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Daniela, Paco, Cesar, etc.

To all my colleagues at CIEMAT for their grateful help during this period: Daniel López, Paco Alvarez,
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Chapter 1

Introduction

The aim of this manuscript is to present the analysis and results of the 235U neutron capture cross-section
measurement performed at the CERN n TOF facility, in the neutron energy range from 0.2 to 200 eV.

Chapter 1 is dedicated to the purpose behind this measurement (section 1.1)and the theoretical frame-
work of the neutron-induced nuclear reactions (section 1.2). Furthermore, the process of obtaining the
neutron capture cross-section for a fissile isotope is explained at the end of the chapter (section 1.3).

In chapter 2 we describe the experimental facility (section 2.1), the experimental setup (section 2.2), the
235U targets (section 2.3) and the experimental configurations used during this measurement (section 2.4).

Chapter 3 describes the analysis performed on the experimental data and the procedure for obtaining
the 235U(n,γ) cross-section.

Chapter 4 is dedicated to presenting the results obtained and a comparison with the evaluated neutron
libraries and other experiments.

Finally, Chapter 5 will present the summary, conclusions and future work suggested by this measure-
ment.

1.1 Motivation

This measurement is strongly influenced by the design of new critical nuclear systems such as the Gen-IV
reactors [1] and the management of the resulting waste from existing nuclear reactors. For this reason,
a brief introduction to sustainable energy is given in the section 1.1.1 while the importance of nuclear
cross-sections in the design of new critical nuclear systems and strategies for nuclear waste management
are described in the section 1.1.2.

1.1.1 The nuclear energy overview

The incredible growth of industrialized and developing countries in recent decades has greatly increased
the demand for, and supply of, primary energy on a global basis, necessitating the improvement of existing
energy sources and the design and development of new efficient energy power sources [3].

The rapid increase of primary energy supply in the period from 1971 to 2014 is shown in Fig. 1.1. While
the demand for energy in OECD countries (Organization for Economic Co-operation and Development
https://www.oecd.org/) is slowly increasing, the substantial development of NON-OECD countries, led by
China, has driven primary energy demand to the extremely high levels of today [3].

To meet this demand for energy, countries have developed combined energy programs which rely on
coal, oil, hydro, natural gas and nuclear power. More recently, these programs have included renewable
energy sources. With regards to energy production from nuclear sources, since the instigation of the first

1



Chapter 1. Introduction 2

Figure 1.1: World-wide total primary energy supply in the period from 1971 to 2014 (Mtoe) [3].

commercial nuclear power plant at the end of the 1950s, many countries have been developing their own
nuclear energy programs. The oil crisis in the early seventies encouraged the development of these programs
in most industrialized countries including Canada, Spain, France, Italy, Japan and Germany, to be followed
by Mexico, Brazil, Taiwan and Korea. However, the accident that occurred at the Chernobil reactor in
1987 slowed their construction in the 1990s as a result of safety concerns.

Energy production by nuclear plants from 1970 to the present has increased rapidly, as shown in Fig. 1.2.
This is mainly due to the OECD countries [3], which possess most of the existing nuclear power plants as
indicated in the table 1.1. More than 30% of nuclear energy is produced by the United States, followed by
France at 17.2%, and the Russian Federation at 7.1%. These three countries represent more than 50% of
worldwide energy production by nuclear reactors. In total, the energy production by nuclear power plants
represents 10% of the total global electrical energy production.

With regard to Europe, there are a total of 186 nuclear power plants with 163.685 MWe of installed
electric net capacity in operation and 13.696 MWe under construction, which is distributed in 15 plants in
6 countries [4] as shown in the table 1.2.

The electricity generated by nuclear energy occupies an important position in E.U countries, with France
holding the top position at 76.3% followed by the Ukraine with 56.4%, Slovakia with 55.9% and Hungary
with 52.7% [4].

The consistent projections of the annual international outlook report from the U. S. Energy Information
Administration (2016) [5], which provides a reliable forecast of energy consumption, focuses exclusively on
marketed energy. The projections provided by this report are used by international agencies, governments,
trade associations, and other decision makers to plan their strategies and plans for the future.

The report indicates the rising level of demand for energy over the next three decades, led by strong
increases in demand in countries outside the OECD. China and India account for more than half of the
world’s total increase in energy consumption in the projection period from 2012 to 2040. Total world

2



1.1. Motivation 3

Country Produced (TWh) Net installed Capacity (GW) % of nuclear production in total
United States 831 (32.8%) 99 19.2

France 436 (17.2%) 63 78.4
Russian Federation 181 (7.1%) 25 17.0

Korea 156 (6.2%) 21 28.7
People’s Rep. of China 133 (5.2%) 24 2.3

Canada 108 (4.3%) 14 16.4
Germany 97 (3.8%) 14 15.6
Ukraine 88 (3.5%) 13 48.6
Sweden 65 (2.6%) 9 42.3

United Kingdom 64 (2.5%) - 19.0
Rest of the world 376 (14.8%) 60 9.4

World 2535 (100%) 384 10.7

Table 1.1: Produced, net installed nuclear reactors capacity and % of nuclear production in total domestic electricity
generation of the different countries (2014) [3].

in operation in operation under construction under construction
Country number net capacity (MWe) number net capacity (MWe)
Belarus - - 2 2.218
Belgium 7 1.926 - -

Czech Republic 6 3.930 - -
Finland 4 2.752 1 1.600
France 58 63.130 1 1.630

Germany 8 10.799 - -
Hungary 4 1.889 - -

Netherlands 1 482 - -
Romania 2 1.300 - -
Russia 36 26.557 7 5.468
Slovakia 4 1.814 2 880
Slovenia 1 688 - -
Spain 7 7.121 - -
Sweden 10 9.651 - -

Switzerland 5 3.333 - -
Ukraine 15 13.107 2 1.900

United Kingdom 15 8.918 - -
total 186 163.685 15 13.696

Table 1.2: Summary of nuclear power plants under construction and in operation in Europe (2016) [4].

3



Chapter 1. Introduction 4

Figure 1.2: Nuclear energy production in the period from 1971 to 2014 by regions in terawatthours (TWh) [3].

energy consumption is expected to rise from the current 549 quadrillion British thermal units (Btu) to 815
quadrillion Btu in 2040. This represents an increase of more than 48%, mostly due to non-OECD countries,
whose economic polices are driving a strong demand for energy. This increase is represented in the left
hand panel of Fig. 1.3, which shows the current and forecast energy consumption for the following decades
up to 2040.

Renewable energy production is the fastest growing energy source as projected over the 2012-2040
period. In general, this energy production source will grow by an average of 2.6%/year. Nuclear power is
the second fastest growing energy source, with an average growth rate of 2.3%/year over this period, as is
shown in the right hand panel of Fig. 1.3.

Electricity has been the fastest growing form of energy consumption for many decades, as it will continue
to be in the future. The net generation of electricity will increase by 69%, from 21.6 trillion kilowatthours
(kWh) in 2012 to 36.5 trillion kWh in 2040. Long-term global prospects continue to improve for generation
from renewable energy sources and nuclear power due to the commitment from different countries to reduce
greenhouse emissions.

Electricity generation from nuclear power plants is estimated to increase from 2.1 trillion kWh in 2012
to 4.5 trillion kWh in 2040. Virtually all of the projected net expansion of installed nuclear power capacity
will occur in the non-OECD region, in particular the addition of 139 gigawatts (GW) of nuclear capacity
in China from 2012 to 2040.

The current and forecast energy demand from nuclear plants requires the improvement of existing
critical nuclear systems by refining their efficiency, and the development of new advanced nuclear reactors
such as GEN-IV nuclear reactors [1] or Accelerator Driven Systems (ADS) [6, 7, 8].

4



1.1. Motivation 5

Figure 1.3: In the left hand panel: projection of energy consumption, in Btu, for the period from 2012 to 2040. In
the right hand panel: projection of energy consumption by energy source in Btu from 1990 to 2040 [5].

1.1.2 The 235U neutron cross sections and nuclear energy applications

Nuclear technology and cross sections of 235U

The potential benefits of advanced reactors such as Gen-IV reactors [1] and Accelerator Driven Systems [6,
7, 8] are many and varied and include improved levels of efficiency in the use of fuel, a reduction in the
amount of waste following the process, and the ability to recycle part of the present reactor waste, both
producing energy and reducing the radio-toxicity of fuel elements. Sustainable nuclear energy production
requires a dedicated and ambitious research program over the entire breadth of nuclear science, including
the improvement of existing neutron-induced cross-section data [6].

In contrast to current nuclear power reactors, which are clearly limited by existing parameters, the
advanced systems under consideration for the coming decades will be required to achieve comparable or
even better performance than existing ones. This represents a challenge in view of the considerable feedback
and optimization that has benefited the latter. Therefore, the viability of new designs will depend more
than ever on the quality of the underlying physics: experiments and computational simulations of high
quality are needed before we can convince ourselves that the boundary conditions of sustainability can
indeed be met. This difficult task can directly be translated into (i) considerable challenges regarding basic
nuclear data, neutronics, material science, thermohydraulics, fuel fabrication, reprocessing and partitioning,
the coupling of all these aspects (multi-physics), and modern quality-assured software that will replace the
current suite of reactor simulation codes in both research and industry, and (ii) many requirements in terms
of ’missing’ experimental data, facilities and demonstration plants.

The first crucial ingredient for reactor and fuel cycle analysis is nuclear data. When designing or
assessing the safety of a reactor system, nuclear data for a wide range of reactions and materials needs
to be known. Energy production, radiation damage, radioactivity and related matters all result from
interactions between particles (usually neutrons) and nuclei; a precise simulation of these nuclear reactions
is necessary to predict the system characteristics with sufficient accuracy. Therefore, in contemporary
simulations, a major role is played by the uncertainty of nuclear data, which in a reactor system analysis
can be propagated throughout the entire simulation scheme and may eventually lead to uncertainties
regarding key performance parameters of the simulated designs and the associated fuel cycle.

In order to improve existing nuclear plants and design new ones, designers and physicists must address

5



Chapter 1. Introduction 6

many variants of these plants and perform extensive calculations to estimate the performance of the critical
nuclear system. To formulate accurate and reliable estimates, these studies should incorporate the most
accurate and reliable nuclear data and neutron cross-sections, compiled in evaluated libraries such as
ENDF/B-VII.1 [9], JENDL-4.0a [10] or JEFF-3.2 [11]. These evaluated libraries are tested against relevant
experimental benchmark data, thus validating current knowledge of nuclear cross-sections and nuclear data.
These major evaluated libraries predict the measured criticality of nuclear systems extremely well (for many
assemblies, although not for all of them). However, such good performance in integral testing creates a
false sense of optimism [12]. In particular, a more careful evaluation of the integral testing comparisons,
and the fundamental and evaluated cross-section data, indicates a number of problems:

• Compensating errors: Significant compensating errors must be present in most if not all nuclear
data evaluations. These embody compensating errors distributed between the roles of fission (cross-
sections, average number of prompt neutrons, and neutron spectra), capture, inelastic scattering and
elastic scattering. A major challenge to our community is to remove these compensating errors from
the evaluated libraries by precise new experimental measurements of neutron-induced cross-sections
and other nuclear data.

• Calibration: Calibration has been used in some cases in the evaluated databases to better match
measured criticality of integral systems. Thus, agreement between simulated and measured criticality,
keff , is not as impressive as it might seem, though of course a common set of evaluated data was
used for all of the neutronic simulations of different critical assemblies. Where a certain amount of
calibration was undertaken, it usually involved a reasonable degree of physics assumptions and was
not entirely ad-hoc, and cross-sections were usually adjusted within their uncertainty levels. Thus, a
high certainty degree of adjustment between the simulation and the experimental data is obtained.

