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Abstract—Optimization of operations and maintenance activi-
ties in factories was estimated to have a global economic potential
of 1.2 to 3.7 trillion USD by recent studies. Digital twins offer
a framework to achieve such optimization by studying potential
improvements in the virtual space before applying them to the
real world. We studied the use of a digital twin based on
a general model of system failure behaviour for maintenance
optimization by combining existing methodologies into a general
framework. Applying it to a real-world power converter use case,
we identified either reactive or preventive maintenance to be more
cost-effective depending on the operating conditions. This allowed
to predict optimal maintenance for existing and future systems.

Index Terms—Preventive Maintenance, Physics-of-Failure,
Digital Twin, Virtual Factory

I. INTRODUCTION

Optimization of operations and maintenance activities in
factories was estimated to have a global economic potential
of 1.2 to 3.7 trillion USD by recent studies [1]. Digital
twins offer a framework to achieve such optimization by
studying potential improvements in the virtual space before
applying them to the real world. We studied the use of
a digital twin based on a general model of system failure
behaviour for maintenance optimization by combining existing
methodologies into a general framework and applying it to a
real-world use case.

Related Work

Accurate models of failure behaviour are essential for any
successful operational optimization. Such models can gener-
ally be obtained in a data-driven fashion or with a model-
based or Physics-of-Failure (PoF, [2]) approach1. Data-driven
approaches are characterized by large available data-sets and
limited required domain knowledge. Often, data driven models

This work has been sponsored by the German Federal Ministry of Education
and Research (grant no. 05E12CHA). The final publication is available at
IEEEexplore via https://doi.org/10.1109/ICSRS48664.2019.8987629 and can
be cited as ”Felsberger, Lukas, Benjamin Todd, and Dieter Kranzlmüller.
”Power Converter Maintenance Optimization Using a Model-Based Digital
Reliability Twin Paradigm.” 2019 4th International Conference on System
Reliability and Safety (ICSRS). IEEE, 2019.”

1Common approaches often mix physics and data-driven approaches.

cannot be transferred to applications with different operating
conditions than those the model was inferred from [3]. PoF ap-
proaches require a physical understanding of the investigated
failure mechanisms. They allow to transfer models across
operating conditions if the physics behind a failure mechanism
is understood. However, in many cases the details of failure
mechanisms remain unclear.

Generally, precise models requiring little data for parameter
inference are desirable as obtaining data on system reliability
often implies expensive destructive experimentation, compet-
itive disadvantages due to an increased time-to-market, or
costly interruptions of operations. Ideally, a framework should
allow an intuitive integration of heterogeneous pieces of evi-
dence into a single consistent model. The physics-of-failure
approach comes close to such a requirement as, based on
a detailed understanding and quantification of the underlying
failure physics, it allows to incorporate additional data from
different sources systematically.

Reliability data is often scarce and collected under different
operating conditions (e.g. data from a specific car model in
field use around the globe). Monitoring of operating conditions
and failure behaviour is possible with modern sensor and data
transmission technology. Combining data on operating condi-
tions with failure data allows to determine operation condition
dependent degradation models, here called digital reliability
twins, using parameter inference strategies pioneered in the
field of accelerated life testing [4].
Once such a parametric reliability model has been inferred,
it can be combined with a simulation engine (see e.g. [5],
[6]) to study various operational strategies and optimize real-
world systems. To choose an optimal strategy, the simulation
engine needs to be combined with a cost model which defines
an optimization objective. Various cost models have been
introduced in the literature [7].

A digital twin for reliability optimization integrates all these
approaches into a single framework. It can be used to optimize
operations of existing and future systems under various operat-
ing conditions, as illustrated in figure 1. It has been discussed
conceptually in the literature ( [8], [9]) and first application
examples have been presented ( [3], [10]–[12]), mainly for
aeronautics. Our objective was to add to the discussion a
general methodology for maintenance optimization using a978-1-7281-4781-9/19/$31.00 ©2019 IEEE
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Fig. 1. Overview of the approach. Data from a system operating at different
conditions is combined to form a digital reliability twin which can be used
to optimize existing and future operations.
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Fig. 2. (a) Illustration of a simple system S with inputs I, outputs O within
an environment E. (b) Overview of the methodology.

digital twin based on detailed understanding of the system
failure mechanisms, an application of the outlined framework
to a real-world power electronics application with a focus on
failure modeling, simulation, and evaluation, and some lessons
learned.

