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ABSTRACT

Coulomb and screening corrections to the amplitude for

Delbriick scattering in the forward direction are calculated.



I INTRODUCTION

Delbriick scattering which is the elastic scattering of a
photon in a Coulomb field, is of interest both as an
observable high-order nonlinear process in quantum
electrodynamics and as an interfering process in
investigations of nuclear structure. The process has been
studied by several methods, cf. the review articles [1] and
the papers [2-11]. Presently known metods, either the
integration of the cross section derived directly from the
fourth order vacuum polarization tensor which have been used
by Papatzacos and Mork [12], or the dispersion relation
approach used by De Tollis et al. [13] suffice to calculate
the first order Born-approximation cross section for all
relevant cases even if the numerical procedures are
complicated and expensive.

Hovever, as shown by Jarlskog et al. [14], Rullhusen et
al. [6 15], Turrini et al (8], and Kasten et al. [16] the
lowest order cross section is not a good approx1mat10n
except for very low energies and low values of the atomic
number Z, and it is neccessary to know higher orders
effects. The first attempt to include the complete Coulomb
corrections was made by Rohrlich [17] who investigated
forward scattering. His results are, hovever, not very
accurate. Later Cheng and Wu [18] calculated the Coulomb
corrections in a high-energy approximation for a limited
range of momentum transfers. Similar results have also been
obtained by Milstein et al. [4,7,10] by a different method.

In the present article we calculate the Coulomb and
screening corrections to the pelbriick forward amplitude for
all energies of interest. Although direct measurements are

not available for this case we still
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believe the results to be of value, both as a useful
estimate of the corrections for nonforward angles and also

as a checkpoint for approximate calculations.

II THE BORN APPROXIMATION

The imaginary part of the Delbriick amplitude is more
easily obtained than the real part. In the forward direction
the imaginary part of the amplitude
D(w,8) = (a2)?r; d(w,0), : (1)

cf. the notation in ref.[1l], is

Im D(w,0) = (w/4n) cp(w), (2)

where w is the photon energy, © the scattering angle, and
cp(w) is the pair production total cross section. This cross
section is well known [19,20,21]. We shall calculate the

real part by a dispersion relation which was established
by Rohrlich et al. [22], '

@«
Re D(w,0) = (w?/2n?) P dw’ cp(u')/(w"—wz). (3)
2m ‘
Since one would expect Coulomb corrections to be minimal
and screening corrections to be maximal in the forward
direction compared to nonforward scattering, we shall

present these corrections separately,

D(w,0) = pB(w,0) + ap%(w,0) + aD5(w,0), (4)
where D2 is the Born-approximation amplitude, ADC is the
Coulomb corrections, and opS is the screening corrections to
the sum p® + ap®.

B

The Born part D~ was calculated in [22] from exact
expressions for cg. We shall use a simpler form, in terms
of expansions given by Maximon [21]. With w given in units

of the electron mass m we have for o > 4,
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(w) = azzra (28L/9-218/27+4(6L- 7/2+2L’/3 -L2-n2L/3+n%/6+
2%(3))/w? —(3L+2)/w -(29L/36- 77/216)/w ).

and for w < 4,
ag(w)= azzrazn(m—2)3(l+e/2+23ez/40+37e3/120+61€}192)/(3w3).

Here L=1ln(2w), e=(w-2)/(w+2), and C(3) = 1.2020569. Using

these expressions in (3) we obtain the Born part,

Re dB(w,0) = Tw/18+Al+ln2w/w+A2 lnw/w+A3/wrAd/w?=3/(8w?)
+25/00-29,(288w ) +26,/4°, - (5)

with Al=-2.2512, A2=0.38629, A3=2.7873, A4=-3.5098, A5=0.77,
A6=3.6910. Formula (5) gives accuracy better than 1% for w>6
and is only 14% off at w=5. For low energies one may use

Re dB(w,O) = Bl w? + B2 w4 + B3 w6 (6)

with B1=3.1735E-2, B2=3.1610E-4, B3=1.4790E-5. Formula (6)
is better than 1% for w<2 and is only 10% off at w=4.