• Discrepancies: The discrepancies between different evaluated libraries reflect discrepancies amongst
various measurements, and also differences in theory, model parameters and code calculations. Thus,
new nuclear data must be included to improve and correct this situation.

Quantity measured Author Year Neutron energy period (eV) Reference
η(En) H. Palevsky et al. 1956 0.01 – 0.9 [13]
η(En) J. R. Smith et al. 1957 0.1 – 9.0 [14]
σγ(En) G. de Saussure et al. 1966 0.4 – 62.0 [15]∫
σγ(En) G. de Saussure et al. 1966 10.0 – 1800.0 [15]
η(En F.D. Brooks et al. 1966 0.9 – 200 [16]∫
σγ(En) F.D. Brooks et al. 1966 10 – 200 [16]
σγ(En) R.B. Perez et al. 1973 8.0 – 200.0 [17]∫
σγ(En) G.V. Muradyan et al. 1977 100 – 20000 [18]

αR(En) G.V. Muradyan et al. 1985 2.0 – 32.0 [19]
η(En) H. Weigmann et al. 1990 0.001 – 0.4 [20]
σγ(En) M. Jandel et al. 2012 4.0 – 8·106 [32]
σγ(En) C. Guerrero et al. 2012 – [23]

Table 1.3: List of 235U(n,γ) cross section measurements retrieved from the EXFOR database [24] overlapping in
some region with the neutron energy range of this work.

Over the years, great efforts have been made to obtain reliable neutron-induced cross-sections of the
235U, which are the most important physical constants in nuclear energy applications. In particular,
for the neutron capture cross-section there are several measurements in the neutron resonance region

6
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as shown in the table 1.3. The neutron-induced cross-sections for this isotope are very important, not
only for major nuclear thermal reactors but also for Fast Breeder Reactors (FBRs) because many critical
experiments for FBRs have been performed at critical assemblies where UO2 fuels were used as driver fuels.
The experimental data obtained at such critical assemblies has a great impact on design work for FBRs.
Recent studies show that calculated sodium void reactivity values for FBRs experiments underestimate the
experimental results by 30-50% [25]. These significant discrepancies not only exceed the target accuracy
of 20% for a FBR design but also negatively affect the design accuracy estimated with the cross-section
adjustment and bias factor techniques.

Figure 1.4: In the left hand panel, calculated experimental ratio C/E criticality values for the different FCA-IX
benchmarks experiments and evaluated libraries. In the right hand panel, neutron flux for the different FCA-IX
criticality experiments. The figures have been obtained from [26, 28].

The epithermal neutron capture cross-section of 235U was investigated within the framework of the
Working Party on International Nuclear Data Evaluation Co-operation (WPEC) [27, 28]. As a result,
the Oak Ridge National Laboratory (ORNL) group revised the resolved resonance parameters, which
are currently used by all major libraries. However, recent analyses of fast-neutron cores with U fuels
reveal very poor predictions for neutronic characteristics. The calculated over experimental ratio, C/E,
values of sodium-voided reactivity for BFS are much less than 1.0 except for JENDL-3.2 which adopted a
different evaluation. Moreover, the C/E values of criticalities for Fast Critical Assemblies (FCA) IX-series
experiments [28, 29], where neutron spectra were varied with U fuels, largely depend on the spectrum
shape as shown in the left hand panel of Fig. 1.4. The reproduction of these critical assemblies leads to the
conclusion that the 235U(n,γ) cross-section could be overestimated in the neutron energy range from 100
eV to 2 keV as was suggested by the Japanese nuclear data community [9].

The (FCA) IX-series experiments, used as benchmark experiments, have a great impact on the design
of new nuclear reactors. The poor knowledge regarding neutron cross-sections may not only produce
inadequate reproduction of the experimental data from critical assemblies, but may also introduce bias into
the neutron cross-sections of other isotopes by the bias compensation mentioned before [9].

In addition to this, post irradiation analyses of the nuclear fuel in Pressurized Water Reactors (PWRs)
show a small over-estimation of 235U cross-section predictions and systematic underestimation of 236U
build-up [30], suggesting an increment of 10% of the 235U neutron capture cross-section in the epithermal
neutron energy range [25].

Therefore, there is a required accuracy for the 235U neutron capture cross-section reflected in the High
Priority Request List [26] of the International Atomic Energy Agency (IAEA). This accuracy as a function
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of the neutron energy range is presented in the table 1.4.

Neutron energy interval Accuracy target (%)
100 eV – 1 keV 5
1 keV – 30 keV 8
30 keV – 1 MeV 3

Table 1.4: Required accuracy of the 235U neutron capture cross-section as indicated by the High Priority Request
List of the Nuclear Energy Agency [26].

To tackle the discrepancies in the neutron cross-section data of the major nuclides, the IAEA CIELO
pilot project [12, 31] is re-evaluating the major nuclides that are important for the nuclear applications:
1H, 16U, 235U, 238U and 239Pu. The main goal of this project is the production of improved, and validated,
evaluated nuclear data files. In particular, for the 235U isotope, the main objectives are summarized as
follows:

• Resolved Resonance Parameters: All the existing libraries adopted the resolved resonance pa-
rameters for 235U from ORNL. The upper energy boundary of the resolved region, which is 2.25 keV,
was lowered to 500 eV in JENDL-4.0 and point-wise cross-sections are provided in the 500 eV to 2.25
keV energy range based on the previous resolved resonance parameter set from a previous evaluation.
Hence, the cross sections below 500 eV in all the libraries are identical. New work on 235U is needed to
resolve a number of existing problems [27] with the addition of new experimental data from different
reaction channels such as radiative neutron capture or neutron capture to fission cross-section (α)
data.

• Radiative Capture: The neutron capture cross-section in the resolved resonance region is given
by the resonance parameters from ORNL. In the fast energy range, although unresolved resonance
parameters were also provided by ORNL, the evaluations are based on available experimental data
from critical assemblies and other experiments. The evaluation in ENDF/B-VII.1 is based on an
analysis of measured capture and α-value data above 2.25 keV. ROSFOND adopted ENDF/B-VII.1
and JEFF-3.1 adopted ENDF/B-VI.8, which resulted in very similar cross-sections above 25 keV.
Questions associated with the 235U capture cross-section should be resolved, especially in the 0.5 –
2 keV energy range where the recent JENDL-4.0 evaluation lowered the cross-section by more than
25% based on integral reactor (sodium void) testing [28, 29]. This analysis led to increased capture
compared to ENDF and JEFF in the 3–5 keV region, and for 100–1000 keV. New data measured
at Los Alamos National Neutron Science Center (LANSCE) by Jandel et al [32] with the DANCE
detector partly supports the Japanese conjecture (from 1 to 5 keV), but also suggests that a ∼10%
capture increase is needed from 10 to 70 keV for all evaluations. Recent measurements by Danon et
al. at RPI also support a lower capture cross-section in the 100 eV – 2 keV region.

• Inelastic Scattering: From the threshold to several MeV, there are significant differences between
JENDL-4 and ENDF/B-VII.1 (JEFF- 3.1 is the same as ENDF/B-VI) up to 50 keV, exhibiting
differences in the treatment of the low-lying rotational band built upon the isomeric state. All
evaluations are significantly higher than some of the measurements in the 1–2 MeV range.

• Average Number of Neutrons per Fission ν̄: The ENDF/B-VII.1 ν̄ evaluation comes from
a covariance analysis of the measured data, though in the fast region the evaluation was modified
slightly (within uncertainty) to optimize a match to the fast critical assembly benchmarks.

The work presented in this manuscript focuses on the framework for improving the neutron capture
cross-section at low neutron energy and improve current knowledge of the resonance parameters of 235U
isotope.

8



1.2. The neutron cross-section theory 9

1.2 The neutron cross-section theory

The microscopic neutron cross-section, σ(En), is a physical magnitude that quantifies the interaction prob-
ability of a neutron with a specific nucleus. If we consider a beam of neutrons with intensity I(En)
(neutrons/cm2/s) incident on a very thin plate of a given isotope with area A (cm2), density of nuclei
N (nuclide/cm3) and thickness ∆x (cm), then the reaction rate R(En) (interactions/cm

2/s) must be pro-
portional to the intensity of the neutron beam (I(En)) and the number of target nuclei (N·∆x·A):

R(En) ∝ I(En) ·N ·∆x ·A (1.1)

The constant of proportionality is the neutron cross-section, σ(En) with area dimensions:

R(En) = σ(En) · I(En) ·N ·∆x ·A (1.2)

Typically, for any target nuclei, there are several neutron-induced reactions permitted such as elastic
scattering, neutron capture and other components and thus, the total cross-section σtot(En) is the sum of
the partial cross-sections:

σtot(En) = σel(En) + σγ(En) + σfiss(En) + .. (1.3)

Typically, the neutron cross-section is expressed in ’barns’ (1 barns=10−24cm2). The neutron cross-
section depends on the incident neutron energy and exhibits large variations from one isotope to another,
but some general characteristics are applicable for all the nuclei:

• The more nucleons are involved in the target nuclei, the finer is the resonance structure. Typical level
spacings observed in neutron reactions are of the order of MeV for light isotopes, keV for medium-
weight and eV for heavy nuclei with the exception of magic nuclei such as the 208Pb.

• The neutron capture and elastic scattering reactions can take place for any neutron energy without
any energy threshold. For fissile isotopes, no fission threshold exists for the 235U or 239Pu. Thus,
for these isotopes, neutron-induced fission reactions can take place for any neutron energy. Other
reactions have energy thresholds, with exceptions such as 6Li(n,α)t or 10B(n,α)7Li.

Elastic scattering, neutron capture and neutron-induced fission have the same neutron energy structure
and can be divided into four neutron energy periods:

• The Thermal Region: From the thermal point up to the first resonance, the neutron cross-section
demonstrates a behavior: σ(En)∼1/

√
En. This is true for all reaction channels except for neutron

elastic scattering.

• The Resolved Resonance Region (RRR): From the first resonance (typically in the eV region for
heavy nuclei) up to a certain neutron energy value depending on the target nuclei (typically keV
region for heavy nuclei). For this neutron energy period, the resonant structure is present with large
variations between the peaks and valleys of the resonances. All the reaction channels appear at the
same neutron energy, since the neutron resonances are levels from the compound nuclei, as will be
shown later.

• The Unresolved Resonance Region (URR): Above a certain neutron energy, the neutron resonance
width is comparable to the average resonance spacing. In this case, the experimental resolution cannot
distinguish between the resonances despite the resonances are not overlapping completely. For this
neutron energy period, the parameters of the individual resonances cannot be well determined.

• The Continuum: Above a certain neutron energy, the resonant structure cannot be physically observed
any more. In addition, more reaction channels are permitted due to the energy threshold of the
reaction.

9
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1.2.1 The compound nucleus and the R-matrix theory

The neutron resonances observed in the microscopic neutron cross-sections are understood through the
compound nucleus model, first discussed by Niels Bohr in 1939 [35]. The idea behind the model is that the
neutron-induced reaction takes place in two steps:

• During the first step, the neutron and the target nuclei form a compound nucleus with excitation
energy, E∗, defined as:

E∗ = Sn +
A

A+ 1
En (1.4)

Where A is the mass number of the target nuclei, En is the kinetic energy of the incident neutron and
Sn is the neutron separation energy of the compound nucleus. The observed resonances correspond
to quasi-stationary levels or neutron resonances defined by its excitation energy E∗, half life τ , spin
J, and parity Π.