The rest of this paper is structured as follows: Section II
introduces a general load-dependent model of the failure
behavior which is at the heart of the digital reliability twin,
a methodology to obtain a digital twin from data of existing
systems, and a general simulation strategy to optimize time-
based preventive maintenance. In section III, we apply the
framework to an existing power converter system to evalu-
ate the most cost-effective maintenance solution under new
operating conditions and discuss results and lessons learned.
Section IV concludes with a summary and a brief outlook.

II. METHODOLOGY

A simple system, as considered in figure 2a, is defined to
be functional if it provides the desired output O given that the
input I and environment E are within a pre-specified range. It
is faulty, if it fails to deliver the desired output O, despite the
inputs I and environment E being within a specified range
(i.e. an internal failure occurred). The probability of being
in a faulty state as a function of time t is F (t), given by
F (t) = 1−

∏M
j=1 (1− Fj(t)), with Fj(t) being independently

competing failure modes (see e.g. [13]) of the system. Failure
modes are commonly modeled by the two-parameter Weibull
distribution, Fj(t; ηj , βj) = 1 − exp(−t/ηj)βj , t > 0, with
ηj being the characteristic lifetime (with the property Fj(t =
ηj) ≈ 0.63212) and βj being the shape parameter indicating an

increasing (βj > 1), constant (βj = 1), or decreasing (βj < 1)
failure rate with time for failure mode j. [14]

A failure mode can be associated with a failure driver, ξj,
which causes degradation over time. For example, increased
temperatures lead to a faster evaporation of the electrolyte in
capacitors and degrade its capacity. In this case, the failure
driver is the temperature and the failure mode is capacity
degradation. The stress which drives degradation can be related
to system operating conditions, C = [I,O,E], using empiric
or analytic models, ξj = Γj(C; Λ), with parameters Λ. In the
capacitor case, such a model would relate the temperature and
the operational condition causing a temperature rise, e.g. heat
dissipation due to electrical currents in nearby electronics.

Acceleration factor modeling allows to quantify the relation-
ship between the failure driver and the probability of a failure
of a unit over time. Using the two-parameter Weibull distribu-
tion, the acceleration factor is given by, AFj(ξj, ξj,ref ; Θ) =
ηj,ref/ηj , with ηj,ref being the characteristic lifetime at a
reference operating condition2, ξj,ref = Γj(Cref ), and param-
eters Θ. Common choices for the acceleration factor model are
exponential or power-law. [15]

Combining all concepts, we obtain a system failure proba-
bility,

F (t,C; ηj,ref , βj ,Λ,Θ) =

1−
M∏
j=1

[
1− exp

(
−t ·AFj(Γj(C; Λ), ξj,ref ; Θ)

ηj,ref

)βj
]
,

(1)

allowing to incorporate a detailed understanding of the re-
lationship between failure mode mechanisms, failure drivers,
and operating conditions. In its current formulation, the model
is limited to constant-in-time loads. It can be extended to non-
constant load by using a cumulative exposure model (see e.g.
[16], [17]).

A. Digital Reliability Twin

The idea of a digital reliability twin is to mimic the failure
behaviour of a system under various operating conditions.
Figure 2b summarizes the methodology to obtain a virtual
reliability twin based on model (1) from existing operation
data and to use it to optimize future operations as illustrated
in figure 1. In the following the methodology will be discussed
in detail.

a) Data Collection: For a system i the failure modes and
times tf,i,j and operating conditions Ci need to be collected
3. Data on the relationship between the failure drivers ξj and
operating conditions C can either be collected in-situ or in
separate experiments. Note that the failure mechanism and its

2Note that we assume uniform acceleration, i.e. βj,ref = βj . The method-
ology can be extended to non-uniform acceleration. However, a changing βj
indicates a changing failure mode and should be divided in separate failure
modes.