IITI COULOMB AND SCREENING CORRECTIONS

In order to compute the Coulomb corrections we use the
Coulomb correctlons Aac to ag found by @verbeo [23]. He gives
an analytic formula valid for w>3.5, but for lower w we
have to interpolate from numbers given in tables. We present

our results in terms of a high-energy formula, valid with

accuracy better than 1% for w>5, the error increasing to 2%

for w=4,

Re Ad (w,0) = Cl In3w+C2 1n2w+C3 lnw+C4+C5 1n? w/w+C6 1lnw/w
+C7 lnw/w2+C8/w+C9/w2+C10/w ' (7

where the Z- dependent coeff1c1ents C are given in Table I,

and a low energy formula, valid with accuracy of 0.2 % at
w-0.3, and 18 % at w=1l, ;
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Re Adc(w,O) = D1 w? + D2 w4+ D3 w6, (8)

where the D’s are given in Table II. The results are also
shown in Fig.l where Re Adc(w,O) is given in percent of

Re dP(w,0),and Im 4d%(w,0) is given in percent of Im dP(w,0)
as functions of w for three values of Z. We note that the

Coulomb corrections to the real part are considerable even
at w=1 MeV. Our results differ substantially from those

given earlier by Rohrlich [17], the reason being his use of
inaccurate values for the pair cross section.
We obtain the screening correction adS using screening

g to the pair cross section given by ©Overbs

corrections o
[24]. These corrections are expressed partly by analytic
formulae and partly by tables, and we use numerical inter-
polation and integration to get Re Ads(w,O) from the
dispersion relation (3). The results are shown in Fig. 2.
We note that screening corrections are most important for
the real part in contrast to the Coulomb corrections which

are largest for the imaginary part. For high energies the

following formula may be used,

Re Ads(w,O) = -7w/18+S1 1n?2w+S2 lnw +S3+S4 ln2w/w+S5 lnw/w
+56/w+S7 /w2 +58,/w? +59 /0 +510,/w°, (9)

where the coefficients S are given i Table III. Eq. (9) is
accurate for w>50, the error for w=50 is 0.2 %, it increases

to 2.3 % for w=30 and to 17 % for w=20. For low energies,
S 4 6
Re 4" (w,0) = Tl w? + T2 w + T3 w, (10)

where the T’s are given in Table IV. This formula is good
for photon energies between 0.4 and 1 MeV, the error here
less than 5 %. Note that our screening corrections also

include the small combined Coulomb and screening correction.



IV CONCLUSIONS

We have given the Coulomb and screening corrections to
the Delbriick forward scattering amplitude. We may in
addition also estimate the effects of radiative corrections
to be small, of order 1 %, since the pair production corr-
ections at high energies, w>>1, are known from Mork [25] to
be close to 1 %, and we expect the corrections to be small
at low energies. We mention that our results already have
been used by Kasten et al. [26] in their experimental inve-
stigations of Coulomb corrections to Delbriick scattering.

Finally we shall add some comments on the use of one-
variable dispersion relations for calculating the real part
of the Delbriick amplitude. As mentioned before it is
comparatively easy to find the imaginary part also for non-
forward angles. For instance one may apply the generalized
optical theorem which was first used by Kessler [27] and
later applied by Ehlotzky et al. [28]. This method involves
available pair production amplitudes in the physical region,
and works quite well for calculating the imaginary part to
the Born-approximation amplitude: We have extended the
calculations of [28] and find that the method is superior to
the one of Papatzacos and Mork [12] for large scattering
angles and not too high energies, but is inferior for small
angles. We also believe that it will be possible to
calculate the imaginary part to the Coulomb corrections by
using exact Coulomb wave functions in the relevant pair
production amplitudes. We plan to do these calculations.

From the imaginary part one may obtain the real part by
a dispersion relation. Writing a relation in w for constant

'®, however, one finds that two cuts are needed, one starting
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at w=2 and another at w = i/sin(6/2). The last one means
that one has to know the imaginary amplitude for imaginary
w, which will involve nontrivial analytic continuations.