• The formed compound nucleus in the excited quasi-stationary level decay via the opened channels
such as the radiative channel, (n,γ); the fission channel (n,f) or the elastic scattering. The decay path
is assumed to be independent of the way that the compound nucleus was formed.

In the model, the total neutron cross-section for a given isotope is related to the absorption probability of
the incident neutron. The resonances have, as a good approximation, a Breit-Wigner shape [36] determined
by the resonance parameters: energy E0 and a set of partial widths related to the decay probability
through different mechanisms: capture Γγ , fission Γf and scattering Γn, for example. The sum of all
widths, Γtot =

∑
c Γc is a quantity related to the lifetime of the quasi-stationary level, defined by the

Heisenberg Uncertainty Principle τ = h/Γtot. The theory behind the compound nucleus is the R-matrix
theory introduced by Wigner and Eisenbud [37, 38]. For further and detailed information of the R-Matrix
theory consult the references [39, 40].

1.2.2 The neutron radiative capture process

In accordance with the compound nucleus model, when a neutron is captured by a (n,γ) process, after the
formation of the compound nucleus it decays from the excited nuclear level to the ground or metastable
nuclear level by the emission of γ-rays and electron particles. The resulting electromagnetic cascade pro-
duced in the process is the signature used at the n TOF facility for the determination of the neutron
capture cross-section. In order to obtain the amount of neutron capture reactions which occur during the
measurement, the determination of the detection efficiency of the detector used is necessary and is achieved
by the reproduction of the experimental electromagnetic cascades by Monte Carlo techniques.

For the exact reproduction of these electromagnetic cascades, it is necessary to know the exact nu-
clear level scheme of the compound nucleus at this high excitation energy (E∗=Sn+En) as well as all the
branching ratios and information related to the conversion electrons for each possible decay path. From
the practical point of view it is impossible to know all the information needed for the exact reproduction of
the electromagnetic cascade. For this reason, the experimental nuclear scheme measured at low excitation
energy is used and completed by a statistical model from a specific excitation energy up to the excitation
energy of the resonance. A brief summary of the theoretical basis will be provided in this section. For
further information, consult the references [42, 43, 44, 45, 46].

In the model most widely used for the generation of electromagnetic cascades [47, 48], the radiation
width Γaγb, is defined as the probability of a γ-ray decay from a level with energy Ea to another with
excitation energy Eb. The expectation value of this partial radiation width for a given radiation type X
(electric or magnetic) and multipolarity L is assumed to be (following Fermi’s golden rule [49]):

10
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Γ̄
(XL)
aγb = f (XL)(Eγ)E

2L+1
γ /ρ(Ea, J

πa
a ) (1.5)

where ρ(E, Jπ) is the nuclear level density for states with Jπ and f (XL)(Eγ) is the Photon Strength
Function (PSF) whose only dependence is assumed to be with the γ-ray energy and not with properties of
the initial and final nuclear levels. This is the so-called Hypothesis of Brinck.

There are different models for the density of nuclear levels up to these high excitation energies such
as the Back Shifted Fermi Gas. For further information, consult the references [50, 51, 52]. The Digl
description of the nuclear level density [52] uses the following expression:

ρ(E, J) =
1

24
√
2

2J + 1

σ3a1/4
exp

[
2(a(E −∆))1/2 − J(J + 1)/2σ2

]

(E −∆+ T )5/4
(1.6)

where T is the thermodynamic temperature defined by E-∆=aT2-T, σ is the spin cut-off parameter and
a and ∆ are the parameters of the model.

The PSF functions are usually parametrized by the Standard Lorentzian or the Enhanced Generalized
Lorentzian (EGLO). The Lorentzian Shape functions are described by three parameters, the resonance
point, Er; the decay width, Γr; and the probability normalization σr. The values of these three parameters
must be adjusted from the comparison of the experimental data with the statistical cascade model.

1.2.3 The neutron induced fission process

From the classical point of view, the behavior of the nuclei in the fission process [33] is analogous to the
behavior of a drop of mercury that is divided into two smaller drops. In a heavy nucleus such as 235U, a
nucleon situated in the inner part of the nucleus is in constant and violent motion due to the attraction of
the rest of the nucleons, but since it is totally surrounded by other nucleons, the net force applied is zero.
This is not the case of a nucleon close to the surface of the nucleus, where due to the short range of the
nuclear force and because there are no nucleons ’outside’, the net force applied to the nucleon is balanced
to the inside; thus, the nucleon is pulled towards the center of the nucleus.

As a consequence, on average, the nucleus has a spherical shape similar to the mercury drop. The
classical image of the heavy nucleus is that of a bubble whose surface is oscillating, but generally with a
spherical shape. If the amplitude of these oscillations becomes too great, the nucleus can split in two. This
is known as the liquid drop model [53], and offers a clear and intuitive picture of a heavy nucleus.

Certain isotopes such as 246Cm or 252Cf can fission spontaneously even without any outside influence,
but this is a rare event. The probability of fissioning for a given nucleus increases as energy is added
from some outside source. With the classical picture of the process, we can imagine that the nucleus
gains energy (excitation energy), oscillating more violently until reaching a certain ’critical energy’ where
the fission probability increases and the fission process take place, dividing the nucleus into two smaller
nuclei. For this reason, the fission process can be seen as a threshold energy process. The energy threshold
correspond with the fission barrier height of the nucleus involved. A nucleus below this excitation threshold
is unlikely to de-excite itself by fissioning instead of another process such as radiative decay. Typically,
the excitation energy needed to open the fission reaction channel for a heavy nucleus such as 235U is ∼4-5
MeV.

The liquid drop model is the simplest model of fission. The reality is that in addition to the fission
barrier from the liquid model, there are nuclear shell corrections, giving a more complicated but fashionable
description of the fission process and phenomena such as the double-humped barrier. This is illustrated in
Fig. 1.6, where on the x axis is presented the quadrupolar moment of the nucleus (deformation) and on
the y axis the excitation energy. As is shown, there are two minimma in the fission barrier due to the shell
corrections, thus producing fission isomers. The simplest way to explain this is that there are two different
configurations of the nucleons in the nucleus with the same excitation energy but with different shapes.

11
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Figure 1.5: Schematic plot of the fission process. The formation of the compound nucleus and decay to fission
fragments with the emission of prompt neutrons and γ-rays.

The neutron-induced fission reaction is explained within the framework of the compound nucleus
model [53]. Just after the neutron reaches the target nucleus, the compound nucleus is formed at a nuclear
level with excitation energy, E∗ defined by:

E∗ = En + Sn (1.7)

If this energy is above the fission threshold (barrier), the fission reaction is energetically possible; thus
the fission reaction channel is open. Even if the excitation energy is not sufficient, there is the probability
of nuclei fissioning by a tunnel effect, but this is highly suppressed. There are some nuclei such as the
235U where the excitation energy of the compound nucleus formed by the system neutron+target is above
the fission barrier, even without the kinetic energy of the incident neutron. Therefore, the (n,f) channel is
always energetically possible. These nuclei are termed fissile nuclei, such as 235U or 239Pu.

In the fission process, not only are fission fragments emitted with a high kinetic energy, but also
neutrons and γ-rays, known as prompt fission γ-ray cascades. Because the fission fragments are produced
in a highly excited nuclear state with high angular momenta and excitation energies, the fission products
decay immediately, emitting neutrons and γ-rays. A schematic picture of the neutron- induced fission
process is shown in Fig. 1.5.

The total energy released during fission, ∆(E), is easily derived from the energy conservation law of the
neutron+target system before and after neutron-induced fission. That is:

∆(E) = En +

(
M0 −

∑

i

Mi

)
c2 (1.8)

where En is the kinetic energy of the incident neutron, M0 is the mass of the compound nucleus given
by the sum of the target mass Mtargt and the mass of the neutron, mn; Mi is the mass of the individual
primary fission fragments and c the speed of light. The total energy released per fission will vary from one
fission to the next depending on the fission products formed, but on average the energy released per fission
of 235U with thermal neutrons is about 200 MeV.

12



1.2. The neutron cross-section theory 13

The released energy in the fission process is distributed among the fission fragments as excitation and
kinetic energy, the kinetic energy of the fission neutrons and the prompt γ-rays. The rest is released over
a long period of time after the fission occurs as β-decay, retarded neutron emission and γ decay of the
residual nuclei.

Reaction ∆(E) (MeV) TKE (MeV) ν̄ mγ

nth+
233U ∼200 172 2.492 9

nth+
235U ∼200 171 2.418 8

nth+
239Pu ∼200 177 2.108 7

Table 1.5: Total released energy ∆(E), kinetic energy of the fission fragments (TKE), average number of prompt
emitted neutrons ν̄ and average number of prompt γ-rays in neutron induced fission reaction with some isotopes.

Typically, for neutron-induced fission reactions with different isotopes, the total energy released has
similar values, for kinetic energies of the fission fragments, and average number of neutrons and γ-ray
emitted as is shown in the table 1.5.

For fissile isotopes, the fission cross-section data is larger than the capture cross-section. This fact,
added to the large amount of prompt γ-rays and fission neutrons emitted (table 1.5) causes a severe
background that must be accurately subtracted for the calculation of the neutron capture cross-section,
thus complicating the measurement of the neutron radiative capture reaction.
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The double-humped barrier and the fission isomers

Figure 1.6: Typical double-humped fission barrier for an actinide isotope. The quadrupolar momentum (deformation)
is shown on the x axis and on the y-axis, the excitation energy of the system.

One of the immediate consequences of the double-humped barrier in fissile isotopes is the existence
of fission isomers. Fission isomers are excited nuclear states which decay by spontaneous fission or γ de-
excitation to the ground state after population in a nuclear reaction [54]. The half-lives presently known
range from 5 ps to 14 ms, depending on the height and width of the potential barriers. All fission isomers
are located in the actinide region with proton numbers of Z=92-97 and N=141-151, respectively. For Z>97,
the half-lives become too short to be observable with current techniques, while isomers in the region Z<92
shape isomeric γ decay rather than fission. Quantitatively, of course, the exact boundaries of this region
depend on the sensitivity of the experimental techniques used.

The double-humped character of the nuclear potential energy as a function of deformation arises from
the superposition of a macroscopic smooth liquid drop part and a shell correction, as was mentioned
previously [56, 57]. Oscillations of this shell correction as a function of deformation lead to two minima
in the potential barrier energy; thus, the ground state of the isomer is located at a deformation of ε2=0.6,
2-3 MeV higher than the first minimum. In the specific case of the 235U+n system, the difference between
the ground state of the system and the first isomeric ground state is only 1 MeV due to the 236U nucleus
being a double-closed shell nucleus.

This concept explains the observable consequences listed in Fig. 1.6. The nuclei caught in the second
minimum can either tunnel through the outer barrier (isomeric fission), or can decay back to the first
minimum (isomeric γ decay). There will be a spectrum of low-lying excited states built on the ground state
in the second well, which can be studied, at least in principle, by ’conventional’ spectroscopic methods [54].

Proceeding higher up in excitation energy to the barrier region via the kinetic energy of the neutron,
intermediate structures occur in the neutron-induced fission cross-sections. These consist mainly of two
types:
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• A broad structure in the neutron-induced fission cross-section caused by ’transmission resonances’.

• A fine structure in the neutron-induced fission cross-section seen as a clustering of neutron resonances.

Figure 1.7: Experimental isomeric states detected in the actinide region 92<Z<97. The half-life of those nuclei is
given in ns. The figure has been taken from [56].

The detailed behavior of these neutron-induced fission cross-sections together with the information
on isomers is used to extract the barrier heights [55]. Following any nuclear reaction which excites an
actinide nucleus above the fission barrier, the probabilities of prompt fission, of decay back into the first
minimum and of trapping in the region of the second minimum, are in the order of 0.9, 0.1 and 10−5-
10−4, respectively [56]. A detailed investigation of the properties of shape isomers therefore encounters
tremendous experimental difficulties.