3The methodology does not impose restrictions on Type I/II censored or
partially missing data.
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physics need to be quantitatively understood to determine the
failure drivers to be measured.

b) Digital Twin Synthesis: Using data from N identical
systems operated under different conditions Ci, the parameters
of model (1) can be inferred using methods of accelerated
life testing. As failure data is usually scarce and expensive
to obtain, the parameter uncertainty should be quantified
and propagated to the simulation engine. E.g., Maximum-
Likelihood or Monte-Carlo or Particle Filter based Bayesian
inference methods can be employed for parameter and uncer-
tainty estimation. For a detailed discussion refer to [4], [18].

Generally, the validity of the models in terms of input
parameter intervals shall be specified to prevent inaccurate
extrapolations. E.g. learning a temperature dependent empiri-
cal model from field use at temperatures between 0 and 40
degrees Celsius is expected to be inaccurate for cryogenic
environments.

c) Simulation Engine: A simulator is used to study
the optimal maintenance strategy. Both the failure behaviour
and the maintenance and repair actions are simulated. The
failure behaviour has been characterized by model (1). The
maintenance strategies studied are time-based preventive main-
tenance (repairing the system after a certain operational time
tr,p ∼ NR(Tr,p, σr,p), with NR being a rectified Normal dis-
tribution) and reactive maintenance (repairing the system after
a failure has occurred within a time tr,c ∼ NR(Tr,c, σr,c)).
In both cases we assumed perfect repair (i.e. the system is as
good as new after repair).

To simulate different maintenance strategies for a system
operational lifetime, TOL, a layered approach is chosen as
illustrated in figure 4a.

• Core model: At the core level, we simulate a single
system stochastically for a given parametrization of
model (1) and repair strategy. The state diagram of the
core simulation is illustrated in figure 3. There are two
states: ’Operation’ and ’Down’. The simulation starts
with lifetimes tf,j for each of the competing failure
modes drawn from model (1). If the system operates until
tr,p > min

j
(tf,j), without any failure occurring, a preven-

tive repair is carried out which resets the system lifetimes
tf,j . If a failure occurs before the scheduled preventive
repair, the system enters the ’Down’ state and a corrective
repair within tr,c is carried out. If the simulation time
exceeds the operational lifetime, t > TOL, the simulation
is terminated and its results Rk = (nr,k, nd,k), nr,k
being the number of repair actions (both preventive and
reactive) executed during simulation, nd,k the number of
transitions to the ’Down’ state leading to an unexpected
interruption of operations for the k-th evaluation, saved.

• Core Initializer: The stochastic core level is initialized in
a Monte Carlo approach to compute the mean of the core
results, Rcore =

∑K
k=1Rk/K.

• UQ Initializer: To perform a sensitivity analysis or uncer-
tainty quantification, this layer draws L i.i.d. initialization
parameters from their probability density functions and

Start Simulation 
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• Repair correctively
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Fig. 3. State diagram and state transition conditions of Core model.
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Fig. 4. (a) Layered simulation approach (adapted [17]). (b) Power converter.

passes them to the core initializer. Results from all
evaluations are stored to calculate statistics.

• Dependency Initializer: This layer allows to study pa-
rameter dependencies by passing a series of defined
parameter combinations to the lower layers.
d) Evaluation and Decision Making: Adding a cost

function to the simulation engine allows to optimize operation
by searching over a parameter grid characterizing different
maintenance strategies. We define a simple model for opera-
tional cost, C = nr · cr + nd · cd, over an operational lifetime
TOL, with nr being the mean number of repair actions, nd
the mean number of transitions to the ’Down’ state, cr the
average cost associated with a single repair action and cd being
the average cost associated with an unexpected interruption of
operations.4

III. USE-CASE

We applied the introduced framework to optimize the
maintenance of a switch-mode power supply as illustrated in
figure 4b. A digital reliability twin was learned from past
operation under different operating conditions. Then, it was
used to optimize maintenance for scenarios with new operating
conditions.