Papatzacos et al. [12] suggested a dispersion relation in
the standard kinematic variables s and t, with constant
t. However, De Tollis et al. [29] pointed out that this
equation was incorrect. De Tollis et al. [5,13,29] have
successfully applied a dispersion relation in the variables
d=w sin(6/2) and p=w cos(9/2) for constant d to Delbrﬁck
scattering. We now correct the equation given in [12] by
adding a subtraction comstant,

®

Re d(s,t) = Re d(0,t) + (s/n) zizds' Im d(s’',t)/(s’(s’'-s)).
We have tested this equation using the method of {27] to
obtain the imaginary part of d(s,t). Unfortunately there is
no simple way to obtain the unphysical d(O,tf, and we
therefore calculated the difference d(sl,t)—d(sz,t) which is
independent of d(0,t). The results were in agreement with
known results within numerical errors of a few percent.
However, we must conclude that this method is not very
convenient for calculating the real part, the cost being
higher than with the method of [12]. The reason is that in
the dispersion integral above the main contribution always
comes from values of s’>>t, and in this region it is time-

consuming to calculate Im d(s’,t).
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Table I. The coefficients C in eq.(7).
number.
C\ 2 13 53
Ccl 9.618E-4 1.452E-2 2
c2 -1.423E-2 -2.115E~-1 -4
c3 3.294E-2 4.794E-1 9
c4 -3.203E-2 -4.045E-1 -5
c5 3.589E-2 3.303E-1 -1
cé -7.754E-2 -7.136E-1
c7 6.128E-3 4.546E-2 -9
c8 9.554E-2 8.793E-1 -4
c9 -5.880E-2 -4.441E-1 8
Cc10 -6.793E-3 7.300E-4 2

Table II The coefficients D in eq.(8).
D\ 2 13 53
Dl 7.095E~-6 1.266E-4 8
D2 3.585E-6 5.438E-6 1
D3 1.625E-6 2.402E-5 4

Table III The coefficients S in eq.(9)
S\ 2 13 53
sl 8.776 6.018 4
s2 -6.197E1 -3.831E1l -2
s3 1.461E2 8.486El 6
s4 -7.071E2 -2.166E2 -1
S5 5.889E3 1.449E3 1
s6 -1.424E4 -3.045E3 -2
s7 4.586E4 5.654E3 3
S8 3.750E-1 3.750E-1 3
s9 5.4604E6 8.617E4 6
s10 1.007e-1 1.007E-1 1

Zz is the

82
.953E-2
.246E-1
.275E-1
.375E-1
.544E-1
3.336E-1
.435E-2
.110E-1
.347E-1
.373E-1

82
.510E-5
.141E-4

.849E-5

82
.966
.966E1
.432E1
.567E2
.003E3
.051E3
.712E3
.750E-1
.897E4
.007E~-1

atomic

92
3.425E-2
-4.924E-1
1.056
-4.465E-1
-7.231E-1
1.562
-2.334E-1
-1.925
2.121
4.180E-1

92
-1.064E-4
1.324E-4
5.625E-5

92
4.964
-3.001E1
6.566E1
-1.534E2
9.859E3
-2.040E3
3.725E3
3.750E-1
5.084E4
1.007E-1
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Table IV The coefficients T in eq.(10).

T\ 2Z 13 53 82 92

Tl -1.044E-3 -1.816E-3 -2.115E-3 -2,265E-1
T2 ~2.247E-7 -4.984E-7 3.269E-6 -6.292E-6
T3 1.134E~7 2.123E-7 8.793E-7 1.324E-6
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Figure Captions.

Figure 1. The quantity Re Adc(m,O) given in percent of
Re dB(w,O), and Im Adc(w,O) in percent of Im dB(w,O). These
are the Coulomb corrections to the real and imaginary parts
of the forward Delbriick amplitude relative to the Born parts
as a function of the photon energy w in units of the
electron mass. The curves are marked Re (Im) for the
corrections to the real (imaginary) parts, and the actual
atomic numbers are given. The scale on the left is valid for
the corrections to the real parts while the scale on the

right hand side is valid for the corresponding imaginary

parts.

Figure 2. The gquantity Re Ads(w,O) given in percent of
Re dB(w,O), and Im Ads(w,O) in percent of Im dB(w,O). These
are the screening corrections to the real and imaginary
parts of the forward Delbriick amplitudes relative to the
Born parts as a function of the photon energy in units of
the electron mass. The curves are marked Re (Im) for the
corrections to the real (imaginary) parts, and the actual

atomic numbers are given.
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