Present knowledge is mostly restricted to the identification of isotopes, half-lives, and in some cases,
excitation energies of the states decaying by spontaneous fission. In accordance with Britt, 1973, the
actinide region of the chart of nuclei seen in Fig. 1.7, shows, at least, 33 fission isomers between U and Bk
with half-lives ranging from 10−11 to 10−2 sec.
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1.3 Measurement of capture cross-sections in fissile isotopes

The neutron capture cross-section, σγ(En), is usually measured by detecting γ-ray cascades after the
formation of the compound nucleus. For the fissile nucleus the probability of a neutron producing a fission
reaction is, on average, greater than that of producing a neutron capture reaction. Moreover, since the
resonances are the excited levels of the compound nucleus, both cross-sections have the same resonant
structure as a function of neutron energy as shown in Fig. 1.8. In addition, the amount of γ-rays emitted
in a fission reaction is larger than in a (n,γ) reaction. Thus, measuring (n,γ) reactions in fissile isotopes is
challenging due to the fact that it competes with the stronger fission reaction channel.
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Figure 1.8: 235U(n,f), 235U(n,γ) and 235U(n,n) cross-sections obtained from the evaluated library ENDF/B-VII.1
in the neutron energy range from 0.2 eV to 1 keV.

To accomplish the subtraction of the prompt fission background for the measurement of the 235U(n,γ)
cross-section, the fission tagging technique [15, 17, 23, 32] has been used. The main idea of the technique is
to measure simultaneously the fission and capture reaction channels by means of fission and electromagnetic
detectors respectively. By evaluating the time coincidence between both detection systems, the fission γ-ray
cascades can be tagged. The idea was developed in the early 1960s at Los Alamos [15, 17] and modified in
recent years at the n TOF facility [23] and DANCE (Los Alamos) [32], with improved setups and detection
systems. There are some difficulties inherent to the technique:

• The large amount of dead material intercepting the neutron beam: the fission tagging detectors,
together with all the components of the fission chamber, must intercept the neutron beam, thus
producing a large amount of γ-ray background which is detected by the γ-ray detector.

• The systematic uncertainties associated with the detection efficiencies: these parameters, critical for
the determination of the 235U(n,γ) cross-section, must be carefully determined as will be explained
later in this section.
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• The low counting statistics: for high efficiency in detecting fission fragments via fission detectors, the
use of very thin targets with low mass is required. Therefore, the capture to background ratio will
be lower compared to thicker samples, and longer periods of measurement are required.

For these reasons, not all fission and γ-ray detectors are suitable for this technique. The methodology
requires:

• High detection efficiency γ-ray detectors for (n,γ) cascades such as the segmented n TOF Total
Absorption Calorimeter (TAC) [58].

• High detection efficiency fission detectors for the (n,f) events, of low mass and sufficiently compact
to fit in the experimental setup, such as Fission Tagging Micromegas detectors [59].

These two detection systems have been used for the experimental setup of this measurement as described
in section 2.2.

The microscopic neutron cross-section for any reaction channel cannot be measured directly. Instead,
the observable is the reaction yield, Yx(En), defined as the fraction of neutrons impinging on the target
that produces reactions of the desired reaction channel. This magnitude, as with the neutron cross-section,
strongly depends on the kinetic energy of the incident neutron. Thus, the reaction yield for any reaction
channel x is determined experimentally as:

Yx(En) =
cx(En)

φn(En)
(1.9)

where cx(En) is the total number of channel reactions produced in the targets, and φn(En) is the total
number of neutrons with kinetic energy En impinging on the sample under study. The total number of
reactions of the channel produced in the targets is obtained from the difference between the total number
of reactions measured, ctot(En), and the background, cbkg(En), divided by the detection efficiency of the
specific reaction channel, εx. Then, the equation 1.9 is written as [60]:

Yx(En) =
ctot(En)− cbkg(En)

εx(En)φn(En)
(1.10)

Theoretically, the reaction yield and the neutron cross-section are connected by the equation 1.11 when
the multiple scattering effects can be neglected [40]:

Yx(En) =
σx(En)

σT (En)

(
1− e−nsσT (En)

)
(1.11)

where σx(En) and σT (En) are the specific reaction channel x and the total neutron cross-sections,
respectively. The thickness of the targets, ns, is expressed in atoms/barn. Under the thin target approx-
imation, which is equivalent to a low probability of interaction of the neutrons with the target sample,
(ns · σT (En)<<1), the equation 1.11 leads to:

Yx(En) ≈ nsσx(En) (1.12)

which is valid for very thin targets and/or low neutron total cross-section. The background for the (n,γ)
reaction channel (equation 1.10) in this particular case can be described as:

cbkg(En) = cFiss(En) + cOther(En) (1.13)

where cFiss(En) is the prompt fission background, defined as the background induced in the γ-ray
detector several nanoseconds after the fission reaction occurs and cOther(En) is the remaining background.
The prompt fission background is determined by the fission tagging technique [23, 32], obtained from the
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number of coincidences between the fission and γ-ray detection systems, ctagg(En), divided by a factor
labeled here as fission tagging detection efficiency, ε∗f , which takes into account that not all fission events
are tagged by the fission detection system. Then:

cFiss(En) =
1

ε∗f
ctagg(En) (1.14)

The fission tagging detection efficiency, ε∗f , and the fission detection efficiency, εf , are the same quantity
only in the particular case that the probability of detecting a fission reaction with one of the detectors does
not depend on whether it has been detected by the other [23]. Inserting Eq. 1.13 and Eq. 5.2 in Eq. 1.10,
the neutron capture yield becomes:

Yγ(En) =
cγ(En)

φn(En)
=

ctot(En)− 1
ε∗
f

ctagg(En)− cOther(En)

εγ(En)φn(En)
(1.15)

and σγ(En) is easily deduced from equation 1.12.
The fission tagging technique requires the simultaneous measurement of the neutron capture and

neutron-induced fission reaction yields. Thus, the measurement can be interpreted as the measurement
of the absolute ratio between both reaction yields. For small neutron energy periods:

Yγ(En)

Yf (En)
=

σγ(En)
σT (En)

(
1− e−nsσT (En)

)

σf (En)
σT (En)

(
1− e−nsσT (En)

) =
σγ(En)

σf (En)
= α(En) (1.16)

where α(En), the alpha ratio, is by definition the ratio between the neutron capture and the fission
cross-sections. Experimentally, this quantity is determined as:

α(En) =
Yγ(En)

Yf (En)
=

εf (En)

εγ(En)

ctot(En)− 1
ε∗
f

ctagg(En)− cOther(En)

cf (En)
(1.17)

where cf (En) is the total number of fissions detected by the fission detector. The background for this
reaction channel has been neglected.

The measurement, presented as α(En) ratio (Eq. 1.17), constitutes an absolute value of the ratio between
both reaction channels. Moreover, it minimizes systematic uncertainties since:

• It removes common errors associated with the determination of the shape and absolute value of the
neutron fluence.

• It does not depend on the sample thickness, thus eliminating uncertainties associated with the possible
inhomogeneities and mass of the samples under study.

On the other hand, the determination of the capture cross-section from equation 1.15 has lower statistical
uncertainties. In most cases, when neither the samples nor the absolute value of the neutron fluence are
accurately characterized, the neutron capture cross-section requires an external normalization, Nnorm, thus
increasing the systematic uncertainty in the determination of this quantity.

In the particular case of 235U, the neutron-induced fission cross-section is accurately determined for
some neutron energy periods, thus the α(En) ratio can be computed in those periods and used for the
normalization of the neutron capture cross-section, as will be shown in section 3.8. In this way, the
systematic uncertainties associated with the target thickness, inhomogeneities and the absolute value of
the neutron fluence are removed from the neutron capture cross-section.

In order to estimate the α-ratio sensitivity (and the neutron capture cross-section) of the fission tagging
detection efficiency, ε∗f , we propagate the uncertainty in this parameter to the α-ratio under the following
assumptions:
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• The contribution of other background sources, cothers(En), has been neglected for this calculation.

• The TAC detection probability is similar for the γ-ray cascades from the (n,γ) and (n,f) processes.

• The (n,f) events are detected independently by both detection systems, thus the fission tagging
detection efficiency and the fission detection efficiency are the same quantity: εf=ε∗f .

Thus, the α-ratio sensitivity to ε∗f parameter is:

∆ε∗
f
(α(En))

α(En)
≃
(
1 +

σf (En)

σγ(En)

)
∆(ε∗f )

ε∗f
(1.18)

In the case of 235U, the σf (En)/σγ(En) ratio, on average, is a factor of 2-3. An uncertainty of 1% in the
fission tagging detection efficiency parameter, introduces a systematic uncertainty of 3-4% in the α-ratio.
Therefore, the determination of this parameter is critical for the accurate calculation of the neutron capture
cross-section.
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Chapter 2

The 235U(n,γ) cross section
measurement

The measurements of the 235U(n,γ) cross-section presented in this work were performed at the n TOF
facility using the segmented BaF2 Total Absorption Calorimeter and the Fission Tagging Micromegas
detectors. The aim of this chapter is to describe:

• Section 2.1: The n TOF facility.

• Section 2.2: The detectors and the experimental setup used for the measurement and the Data
Acquisition System (DAQ).

• Section 2.3: The 235U samples used for the measurement.

• Section 2.4: The experimental configurations used for the measurement of the 235U(n,γ) cross-section.

2.1 The n TOF facility at CERN

The construction of the n TOF facility [61] was proposed by Rubbia et al. in 1998 [62] and built at
CERN in 2001. The facility provides the astrophysics and nuclear technology scientific community with
measurements of neutron cross-sections in the neutron energy range ranging from thermal up to several
GeV. In this section, the principal characteristics of the facility will be briefly described. Extended reviews of
the characteristics of the facility, performance and measurements carried out are available in references [63,
64, 65, 66, 67, 68, 69].

The n TOF facility is based on the 6 ns wide, 20 GeV pulsed proton beam delivered by CERN’s Proton
Synchrotron (PS) with typically 7·1012 or 4·1012 protons per pulse (depending on whether the proton pulse
delivered is dedicated or parasitic type), impinging on a lead spallation target, yielding about 300 neutrons
per incident proton. A layer of water around the spallation target moderates the initially fast neutrons
produced down to a white spectrum of neutrons, covering the full range of energies between meV and
GeV [69].

The neutron bunches are spaced by multiples of 1.2 s, characteristic frequency of the PS cycle. This
allows measurements to be made over long flight times without overlap between neutron pulses. The large
energy range that can be measured at once is one of the key characteristics of the facility, in addition
to the high instantaneous neutron flux, which is of particular advantage for measuring low mass and/or
radioactive samples, minimizing the signal-to-background ratio. In the left hand panel of the figure 2.1 is
shown a schematic picture of the n TOF facility and the PS at CERN.
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Figure 2.1: Left: Schematic picture of the n TOF facility, the CERN’s PS and that of the experimental area. Right:
Schematic picture of the facility, including the two neutron beam lines and the two experimental areas, EAR1 and
EAR2.

The energy of the incident neutron is determined by the time-of-flight flight technique. The neutrons,
created at a time t0 , travel from the spallation target to the experimental areas situated at a distance
L where the reactions are detected by the experimental setup at time t0+t. The velocity of the incident
neutron is determined as v=L/(t0+t) and its kinetic energy by the relativistic formula:

En = Etot −mnc
2 = (γ − 1)mnc

2 =

(
1√

1− v2/c2
− 1

)
mnc

2 (2.1)

where mn is the neutron mass and c the light speed.