4Note that many other cost models would be possible with the chosen
simulation approach.
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a) Data Collection and Digital Twin Synthesis: 786
power converters had been operated for more than ten years
during which 59 failures with times tf,i,j , modes j, and oper-
ational conditions, Ci, had been recorded [19]. The systems
had been operated in a particle accelerator environment at
controlled ambient temperatures and with n = 580, 90, 116
systems at three different constant system loads of I =
0.4, 0.9, 1.2A. A reliability investigation [20] had identified
three failure modes. The first failure mode was fuse wear
and was directly proportional to the system current I , most
likely due to repeated heating and cooling by the alternating
current [21]. The second failure mode was much less frequent
and hence its physics were not explored. System current was
chosen as failure driver as it was correlated. The third wear out
failure was due to evaporation of the electrolyte in capacitors.
An investigation of the failure mechanism revealed that the
evaporation was due to heating of the capacitors. The relation
between system current I and capacitor temperature T was
obtained experimentally at ambient temperatures (see [20],
[22]). The acceleration model was taken from the literature
[23], as the failure mode was only observed under one
operational setting and, hence, could not be inferred from the
recorded failure data.

TABLE I
FAILURE MODE PARAMETERS. ADAPTED FROM [17].

Para- Failure Modes
meters Fuse j=1 Empirical j=2 Capacitor j=3
ξj I[A] I[A] T [K]

Γj I I T = 55
(
1 − e−0.7I

)
+ 298

AFj

(
I

Iref

)1.0 (
I

Iref

)0.6
exp

(
0.94
kb

(
1

Tref
− 1

T

))
ηj,ref 19219d 76768d 4200d
βj,ref 1.16 0.9 8.3
ξref 1.2 1.2 330K

Using failure and operation condition data, a quantification
in accordance with model (1) could be obtained by using maxi-
mum likelihood estimation [22]. The parameter estimates have
been verified by reproducing the original failure behaviour
in [17] and were summarized in table I. However, due to
the limited amount of available failure data, the parameter
estimates were considered uncertain.

b) Simulation and Results: We considered a scenario
with two future operating conditions at system loads of
I = 0.3, 1.6A and ambient temperatures. A repair is carried
out by replacing the whole power converter at a repair cost
cr = 150mu5 [19]. A failure leading to unplanned downtime
was assumed to cost cd = 1000mu. The objective was to find
the most cost effective maintenance strategy for an operational
lifetime TOL = 104d (d=days). We therefore varied the
preventive repair time from Tr,p = 102d to 104d with a fixed
preventive repair interval variance σr,p = 30d. Note, that for
Tr,p = TOL = 104d the case of fully reactive maintenance
is obtained (no scheduled preventive repairs). The duration of

5mu stands for monetary unit.

102 103 104

Preventive Repair interval [d]

10 2

10 1

100

101

102

103

104

105

C [mu]
nr

nd

(a) 0.3A

102 103 104

Preventive Repair interval [d]

10 2

10 1

100

101

102

103

104

105

(b) 1.6A

Fig. 5. Number of downtime events nd, repairs nr and operational cost C
as a function of preventive repair interval Tr,p. The shaded area depicts the
95% empirical highest probability density region, the lines the mean, and the
markers the discrete evaluation points.

a corrective repair was set to zero, Tr,c, σr,c = 0, as it is
irrelevant for the chosen cost model.

Since the parameter uncertainty had not been estimated in
[20] and [22], we carried out a sensitivity analysis by compar-
ing the results when using deterministic and stochastic input
parameters; the latter drawn from a Normal distribution with
means given by the deterministic parameter values (table I)
and variances of 10% of their mean.

