 6^+, 8^+$ levels $(g_{9/2})^2$ from neutron pairs breaking. While this is true in ²⁰⁹T1, the isomeric decays observed in ^{211,213}Tl do not follow this trivial prediction. In Ref. [16] it is shown how the structure of ^{211,213}Tl differs from the one in ²⁰⁹Tl, reported in Ref. [4]. Figure 1 presents a comparison between measured and calculated levels, using the code ANTOINE [17]. The Shell Model (SM) space consists of the neutron orbitals $g_{9/2}$, $i_{11/2}$ and $j_{15/2}$ above the closed N=126 shell, while the proton(-hole) space is made of $s_{1/2}$, $d_{3/2}$, $h_{11/2}$, $d_{5/2}$, below the Z=82 closed shell. The Kuo-Herling interaction [17] is used which has been proved to be effective in this region [3,4]. For ²⁰⁹T1 the agreement is very good, while for the more exotic isotopes the comparison is less clear. For 211 T1 the SM calculations suggest an inversion of the $7/2^+$ and $9/2^+$ levels, which could give origin to a spin trap with a long-lived $9/2^+$ isomeric state decaying by M3/E4 (order of ms to s lifetime, as in ²¹⁵Bi [18]). The observed 144-keV gamma ray would fit well into this scenario. The situation for ²¹³Tl is less clear: one gamma transition at 380 keV has been observed but it has not been placed [16]. Therefore, it would be important to confirm the existence of a long-lived isomeric state in ²¹¹Tl and to assess the likely existence of another one in ²¹³Tl. This would be possible at ISOLDE by in-source laser spectroscopy, i.e. by analysing the dependence of observed gamma-rays on the frequency of the first or second laser step.

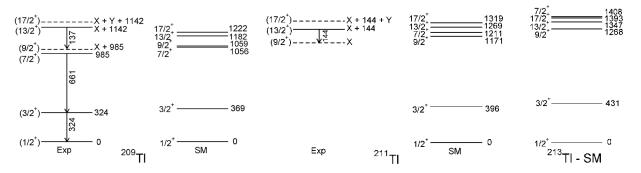


Fig. 1: The experimental and theoretical level schemes for the odd-even Tl isotopes beyond N=126. Data are taken from [4,16].

Beta-delayed gamma spectroscopy of ²¹¹⁻²¹⁶Tl will also help to detect low-spin states in oddeven Pb isotopes which are not populated in fragmentation reactions. Fast-timing techniques will allow one to measure the 4⁺ and 6⁺ lifetimes of ²¹²⁻²¹⁴⁽²¹⁶⁾Pb, relevant for effective three-body forces [3]. We remark here that in a recent work, the existence of a long-living isomer was also hypothesised in ²¹⁰Tl [19]. The scope of neutron-rich Tl beams will not be limited to decay spectroscopy at IDS.

Nuclear radii and moments of 208-216T1

Yielding to a long tradition, measurements of nuclear radii and moments via laser spectroscopy has been a major subject of activity at ISOLDE. Nuclear radii are known only up to ²⁰⁸Tl. The main goal would be to probe the shell effect near N=126. At the moment, we have only limited information about the kink in radii at N=126: Pb, Bi and, recently, Hg chains. At the same time the problem of the kink description became rather urgent: different theoretical approaches are competed in this field [20,21]. Therefore, the extension of the corresponding experimental data is of a primary importance. The isomer shift for ²⁰⁸Tl was measured previously for a different atomic transition and, as the result, uncertainty of d<r^2> proves to be large and analysis of the kink is hampered. One needs to remeasure ²⁰⁸Tl, and to measure ²⁰⁹Tl. For heavier Tl isotopes, the increasing neutron number should induce large matter radii that should in turn determine large charge radii in n-rich Tl isotopes, due the isoscalar interaction and the low angular momentum (s and d waves) of protons below the Z=82 shell closure. Combined measurements of nuclear radii and moments will help to extract information on the proton wave function and nuclear deformation in this exotic region until ²¹⁴Tl, maybe ²¹⁶Tl.

Masses of ²¹²⁻²¹⁶Tl

Mass measurements stops at T1 the ²¹¹T1 isotope. New mass measurements until the ²¹⁶T1 isotope will help to validate models that are then used to extrapolate towards the r-process nuclei.