Two beam lines are in operation today. The first one, in existence since the opening of the facility, is
a horizontal beam line with a large flight path (185 m) that leads to an experimental area (EAR1) where
the experimental setups are mounted and the measurements of the neutron cross-sections are performed.
The second, vertical beam line operative since 2014 with a shorter flight path (20 m) that leads to another
experimental area (EAR2) with a neutron flux about 25 times larger than EAR1. In both neutron beam
lines, collimators and magnets are placed between the spallation target and the experimental areas, for
cleaning the neutron beam from charged particles, scattered neutrons and other backgrounds. The right
hand panel of Fig 2.1 shows a schematic picture of the n TOF facility, including both neutron beam lines,
collimators and magnets.

In this manuscript we will refer only to the EAR1, where the experiment was performed.

The energy dependence of the neutron flux in the experimental areas is determined using two fission
chambers absolutely calibrated at PTB [70], Silicon Monitors based on 6Li(n,α)t reactions, Micromegas
detectors based on 235U(n,f) and 10B(n,α) reactions and Parallel Plate Avalanche Counters (PPACS) based
on 235U(n,f) reactions [71]. As a result of all the measurements, an evaluated flux is obtained as is shown
in left panel of Fig 2.2. The differences between the neutron flux in 2009 and subsequent years are due
to the addition of 10B, in the moderator for the reduction of the background produced in the 1H(n,γ)2H
reactions.

For the measurement of neutron-induced fission and neutron capture cross-sections, two collimators are
available, which differ by their inner radii. The collimator for capture measurements provides a neutron
beam with 2 cm in diameter with a quasi-Gaussian spatial profile of σ ∼0.77 cm in the energy range which
is of interest to this work [72].

Because not all the neutrons are produced at the same time and position in the spallation target and
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Figure 2.2: Left:Evaluated neutron fluence in the EAR1 along the years: 2009 (pink), 2010 (black), 2011 (red) and
2012 (blue). Right: Resolution function of the n TOF facility, expressed as equivalent distance traveled by each
neutron as a function of its energy.

have different interactions with the moderator and other materials along the neutron beam line, there is
an ambiguous distribution between the velocity and the time of flight. This probability distribution, also
known as the Resolution function, R, needs to be accurately determined for the precise time of flight to
energy conversion in the analysis of the neutron cross-section data. The Resolution function is obtained by
simulations and verified by the measurement of well-known neutron resonances. This probability distribu-
tion as a function of the true neutron energy, En, can be expressed by related quantities such as neutron
energy, E, equivalent time, t, or equivalent distance, L, as is shown in the right panel of figure 2.2. Thus:

R(En;E)dE = Rt(En; t)dt = RL(En;L)dL (2.2)
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2.2 The experimental setup

During the 235U(n,γ) cross-section measurement, five different types of detectors were used: (1) the n TOF
Total Absorption Calorimeter (TAC) [58] to detect the capture reactions produced in the 235U samples;
(2) The Fission Tagging Micromegas Detectors (FTMG) [59], placed in the center of the TAC with the
235U targets, for the measurement of the neutron-induced fission cross-section and the subtraction of the
prompt-fission γ-ray background; (3) The Silicon Flux Monitors (SiMon) [73] used as intensity monitors of
the neutron beam; (4) The Wall Current Monitor (WCM) [74] to monitor the proton beam; (5) The Beam
Current Transformer (BCT) [74] that registers the number of protons per pulse and is used for the same
purpose as the WCM.

The signals of the of the first four detectors were recorded by the front-end n TOF Data Acquisition
System (DAQ) [75] and the BCT value is directly registered together with the rest of the data. All the
detected signals recorded by the different detectors were analyzed offline by dedicated pulse shape routines.

2.2.1 The Total Absorption Calorimeter

The γ-ray cascades following the (n,γ) reactions are detected by the Total Absorption Calorimeter (TAC),
which is a 4π segmented array detector formed by 40 BaF2 crystals [58] based on the design from the
Karlsruhe TAC [76]. There are 12 crystals of pentagonal shape and 28 crystals with a hexagonal shape. Each
BaF2 crystal is surrounded by two 0.1 mm thick layers of teflon and polished aluminum foil for optimizing
the light collection. The crystals are encapsulated in a 1 mm thick borated carbon fiber capsules to reduce
the amount of neutrons detected by the TAC. The assembly is coupled to a 5 inch Photonis XP4508B
photomultiplier. The BaF2 modules are attached to an aluminum housing, integrated in a honeycomb
structure, which holds the complete assembly as shown in both panels of Fig. 2.4. For further information
about the BaF2 crystals and the TAC consult the references [34, 77].

The BaF2 signals were recorded in the front-end n TOF Data Acquisition System for the posterior
offline analysis as shown in Fig. 2.3 by the dedicated pulse shape routine [78].

Figure 2.3: Raw signal digitized from one BaF2 detector (red solid line). The analyzed signals detected by the
dedicated pulse shape routine are indicated by the solid blue line and the baseline by the dashed green line.

The entire structure, BaF2 modules plus the honeycomb that holds the detectors, forms an spherical
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shell of 10 and 25 cm of inner and outer radius respectively, covering 95% of the solid angle. Between
the fission chamber and the TAC was placed a polyethylene neutron absorber with an 18.8 cm diameter,
1.13 g/cm3 density and enriched with natural boron at 10%, in order to reduce the amount of scattered
neutrons detected by the TAC. The borated neutron absorber surrounding the fission chamber is shown in
the right hand panel of Fig. 2.4.

Figure 2.4: In the left hand panel, picture of the TAC empty during a calibration measurement with an Am/Be
source. In the right hand panel, picture of the TAC with fission chamber in the center of the TAC surrounded by
the borated neutron absorber.

The TAC was designed to detect in coincidence individual γ-rays emitted during the neutron capture
process. The entire γ-ray cascade, which is emitted in several picoseconds, is detected in coincidence
between the BaF2 crystals using a time coincidence window of 20 ns.

The high TAC detection efficiency for the individual γ-rays permits the detection of the capture cascades
with probabilities close to 100%, thus registering most of the γ-rays emitted after the nuclear reaction
with their energies, Eγ . The TAC events are characterized by the number of BaF2 crystals involved in
coincidence, mcr, and the total deposited energy of the event, Esum, defined as the sum of all the detected
signals in the BaF2 crystals. This high detection efficiency is scaled down to 60-70% when, during the
analysis, some restrictions are applied to the detected events in order to improve the signal-to-background
ratio.

2.2.2 The fission tagging micromegas detectors

The micromegas detector is a gaseous parallel plate detector [59, 79, 80] with three electrodes, a cathode,
a micromesh and anode following a relative simple detection principle. The detector is sensitive to the
charged particles such as the α particles produced in the 10B reactions or the fission fragments produced in
neutron-induced fission reactions and X-rays since in the gap, only those particles deposit an appreciable
energy. These detectors are used for hard radioactive environments such as nuclear reactors [81] due to
their robustness and high resistance to radiation damage. The energy deposition of the incident charged
particle produces ionization electrons in the gas that are amplified by the electric field applied.

The active volume of the detector is separated into two regions: the drift gap, formed by the region
between the cathode, where calibration sources, the sample to be measured or neutron conversion samples
are placed, and the micromesh; and the amplification gap, situated in the region between the micromesh
and the anode plate. A schematic picture of the detector is shown in Fig. 2.5.
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Figure 2.5: Schematic picture of the micromegas detector used for the fission tagging experiment. The gaseous
detectors are divided into two regions: the drift gap, formed by the region between the cathode where the 235U sample
is placed and the micromesh; and the amplification gap, formed by the region situated between the micromesh and
the anode plate.

In the drift region, the low electric field applied (∼1 kV/cm) collects the ionization electrons towards
the micromesh. In the amplification region between the mesh and the anode, the high electric field applied
(from 40 to 70 kV/cm) produces the multiplication of the incoming charge from the drift region by an
avalanche process [79]. The amplified charge is finally collected by the anode plate, thus producing the
electrical signal from the detector. The narrow separation between micromesh and anode plate, typically
40-100 µm, controls the gain of the detector. Therefore, controlling the space between the micromesh
and the anode plate is crucial for the energy resolution, as well as for the homogeneous collection and
amplification of the charge produced.

Figure 2.6: In the left hand panel, picture of the individual fission tagging micromegas detectors and the assembly
of two fission tagging detectors. In the right hand panel, fission tagging micromegas assembly being placed inside
the fission chamber.

The micromesh and the amplification region are produced by a chemical process that attacks a thin film
made from copper and kapton layers in order to obtain a grid of insulating kapton pillars with the thickness
of the initial film. Therefore, the micromesh grid is a thin metallic copper foil, 5µm thick, composed by
a grid of holes with 25µm diameter and a distance between holes of 50µm. The uniform gap between the
micromesh and the anode is achieved by the small cylindrical insulating pillars created from the chemical
process, fixed to the anode [59]. A schematic zoom of the amplification region of the micromegas is shown
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in Fig. 2.7.

Figure 2.7: Zoom of the amplification region. The micromesh grid and the kapton pillars are shown in the top part
of the figure. In the bottom part is shown the anode plate. The figure has been taken from [59].

Micromegas detectors are routinely used for monitoring of the neutron beam during the cross-section
measurements, using neutron converters such as 10B, 6Li or 235U, and for the measurement of the neutron-
induced charged particles cross-sections. The high transparency of these detectors and the reduced amount
of material required for the construction, results in low perturbations of the neutron beam, thus minimizing
the amount of beam-produced secondary particles and background. This is particularly important for
neutron capture measurements, where the background is a critical part of the analysis.

Fission Tagging Micromegas Detectors (FTMG) are a compact version of these versatile detectors. The
diameter of FTMG is 60 mm (active diameter 49 mm), thus covering the entire spatial profileof the neutron
beam. The drift gap was 8.1 mm, similar to the distance used for the beam monitors loaded with 235U.
With these reduced dimensions it fits inside the sealed fission chamber as is shown in the right hand panel
of Fig. 2.6. This small drift gap, as will be shown later, makes it impossible to completely stop the fission
fragments. For the experiment, the detectors were placed in a sealed fission chamber filled with a premixed
gas of Ar+(10%)CF4+(2%) iC4H10 at atmospheric pressure (1 bar). Due to the strict safety rules at CERN,
the percentage of isobutane during the operation was low enough to be non-flammable.

 (ns)
FTMG1

 t
0 2000 4000 6000 8000 10000

 A
D

C
 c

h
a
n

n
e
ls

 

140

160

180

200

220

240

 FTMG 1 Run 14782 Segment 1 Event 1 Signal 1 FTMG 1 Run 14782 Segment 1 Event 1 Signal 1

Figure 2.8: Raw buffer digitized from one FTMG detector. The recorded signal of a fission fragment is shown by
the solid blue line. The time width of the signal is about 250 ns.
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The signal produced by the anode was shaped by a preamplifier-fast amplifier analogic system, producing
signals of about 250 ns in width. These raw signals were recorded by the n TOF DAQ at 100 MS/s as is
shown in Fig. 2.8 in order to achieve neutron energies down to the thermal point.

2.2.3 The neutron beam monitors

The intensity of the neutron flux during the measurement of the 235U(n,γ) cross-section was monitored by
three different detection systems:

• The Silicon Monitors (SiMon) [73], used to monitor the intensity of the neutron beam along the
different experimental configurations.