The results of the simulations with stochastic failure mode
parameters from table I, repair parameters Tr,p and σr,p, a
system load of I = 0.3, 1.6A, and ambient environment
temperatures are shown in figure 5a and 5b, respectively.6 For
0.3A, the operational cost C was the lowest for the case of
fully reactive maintenance, Tr,p = TOL = 104d, for which
the number of repairs, nr, equaled the number of downtime
events nd (i.e. no system was changed preventively). For 1.6A,
the operation cost C was the lowest for a preventive repair
interval of Tr,p ≈ 1500d. For Tr,p > 3000d, the maintenance
was effectively reactive as the number of repairs equaled the
number of downtime events. For Tr,p < 1000d, the number of
repairs increased without reducing the number of downtime
events.

c) Discussion: Comparing the plots for 0.3A and 1.6A
showed very different results for the most cost effective main-
tenance approach. For low system currents (I < 0.4), reactive
maintenance was the most cost efficient solution, whereas for
higher system currents (I > 0.7) preventive maintenance was
more cost efficient. This behaviour was summarized in table II
which shows the minimal operational cost and corresponding
optimal maintenance strategy for different system currents.
The table also compares results obtained with deterministic
failure parameters (D) and stochastic failure parameters (S)
(with a variance of 10% of their mean). The estimated optimal

6We drew L = 200 parameter combinations from a Normal distribution
with means given by the deterministic parameter values (table I) and variances
of 10% of their mean and used K = 104 Monte-Carlo samples to evaluate
Rcore for each parameter combination to obtain these results. Using K =
104 MC samples resulted in a relative standard deviation of the mean of C
of less than 3% over repeated runs with deterministic parameterization.
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maintenance strategy and the mean of the operational cost
C were minimally affected by the uncertainty in the input
parameters. For system currents I > 0.7A, preventive mainte-
nance led to a lower operational cost than reactive maintenance
(Tr,p ≥ 104).

TABLE II
OPTIMAL REPLACEMENT TIME Tr,p AND CORRESPONDING MEAN COST C

(AND STDDEV.) AS FUNCTION OF SYSTEM CURRENT I . (S) DEPICTS
RESULTS OBTAINED USING UNCERTAIN FAILURE PARAMETERIZATION AND

(D) FOR USING DETERMINISTIC FAILURE PARAMETERIZATION.

Curr. [A] Tr,p[d] (S) C [mu] (S) Tr,p[d] (D) C [mu] (D)
0.19 104 139 ± 34 104 131 ± 3
0.38 104 248 ± 50 104 240 ± 5
0.74 5300 590 ± 86 6210 572 ± 6
1.45 1740 1624 ± 231 1740 1543 ± 8

A closer look on the failure modes revealed an explanation
why preventive maintenance did not reduce the number of
downtime events for low system loads. Failure modes 1 and
2 show no wear-out behaviour but are rather constant in time
(β ≈ 1), whereas failure mode 3 shows a strong wear-out
behaviour (β = 8.3). However, the characteristic lifetime of η3
exceeds the operational lifetime of the system TOL for system
loads I < 0.7A. Hence, effectively the system had no wear-out
behaviour for low system loads and preventive replacements
do not reduce downtime events as new systems are as likely to
fail as old ones. This showed that detailed understanding and
quantification of the failure modes is necessary to optimize
maintenance strategies for new operating conditions.

d) Lessons Learned: Based on the experience from the
outlined use-case, following recommendations could be given:

• Despite a large fleet of 786 systems and a decade of op-
erational experience less than 60 failures distributed over
three different failure modes have been observed. There-
fore, it is imperative to use ’data-efficient’ approaches,
such as Physics-of-Failure, to quantify the failure modes.

• Compared to the time, knowledge and effort required for
data collection and failure mode quantification, computa-
tional requirements for running Monte-Carlo simulations
of digital reliability twins seemed less taxing.

IV. SUMMARY, CONCLUSIONS AND OUTLOOK

We presented a general methodology for maintenance op-
timization using a digital twin. Based on failure mechanism
understanding and inference strategies from accelerated life
testing, a operation condition dependent system failure be-
haviour can be quantified. Such a model can be used to
simulate different operation conditions and maintenance strate-
gies. Combined with a cost model, the optimal maintenance
strategy can be found for a certain operating condition of
potential future systems. Applying the framework to optimize
power converter maintenance, we identified either reactive or
preventive maintenance to be more cost-effective depending
on the system current.

For future work, the methodology could be verified with
more use-cases and extended to time-varying system loads for

a wider applicability. It can be combined with more complex
cost models, including time-to market and development costs,
to study e.g. the cost effectiveness of additional accelerated
tests during development.
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