Experimental details

In the present LoI, we ask for the production of neutron rich Tl isotopes in the mass range 211-216. If successful we plan a following proposal to populate states in Pb and to investigate the existence of long-living isomers in ^{211,216}Tl at Isolde Decay Station (IDS) setup.

The $^{211-216}$ Tl beams are produced from a UC_x target using RILIS. We expect a laser ionization efficiency of 27% for Tl.

Due to the large Fr contamination, neutron rich Tl beams in the mass range 211-213 are very difficult to produce at ISOLDE. Therefore, this study would require the use of a quartz line and the HRS mass separator to suppress the Fr contamination up to a factor 10^4 . Moreover, the use of the Laser Ionization Source Trap (LIST) target, recently developed at ISOLDE, is expected to reduce the contamination up to a factor $10^3 - 10^6$ as demonstrated in previous tests [22]. We cannot neglect that the ²¹¹⁻²¹³Fr contaminations are also produced in the β^+ decay of the corresponding surface-ionized Ra isotopes (7-20% branching ratios). However, in such case the selectivity of LIST could be improved by operating the target's hot cavity at lower temperature since the intensity of Fr shows stronger temperature dependence comparing to the standard ion-guide operation mode.

A loss in intensity for the elements of interest if we use the LIST is foreseen. The on-line runs in 2012 and off-line investigation showed a loss factor between 20 and 50 compared to standard RILIS operation. In the 2018 run, this factor was 25 (for Mg), and the maximum

measured suppression factor for contaminations reaches even 10⁶ (Na). This is the state-ofthe-art knowledge on isotope production and contaminant suppression with the LIST.

For the heavier masses A=214-216, provided the HRS is used, the isobaric Fr contamination is not expected to be a problem since lifetimes of Fr are in the order of 5 ms or less. In this case we do not need the quartz line, which we expect to slightly affect also the extraction of Tl, and only the pulsed-release technique will be applied. This technique relies on the relatively long lifetimes of the beta-decaying isotopes of interest compared to the significantly shorter-lived Fr and Ra and it has been already used in the measurement of neutron rich ²¹⁵Pb isotopes. No other contaminations are expected, and the experiment is feasible despite the low estimated yields compared to ²¹¹⁻²¹³Tl.

We request one shift per isotope (nine in total: A=208-216) to measure production yields and beam purity.

References:

- [1] M. Pfützner et al. Phys. Lett. B 444, 32 (1998).
- [2] H. Alvarez Pol, Phys. Rev. C 82 (041602) (R)(2010)
- [3] A. Gottardo et al., Phys. Rev. Lett. 109, 162502 (2012).
- [4] N. Al-Dahan et al., Phys. Rev. C80, 016302(R) (2009)
- [5] G. Benzoni et al, Phys. Lett B715 293 (2012)
- [6] J.J. Valient-Dobon et al., INTC-2013-015, INTC-P-379 (2013)
- [7] H. De Witte et al., Phys. Rev. C87, 067303 (2013)
- [8] R. Lica et al., CERN-INTC-2017-088; INTC-P-529 (2017).
- [9] S. Rothe et al, Nucl. Instr. and Meth. in Phys. Res. B 376 (2016) 91–96.
- [10] JG. Cubiss et al., Phy. Rev. C; 2018; 97; 054327 (2018)
- [11] J. Billowes et al., Phys. Lett. B 779 (2018) 334-330
- [12] E. Rapisarda et al., Journal of Physics G 44, 074001 (2017)
- [13] C. Van Bereven at al, J. Phys. G: Nucl. Part. Phys. 43 (2016) 02510
- [14] V.L. Truesdale et al., Phys. Rev. C94, 03308 (2016)
- [15] D.A. Fink et al., Physical Review X 5, 011018 (2015)
- [16] A. Gottardo et al., Phys. Rev. C 99, 054326 (2019)
- [17] E. Caurier and F. Nowacki, Acta Phys. Pol. B 30, 705 (1999)
- [18] E.K. Warburton and B.A. Brown, Phys. Rev. C43 (1991)601
- [19] R. Broda et al., Phys. Rev. C 98, 024324 (2018)
- [20]H. Nakada, Phys. Rev. C 100, 044310 (2019);
- [21]C. Gorges et al., Phys. Rev. Lett. 122, 192502 (2019)
- [22] D.A. Fink et al., Nucl. Instr. Meth. B 317, 417 (2013)