For the n TOF facility, where the neutron beam is produced by spallation reactions, the accurate
normalization could be achieved by recording the total number of protons impinging on the Pb
target [74]. However, a precise relative normalization is also obtained by directly measuring the
neutron beam using the well-known neutron cross-section of the reactions 6Li(n,α)t.
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Figure 2.9: Left: Schematic figure of the experimental setup of the SiMon at the n TOF facility. The thin Mylar foil
with the 6Li target is inserted in the neutron beam and the array of silicon detectors is placed outside the neutron
beam, minimizing the amount of dead material intercepting the neutron beam. Right: Amplitude spectra of the four
Silicon Monitors used during the measurement of the 235U(n,γ) cross section.

The SiMon are an array of four silicon detectors designed to minimize the amount of material that
intercepts the neutron beam as is shown in the schematic picture of Fig. 2.9 (left panel). The 6Li foil
is deposited on a thin Mylar film and the different detectors are placed outside the neutron beam at
45 degrees in respect to the neutron beam.

The amplitude spectra detected by the four silicon detectors is shown in right panel of Fig.2.9. The
upper part of the spectra corresponds to the tritium detection peak while the plateau observed is due
to the detection of the α particles. For further information about the detectors, their behavior and
performance, consult the reference [73].

• The Wall Current Monitor (WCM) [82], is a system that generates a signal proportional to the
intensity of the neutron beam, thus monitoring the intensity of the proton beam.
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• The Beam Current Transformers (BCT) [82], also used to monitor the intensity of the proton beam,
record the number of protons impinging on the spallation target. Both systems, the WCM and BCT,
are independent, therefore giving reliable information about the proton beam intensity.

2.2.4 The data acquisition system

The signals from all detectors used during the measurement of the 235U(n,γ) cross-section were completely
recorded by the n TOF Digital Acquisition System (DAQ) [75]. This system is based on Acqiris-DC270
Flash ADCs cards with 8 bit resolution, 1 GS/s of maximum sampling rate and maximum buffer memory
of 8 MB per channel. The sampling rate of the Flash ADCs is adapted to the signal time characteristic of
the input detector and the time window required for the minimum neutron energy of the measurement1.
The trigger pulse, provided by the CERN PS, is delivered to the DAQ just before the incident proton pulse
reaches the spallation target. This trigger signal is passed to all the available Flash ADCs cards, starting
the acquisition and digitalizing each ADC channel up to the selected time window.

Figure 2.10: Front-end n TOF DAQ formed by the Acqiris-DC270 flash ADCs cards for the digitization of the
signals of the detectors in the experimental area 1 (EAR1).

The entire digitized buffer of each ADC channel is then processed by an algorithm labeled as zero
suppression that eliminates the pieces of the raw buffer where no detector signal is found, thereby reducing
the amount of recorded data and eliminating the part of the buffer without any practical information.
The rest of the buffer is stored in a binary file with global information such as the date, the number of
protons reaching the spallation target, the pulse number present in the file, the type of incident proton
pulse (dedicated, TOF, or parasitic, EASTC), and the temperature registered in the experimental area.

The large amount of useful raw data recorded is then stored on magnetic tapes of the CERN CASTOR
facility [83] for its posterior analysis with dedicated pulse shape routines [78, 84]. The files with the raw

1The possible sampling rate of the Acqiris-DC270 are 100 MS/s, 250 MS/s, 500MS/s and 1 GS/s, and the possible time
windows 80 ms, 32 ms, 16 ms and 8 ms, respectively.
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buffers are saved in structures defined by runs, each one corresponding to the digitized data obtained
between a start and stop of the DAQ.

For the measurement of the 235U(n,γ) cross-section, the 40 BaF2 detectors were recorded at 250 MS/s
covering a total neutron energy range from several GeV down to 0.2 eV, which is the lower limit of this
measurement. The FTMG detectors and the SiMon were recorded at 100 MS/s covering a large neutron
energy period (down to below the thermal energies), but due to an undesirable registered signal generated
by the CERN PS, the useful information is limited to 0.2 eV due to the limited memory of the Acquiris
cards of 8 MB memory for each channel. The WCM were recorded at 250 MS/s, enough to extract the
precise information about the incident proton pulse. In total, for the neutron capture cross-section of
the 235U, more than 50 detectors were involved at the same time with different sampling rates and time
windows.

The stored data was analyzed by dedicated pulse shape routines for each type of detector, resolving the
pile-up which occurred and extracting the accurate information from the raw signals such as the time of
flight, area, or amplitude.
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2.3 The 235U targets used for the measurement

Ten non-encapsulated U3O8 targets, highly enriched in 235U, were used during the measurement of the
235U(n,γ) cross-section. The targets were manufactured at JRC-Geel [85] from the same batch of uranium
oxide material that had been used the samples of the neutron beam monitors [86]. The samples were
produced by molecular plating in a polycetal molecular plating cell with a rotating Pt anode and deposited
on 0.03 mm-thick Al foils. The aluminum backing was mounted on an aluminum ring with inner and outer
diameters of 49 mm and 55 mm respectively. The diameter of the mask used for the preparation of the
235U deposit was 42.00±0.03 mm. Hence, the active diameter of 235U samples is the diameter of the mask.
The areal density of the 235U targets is 300 µg/cm2, standard for fission cross-section measurements, since
this thickness permits the escape of the fission fragments from the samples. A picture of the 235U target
used during the measurement is shown in lef panel of Fig. 2.11.
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Figure 2.11: Left: One of the ten 235U samples used for the measurement of the 235U(n,γ) cross section. Right:
R(En) as a function of the neutron energy for the validation of the thin target approximation. The total areal density
of the 235U targets has been assumed as n=7.6·10−6 atoms/barn.

The batch of material used for the targets was of 99.934% enriched in 235U. The isotopic composition
was determined by mass spectrometry. The amount of 235U in each sample was derived from the activity,
as described in the reference [86]. In the table 2.1 is summarized the 235U sample mass in mg, the areal
density in atoms/barn and the activity in Bq for the individual targets used during the measurement.

In order to verify if the use of the thin target approximation is possible, the following quantity has been
calculated as a function of neutron energy:

R(En) =
1− e−nσT (En)

nσT (En)
(2.3)

where σT (En) is the total cross-section of the 235U isotope as a function of the neutron energy and
n is the areal density in atoms/barn. The closer to unity that factor is, the better is the thin target
approximation 2. As shown in right panel of Fig. 2.11, the thin target can be applied for this neutron
cross-section measurement because the deviations are smaller than 0.6% in the largest resonance.

2In the case of thin target, nσT (En)<<1, the exponential is reduced to e−nσT (En)
≈1-nσT (En) and the numerator is

R(En)≈nσT (En).
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Sample mass (mg) nat· 10−7 (At/barn) Activity (Bq) expected CR (counts/ms)
1 5.03±0.02 9.30±0.05 402±1 4.0
2 4.68±0.01 8.65±0.04 373±1 3.7
3 4.38±0.01 8.10±0.04 350±1 3.5
4 3.66±0.01 7.33±0.04 292±1 2.9
5 3.96±0.01 7.25±0.04 316±1 3.1
6 3.92±0.01 7.41±0.04 313±1 3.1
7 4.00±0.01 7.15±0.04 320±1 3.2
9 3.87±0.01 7.19±0.04 309±1 3.1
10 3.75±0.01 6.93±0.04 299±1 3.0

TOTAL 41.15±0.11 76.1±0.4 2974±10 29.6

Table 2.1: Summary of the targets used for the fission tagging experiment. In the columns are shown the determined
amount of 235U present in each sample, the areal density and activity. The characterization of the 235U targets
were performed in 10/03/2012. The last column of the table shows the expected counting rate in the fission tagging
micromegas detectors due to the α activity.
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2.4 Experimental configurations for the measurement

During the measurement, the 235U targets and FTMG were placed inside a sealed fission chamber specif-
ically designed to fit inside the center of the TAC. The fission chamber, made from aluminum, was filled
with a premixed gas Ar+(10%)CF4+(2%) iC4H10 at atmospheric pressure for the operation of the FTMG
and sealed by two kapton windows. A picture of the fission chamber with half of the borated neutron
absorber is shown in the left hand panel of Fig. 2.13.

The sketch of Fig. 2.12 shows the SiMon, the TAC with the FTMG chamber and the beam dump. The
neutron beam line from the SiMon to the beam dump was in vacuum, with the exception of the center of
the TAC where two kapton windows separate the beam line in vacuum from the sealed fission chamber.

Figure 2.12: Schematic picture of the experimental setup used for the 235U(n,γ) cross-section measurement showing
the SiMon, the TAC, the fission chamber in the center of the TAC and the beam dump.

Two different experimental setups were used during the measurement:

• 2FTMG: In this configuration, the ten 235U samples were distributed in a stack of eight samples and
another two encapsulated inside two FTMG. This setup, with a low FTMG fission detection efficiency
(∼20%), aims to minimize the amount of dead material intercepting the neutron beam, thus reducing
the background registered by the TAC and improving the signal-to-background ratio.

• 10FTMG: In this configuration, the ten 235U samples were encapsulated in ten FTMG, one per
sample. With high FTMG fission detection efficiency (∼90%) and a substantial background, it aims
to obtain an accurate prompt fission background subtraction, thus validating the technique and the
data of the 235U(n,γ) cross-section obtained from 2FTMG experimental configuration.

A schematic picture of the experimental configurations used for the measurement is shown in the bottom
panel of Fig. 2.13.

The measurement was performed during a total of four full months of dedicated beam, from the end
of June up to the end of October of 2012, with a total number of ∼4.0·1018 protons. It must be said,
however, that ∼30% of the measured data was not used at the end for the calculation of the neutron
capture cross-section analysis due to problems related with the alignment of the TAC with the neutron
beam. The calendar of the measurement, detailing the time periods, experimental configurations, and the
number of protons dedicated to each period is shown in Fig. 2.14.
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Figure 2.13: In the top panel is a picture of the sealed fission chamber in the center of the TAC with half of the
borated neutron absorber. In the bottom panel, a schematic picture of the experimental configurations used for the
measurement of the 235U(n,γ) cross-section.
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Figure 2.14: Detailed time calendar of the 235U(n,γ) cross-section. The dedicated total number of protons and
number of pules is shown for each period detailed.
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Chapter 3

The determination of the
experimental cross-section

This chapter is devoted to describing the procedure followed in order to obtain the experimental 235U(n,γ)
cross-section from the experimental data. The procedure was described briefly in section 1.2, where it was
shown that the experimental neutron capture cross- section in the thin target approximation, is calculated
as:

σγ(En) =
ctot(En;Esum,mcr)− cbkg(En;Esum,mcr)

Nnormεγ(En, Esum,mcr)φn(En)
(3.1)

where ctot(En;Esum,mcr) is the total counting rate of the Total Absorption Calorimeter, cbkg(En;Esum,mcr)
is the background determined, φn(En) is the neutron fluence, εγ(En,Esum,mcr) is the detection efficiency
and Nnorm is the normalization factor which enclose the absolute value of the neutron flux and the thick-
ness of the target under study. All the variables (except Nnorm) depend on the conditions applied to the
TAC, mcr and Esum, and the kinetic energy of the incident neutron, En. Many of the tools and procedures
needed for the analysis were developed in the past for the analysis of other measurements [34, 77, 87, 88, 89].
However, due to the fissile character of 235U, it was necessary to develop new tools for the FTMG and the
coincidence analysis between both detection systems. The chapter is organized as follows:

• In section 3.1 the analysis of the individual BaF2 detectors and the TAC is described.

• The section 3.2 is devoted to the analysis of the FTMG, including the new tools which have been
developed for the instrumental/physics analysis of the detectors.

• The section 3.3 is devoted to describing the time coincidence analysis between the TAC and the
FTMG.

• The section 3.4 is dedicated to the determination of the background detected by the TAC.

• The section 3.5 is devoted to the determination of the fission detection efficiency, εf and the fission
tagging detection efficiency ε∗f .

• In section 3.6 the determination of the TAC (n,γ) detection efficiency, εγ is explained.

• In the section 3.7 the determination of the neutron fluence shape φn(En) is considered.

• In the section 3.8 the normalization of the measurement is described.

• Section 3.9 is devoted to describing the dead time corrections applied to the TAC.
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3.1 The Total Absorption Calorimeter

In this section we describe the instrumental analysis of the Total Absorption Calorimeter (TAC). The tools
used for this analysis have been developed in the past for other measurements [34, 77] and will be described
briefly in the following sections. The analysis is summarized as follows:

• The deposited energy calibration of the BaF2 detectors, section 3.1.1, and the characterization of the
deposited energy resolution of the BaF2 crystals needed for the Monte Carlo simulations 3.1.2.

• The time calibration of the BaF2 detectors 3.1.3 needed for the TAC events reconstruction.

3.1.1 Energy calibration of the BaF2 modules

The energy calibration of the BaF2 modules consists of three different well-defined parts: the α/γ/noise
signal discrimination, the energy calibration by the use of the standard γ-ray calibration sources and the
gain control of the different detector modules within the measurement. The results obtained for these three
different parts will be shown in the following subsections.

The α/γ/noise signal discrimination

The BaF2 scintillation process is characterized by two components whose time decay constants are different:

• The first one, labeled as the fast component, has a decay time constant of τfast ∼ 0.7 ns and is used
for the determination of the timing of the detected signal.

• The second one, labeled as the slow component, has a decay time constant of τslow ∼ 620 ns and
carries most of the information regarding the deposited energy in the BaF2 [34, 77].

The relationship between the amplitude of the fast and slow components (Afast/Aslow) permits the
discrimination of α and γ-ray particles. Electronic noise is removed efficiently from the analysis by the
comparison of the real-time width of the detected signal, treal, calculated by the dedicated BaF2 pulse shape
routine [78] to the expected one, and fixed by the decay time constant of the slow component texpected ∼620
ns. Therefore, the pulse shape discrimination α/γ/noise is performed applying cuts to the ratio Afast/Area
and treal/texpected, where the variable Area is the area of the signal determined by the pulse shape routine.
A detailed description of the dedicated BaF2 pulse shape routine can be found in [78].

In Fig. 3.1 we can see the BaF2 signal discrimination for detector number four in a dedicated mea-
surement with the standard 137Cs γ-ray calibration source. In the vertical axis of the diagrams we can
see the ratio treal/texpected for the discrimination of noise, and in the horizontal axis the ratio between
the fast component and the total area of the BaF2 signal, Afast/Area. We show the 2-dimensional plot
for low amplitude signals in the top-left panel, for the rest of the signals in the bottom-left panel. In the
bottom-right panel is plotted a zoom-in for Aslow >10 near to the discrimination condition in Afast/Area.
The discrimination conditions in Afast/Area and treal/texpected applied to each amplitude signal period are
shown by the horizontal and vertical black lines. The γ-ray amplitude spectra obtained from the application
of the above conditions on the BaF2 signals is shown as the red line in the upper-right panel of the same
figure. Also in the same figure is the α-particle amplitude spectra, indicated as the blue line and the noise
spectra as the green line color. The same discrimination process has been applied to the 40 BaF2 modules,
thus obtaining very good discrimination between the three components for all the detectors.
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Figure 3.1: The α/γ/noise BaF2 signal identification performed to the BaF2 crystal number four in a dedicated
measurement with the 137Cs standard γ-ray calibration source.
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Figure 3.2: In the left panel, energy correspondence of the Aslow amplitude to the γ-ray peak of the 137Cs calibration
source is indicated. In the right panel can be seen energy correspondence of the Aslow amplitude to the two γ-ray
peaks of the 88Y calibration source.

During the 235U fission tagging experiment, periodical deposited energy calibrations of the BaF2 modules
were performed with the standard 137Cs, 88Y γ-ray calibration sources. As explained in [34], the amplitude
of the slow component Aslow is in good approximation, proportional to the deposited energy in the BaF2

detectors. Hence, the energy calibration in the detectors has been carried out by the correspondence of the
slow amplitude to γ-ray energy peaks (Eγ) from standard calibration sources. This calculation has been
repeated for all the individual BaF2 detectors. In order to obtain the centroid of the peaks, a Gaussian
function plus an assumed background were used for the fit. In Fig. 3.2 can be seen an example of the
correspondence obtained for the BaF2 crystal number ten in two different calibration measurements: in the
left panel this is shown for a 137Cs γ-ray calibration source (Eγ= 667 keV) and in the right hand panel for
a 88Y γ-ray calibration source (Eγ= 882 keV,Eγ=1880 keV). The results of the fit performed for all the
γ-ray peaks (gaussian + background) are indicated in both panels of Fig. 3.2 by the light blue line.

Thus, the deposited energy calibration of the detectors is obtained by a linear fit of the correspondence
obtained between the Aslow and the γ-ray peaks of the calibration sources..

Gain monitoring of the BaF2 detectors during the measurement

The gain of the BaF2 detectors has been monitored and corrected via of the α-decay spectra of the contam-
inant isotopes present in the crystals. The methodology was developed in the measurements; for further
information consult [34, 88]. The results of this monitoring for 5 of the 40 BaF2 detectors as a function
of the run number is shown in Fig. 3.3. The gain variation observed in the BaF2 detectors during the
measurement does not exceed more than 5%.
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Figure 3.3: Gain monitoring for 5 of the 40 BaF2 detectors during the 235U(n,γ) measurement.

3.1.2 Energy resolution of the BaF2 detectors

The characterization of the BaF2 energy resolution as a function of the deposited energy, R(Eγ), is necessary
for the accurate Monte Carlo simulation of the TAC response to different particles and the calculation of
the efficiency of the 235U(n,γ) reaction as will be explained in the section 3.6. The energy resolution, as a
function of the γ-ray energy, has been modeled using the formula 3.2:

R(Eγ) =
∆(Eγ)

Eγ
=

FWHM

Eγ
=
√

α+ β/Eγ (3.2)

where α and β are two free parameters, which fit the experimental energy resolution of the detectors [90].
The energy resolution of the energies γ-ray peaks of 137Cs and 88Y are shown for the individual BaF2

crystals in the right panels of Figs. 3.4 and 3.5. The red line is the average energy resolution of all the
BaF2 detectors for the corresponding γ peak. The detectors with the worst energy resolution, 25 and 40,
correspond to BaF2 modules with the voltage divider badly adjusted, thus producing a considerably poorer
behavior in energy resolution and signal pulse shape.

The average energy resolution of the BaF2 detectors is shown in the left panel of Fig. 3.4. The black
points are the experimental average energy resolutions obtained at the energy of the γ-ray peaks and the
red solid line is the model used to reproduce the energy resolution (Eq. 3.2).

41



Chapter 3. The determination of the experimental cross-section 42

0.6 0.8 1 1.2 1.4 1.6 1.8
 (MeV)γE

0.12

0.14

0.16

0.18

0.2

) 
(%

)
γ

R
(E

Detector
0 5 10 15 20 25 30 35 40

R
(%

)

15

20

25

30

35
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Figure 3.5: Left: The energy resolution obtained of the individual BaF2 crystals at the first γ-ray peak of the 88Y
standard calibration source, Eγ= 882 keV. The average energy resolution of the BaF2 crystals at this deposited energy
is R(Eγ= 882 keV)∼16%. In the right panel is the energy resolution obtained for the individual BaF2 crystals at the
second γ-ray peak of 88Y, Eγ=1880 keV. The average resolution of the BaF2 crystals at this energy is R(Eγ=1880
keV)∼11%.
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3.1.3 Time calibration of the BaF2 detectors

The TAC event reconstruction is based on the time coincidence between the signals detected by all the
BaF2 detectors. The detectors are connected to different flash-ADC cards with different chronometers. An
offset is expected between the flash-ADC cards since the different digitizers commence the acquisition at
slightly different times and the length of the cables from the detectors to the digitizers may be different. In
addition, the finite accuracy of the flash-ADC chronometers produces slightly different time-cycles in the
digitizers. Hence, the flash-ADC chronometers need to be synchronized by a linear function for the TAC
event reconstruction. The synchronization is obtained by measuring a radioactive sample that simultane-
ously emits two γ-rays, such as the 88Y calibration source. The time differences observed between events
detected in two BaF2 detectors with total deposited coincidence energy in the coincidence peak are stored
along the entire flash-ADC buffer. These differences are used for the synchronization of the BaF2 modules,
as shown in Fig. 3.6. The red points correspond to the coincidences labeled as random coincidences.
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Figure 3.6: Left: Time calibration for ADC channels of the BaF2 detector number 12. Right: Time calibration for
ADC channels of the BaF2 detector number 18. The standard γ-ray calibration source used for the time calibration
in the 235U(n,γ) measurement was 88Y.

The time window used, forming the coincidences in the BaF2 modules, is 20 ns. The process has been
repeated for all the BaF2 detectors using one detector as reference.
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In both panels of Fig. 3.7 one can see the counting rate detected by the TAC during a measurement
with the 88Y calibration source before (red line) and after (black line) the time synchronization. The left
panel shows the non-coincidence deposited energy spectra 0 <Esum (MeV) < 2.0, and the right panel the
coincidence peak, 2.4< Esum (MeV)<3.5. The figure is used to cross-check the time correction since, for a
calibration source, the counting rate along the digitalized buffer should be constant.
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Figure 3.7: Left: The counting rate detected by the TAC for events with mcr >0 and 0 < Esum (MeV)< 2.0. Right:
The counting rate detected by the TAC for events with mcr >1 and deposited energy 2.4< Esum (MeV)< 3.5.
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3.2 The fission tagging micromegas detectors

The analysis performed on the Fission Tagging Micromegas (FTMG) detectors is summarized as follows:

• Pulse height spectrum and fission amplitude threshold: the pulse height spectrum of the FTMG
detectors is composed of the fission fragments from neutron-induced fission of 235U and the α-particles
from the natural disintegration of the 235U. The separation between α-particles and fission fragments
has been obtained by applying a lower amplitude threshold to the amplitude spectra labeled as the
fission amplitude threshold.

• Gain monitoring and correction: the gain of the FTMG detectors has been monitored and corrected
throughout the measurement by means means of the detected fission amplitude spectra. There are
strong indications that the density of the gas inside the fission chamber changed with time, thus
provoking a gain and detection time drift, as will be explained in the sections 3.2.2 and 3.2.3.

• Time calibration: as was explained in section 3.1.3 a synchronization between the different flash-ADC
digitizers is needed for the coincidences. A similar procedure has been performed for the FTMG
detectors.

• Monte Carlo simulation of these detectors: as will be explained in section 3.5, the response of these
detectors to the fission fragments is essential for understanding the prompt-fission γ-ray background.
The response has been calculated by means of Monte Carlo simulations using the GEANT4 toolkit [91,
92].

3.2.1 Pulse height spectra and fission amplitude threshold for the FTMG

By the use of thin 235U samples, the escape probability of the reaction products is close to 100%. However,
even for the thin layers absorption in the samples occurs due to the reaction products emitted almost
parallel to the sample [79, 80]. The corresponding fission fragments lose a significant part of their kinetic
energy before escaping from the sample and will show up as a low energy tail in the pulse height spectrum
of the micromegas detectors. This low energy tail is very likely to overlap with the signals produced by
the α-particles from the natural decay of the 235U targets. The discrimination between the α-particles and
fission fragments depends on the characteristics of the detector being used, the thickness of the samples
and the kinetic energy of the α-particles.