Appendix

DESCRIPTION OF THE PROPOSED EXPERIMENT

The experimental setup comprises: (name the fixed-ISOLDE installations, as well as flexible elements of the experiment)

Part of the Choose an item.	Availability	Design and manufacturing
[if relevant, name fixed ISOLDE	Existing	To be used without any modification
installation: COLLAPS, CRIS,		
ISOLTRAP, MINIBALL + only CD,		
MINIBALL + T-REX, NICOLE, SSP-GLM		
chamber, SSP-GHM chamber, or		
WITCH]		
[Part 1 of experiment/ equipment]	Existing	To be used without any modification
		To be modified
	New New	Standard equipment supplied by a manufacturer
		CERN/collaboration responsible for the design and/or
		manufacturing
[Part 2 experiment/ equipment]	Existing	To be used without any modification
		To be modified
	New 🗌	Standard equipment supplied by a manufacturer
		CERN/collaboration responsible for the design and/or
		manufacturing
[insert lines if needed]		

HAZARDS GENERATED BY THE EXPERIMENT

(if using fixed installation) Hazards named in the document relevant for the fixed [COLLAPS, CRIS, ISOLTRAP, MINIBALL + only CD, MINIBALL + T-REX, NICOLE, SSP-GLM chamber, SSP-GHM chamber, or WITCH] installation.

Additional hazards:

Hazards	[Part 1 of the	[Part 2 of the	[Part 3 of the		
	experiment/equipment]	experiment/equipment]	experiment/equipment]		
Thermodynamic and fluidic					
Pressure	[pressure][Bar], [volume][l]				
Vacuum					
Temperature	[temperature] [K]				
Heat transfer					
Thermal properties of					
materials					
Cryogenic fluid	[fluid], [pressure][Bar],				
	[volume] [l]				
Electrical and electromagnetic					
Electricity	[voltage] [V], [current][A]				
Static electricity					
Magnetic field	[magnetic field] [T]				
Batteries					
Capacitors					

lonizing radiation			
Ionizing radiation	F	1	
Target material	[material]		
Beam particle type (e, p, ions, etc)			
Beam intensity			
Beam energy			
Cooling liquids	[liquid]		
Gases	[gas]		
Calibration sources:			
Open source			
Sealed source	[ISO standard]		
Isotope			
Activity			
Use of activated material:			
Description	\Box		
Dose rate on contact	[dose][mSV]		
and in 10 cm distance	[0030][1104]		
Isotope			
Activity			
Non-ionizing radiation			
Laser			
UV light			
Microwaves (300MHz-30 GHz)			
Radiofrequency (1-300MHz)			
Chemical			
	[chemical econt] [curentitu]		
Toxic	[chemical agent], [quantity]		
Harmful	[chemical agent], [quantity]		
CMR (carcinogens, mutagens and substances toxic to	[chemical agent], [quantity]		
reproduction)			
Corrosive	[chemical agent], [quantity]		
Irritant	[chemical agent], [quantity]		
Flammable	[chemical agent], [quantity]		
Oxidizing	[chemical agent], [quantity]		
Explosiveness	[chemical agent], [quantity]		
Asphyxiant	[chemical agent], [quantity]		
Dangerous for the			
environment	[chemical agent], [quantity]		
Mechanical		I	L
Physical impact or	[location]		
Physical impact or mechanical energy (moving	[location]		
parts)			
Mechanical properties	[location]		
(Sharp, rough, slippery)	liocation]		
Vibration	[location]		
Vehicles and Means of	[location]		
Transport	Freedonil		
Noise		1	l
Frequency	[frequency],[Hz]		
Intensity	[cquency],[112]		
		I	
Physical Confined encode	[leastice]	1	r
Confined spaces	[location]		
High workplaces	[location]		
Access to high workplaces	[location]		
Obstructions in passageways	[location]		
Manual handling	[location]		
Poor ergonomics	[location]	1	

0.1 Hazard identification

3.2 Average electrical power requirements (excluding fixed ISOLDE-installation mentioned above): (make a rough estimate of the total power consumption of the additional equipment used in the experiment)