The choice of the fission amplitude threshold is based on the compromise between the exclusion of
the α-particles and the fission detection efficiency. It is chosen for the individual micromegas detectors
according to their α-background, measured during the dedicated no-beam measurements, and the gain
drift of these detectors (see the section 3.2.2).

Fig. 3.8 shows the pulse height spectrum measured by one of the FTMG detectors during the 2FTMG
configuration. The solid blue line is the amplitude spectrum measured in a run of the neutron beam and
the red curve is the background measured in a measurement without the neutron beam. Note that the
background is the sum of α-particles and electronic noise registered by the detector. The fission amplitude
threshold is placed in the ADC channel 30 and as shown by the solid red line.

Detector Fission threshold (ADC)
1 30.0
2 40.0

Table 3.1: Fission amplitude threshold for the FTMG detectors in the 2FTMG configuration.
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Figure 3.8: Pulse height spectrum obtained for one of the fission tagging micromegas detectors during a run of the
2FTMG configuration.

The values of the fission amplitude threshold for the individual FTMG detectors in the 2FTMG config-
uration are summarized in the table 3.1. The values of the fission thresholds given in the table correspond
to a high fission amplitude threshold, situated in the upper part of the valley that separates the α-particles
and fission fragments. The same calculation has been performed for the 10FTMG configuration with similar
values for the fission threshold.

3.2.2 Gain correction and motorization of the micromegas detectors

The gain of the FTMG detectors has been monitored during the measurement by comparing the amplitude
spectra measured with one used as reference. Fig. 3.9 shows the comparison between the amplitude spectra
measured at different moments of the measurement and the corrected spectrum. The black histogram is
the reference pulse height spectrum and the blue histogram is the pulse height registered in the downstream
detector of the configuration. Clearly, the gain of the FTMG detector has changed during the measurement.
The red histogram corresponds to the spectrum after correction of the gain shift, in good agreement with
the reference histogram.

As with any gaseous detector, the gain of the FTMG detectors depends on two variables: the voltage
applied to the detector and the gas density present in the fission chamber. The voltage applied to the
detector is well defined by the high voltage power supply. However, the gas density in the micromegas
chamber could change due to temperature drifts in the experimental area and other external sources such
as the gas level of the bottles and the gas circuit. The differences in gas density are giving rise to gain
shifts and changes of the drift velocity (section 3.2.3).

The gain of the individual FTMG detectors has been corrected as a function of the run, minimizing the
differences between the measured amplitude spectra and the reference histogram. The α factor, defined as
the multiplicative constant needed for the gain correction, is shown in Fig. 3.10 and expresses the magnitude
of this correction as a function of run number. The blue points are the factors for the FTMG 1 and the
red points indicate the FTMG 2 of the 2FTMG configuration. The gain correction for the individual
micromegas detectors is strongly correlated because the detectors are placed in the same fission chamber.

The correction applied produces constant fission detection efficiency during the measurement. This is
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Figure 3.9: The fission pulse height spectra for FTMG 1 (left) and FTMG 2 (right) at the end of the 2FTMG
configuration compared with the reference amplitude spectra at the beginning.

shown in Fig. 3.11 for the integral of the fission counts detected by the FTMG detectors in the neutron en-
ergy period from 0.3 to 104 eV divided by the number of protons imping on the spallation target throughout
the measurement. The number of fissions occurring in the 235U targets is proportional to the number of
neutrons and this quantity is proportional to the number of protons, thus this ratio should be constant. For
both panels of this figure, the red and blue points are these integrals before and after the gain correction
respectively. In the same figure a linear fit of these distributions is shown as well. The difference observed
between the beginning of the measurement and the end is ∼7-8% . Moreover, after the gain correction the
fit shows that the gain drift has been clearly reduced.

Detector Gain Correction p0 p1·10−5

1 Before 13±1 (-7.1±0.9)
1 After 3±1 (-4±9)
2 Before 27±1 (-16.7±9)
2 After 10±1 (-5±1)

Table 3.2: Results from the linear fit (p0+p1x) performed on the detected fission counts as a function of the run
number shown in Fig. 3.11.

The coefficients of the linear fit performed are shown in the table 3.2. Although the gain drift is not
completely compensated, the gain drift effect is clearly reduced for both detectors. Thus, the gain correction
is well applied.

The same calculation has been performed on the FTMG detectors in the 10FTMG configuration.
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2FTMG configuration.
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Figure 3.11: Integral of detected fission counts by the FTMG detectors during the measurement before and after the
gain compensation, in the left panel for the FTMG detector 1 and in the right panel for the FTMG detector 2.
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3.2.3 Time calibration of the FTMG detectors

As was explained in the section 3.1.3, the Acquiris ADC chronometers of the different digitization cards
must be synchronized. The time synchronization permits the reduction of the coincidence time window
between the TAC and the FTMG, thus decreasing the probability of random coincidences. Since the
FTMG detectors do not detect the γ-rays from the standard calibration sources, the procedure followed in
section 3.1.3 cannot be used for the channels where the FTMG detectors are connected. Thus, the time
calibration is performed using the fission events detected in coincidence between the TAC and the FTMG.
Events detected by the TAC with high crystal multiplicity (mcr >4,5) [32, 23]; and events detected by the
FTMG with amplitude above the fission threshold.

Since the counting rate of the fission events detected by both detection systems strongly depends on
the time of flight, the digitized buffer is divided into time periods of width ∆(tTAC). For each time period,
the centroid of the time difference distribution between the TAC and the FTMG events (tTAC-tFTMG) is
calculated, using a coincidence window from -200 to 200 ns. Then, the centroid of these distributions and
the tTAC are used for the time calibration of the ADC chronometers as is shown in Fig. 3.12.
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Figure 3.12: Time calibration performed to the FTMG 1 using TAC events with crystal multiplicity larger than 4
and ∆(tTAC)=2500 ns.

The process has been repeated for different widths and crystal multiplicity conditions, finding compatible
results as is shown in the tables 3.3 and 3.4. The first column of the tables are the conditions applied to
the TAC events, the second column is the time width of the ∆(tTAC) period used for the fit. The third
column is the number of points used for the linear fit and the last two columns are the coefficients obtained
from the fit.

The time calibrations of the ADC channels have been checked by a similar time calibration but using
the BaF2 detector used for the time calibration of all BaF2 modules instead of the TAC events. For the
calculation, all the BaF2 signals detected have been used. The results are shown in the table 3.5.

The slope of this linear fit is similar in both cases. The same procedure has been applied to the FTMG
detectors in the 10FTMG configuration.

As was explained in the section 3.2.2, the gas density shift in the fission chamber affects not only
the gain of the FTMG detectors but also the drift velocity. In fact, when the gain decreases, the charge
collection becomes slower and the maximum position of the signal is delayed. The pulse shape routine used
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mcr > ∆(tTAC) (ns) Number of Points a (ns) b·10−6

4 50000 620 -45±1 2.54±0.06
5 50000 620 -45±1 2.54±0.06
4 100000 310 -45±1 2.54±0.09
5 100000 310 -45±1 2.54±0.09
4 150000 206 -45±2 2.5±0.1
5 150000 206 -45±2 2.5±0.1
4 200000 155 -45±2 2.5±0.1
5 200000 155 -45±2 2.5±0.1
4 250000 124 -45±2 2.5±0.1
5 250000 124 -45±2 2.5±0.1

Table 3.3: Results from the linear fit applied to the FTMG detector 1 in the 2FTMG configuration. The parameter
a is the offset and the parameter b is the slope.

mcr > ∆(tTAC) (ns) Number of Points a (ns) b·10−6

4 50000 620 -44±1 2.53±0.06
5 50000 620 -45±1 2.54±0.06
4 100000 310 -44±1 2.53±0.09
5 100000 310 -45±1 2.54±0.09
4 150000 206 -44±2 2.5±0.1
5 150000 206 -45±2 2.5±0.1
4 200000 155 -45±3 2.5±0.2
5 200000 155 -45±2 2.5±0.1
4 250000 124 -45±3 2.5±0.1
5 250000 124 -45±3 2.5±0.1

Table 3.4: Results from the linear fit applied to the FTMG detector 2 in the 2FTMG configuration. The parameter
a is the offset and the parameter b is the slope.

to reconstruct the FTMG events determines the time of the signals from the maximum position, so the
gain drift produces a delay in the signal detection and hence introduces a delay that scales with the gain
drift of the micromegas detectors.

In order to quantify and correct this effect, for each run a new time synchronization TAC-FTMG has
been performed, fixing the slope of the time synchronization. The offset calculated for each run is the
effect of the gain drift to the time calibration of the FTMG detector due to the gain change. The results
for the 2FTMG configuration, as a function of the run, is shown in the left panel of Fig. 3.13. The right
panel shows the same calculation, but after the time synchronization of the runs to check the performance
of the correction. As expected, the effect of this delay is important for the 2FTMG configuration due to
the large gain variation during the measurement. The effect of the gain drift in the time calibration has
been completely removed and permits the reduction of the coincidence time window for the fission tagging
procedure , and the smaller coincidence window reduces the random coincidences.

The same calculation has been performed for the detectors of the 10FTMG configuration, but in this
case the small gain drift observed in the detectors renders this effect negligible.
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Detector a (ns) b·10−6

1 -35.87±0.09 2.465±0.005
2 -36.33±0.09 2.496±0.005

Table 3.5: Results from the time calibration of the FTMG detectors with the reference BaF2 crystal in the 2FTMG
configuration. The parameter a is the offset and the parameter b is the slope.
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Figure 3.13: In the left panel is the time delay calculated as a function of the run number for the FTMG during the
2FTMG configuration. In the right panel is the time delay calculated after the correction of the FTMG detectors.

3.2.4 235U(n,f) Cross-section obtained with the FTMG data compared with
the evaluated libraries

The 235U(n,f) cross-section has been obtained from the events detected by the fission tagging micromegas
detectors in order to check the satisfactory behavior of these detectors. For this purpose, the experimental
neutron-induced fission cross-sections obtained in the experimental data sets obtained in both configurations
have been normalized to the evaluated libraries in the neutron energy range from 7.8 to 11.0 eV.

The resulting experimental cross-section is compared with the evaluated libraries ENDF/B-VII.1 [9],
JEFF-3.2 [11] and JENDL-4.0u2 [10] Fig. 3.14. The comparison for different neutron energy periods is also
shown in the table 3.6. The concordance of the experimental 235U(n,f) cross-section is within the 2% from
0.2 eV up to 104eV. From this point on, the differences increase drastically due to dead time effects in the
FTMG, reactions produced in the dead material of the detector, and effects of the γ-flash.

The conclusion extracted from this calculation is the satisfactory behavior of the fission-tagging mi-
cromegas detectors in the neutron energy range of this measurement. This assures an accurate prompt-
fission background subtraction for the calculation of the 235U(n,γ) cross-section.
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Figure 3.14: Ratio between the obtained experimental 235U(n,f) cross-section and the evaluated libraries ENDF/B-
VII.1, JEFF-3.2 and JENDL-4.0u2 in the neutron energy range from 0.2 to 105 eV. The uncertainty shown in the
figure is only the statistical one.

En (eV) ENDF/B-VII.1 JENDL-4.0u2 JEFF-3.2
0.2-1 0.992 ± 0.003 0.992 ± 0.003 0.992 ± 0.003
1-10 0.998 ± 0.003 0.998 ± 0.003 0.998 ± 0.003
10-102 1.019 ± 0.002 1.019 ± 0.002 1.019 ± 0.002
102-103 0.998 ± 0.004 0.998 ± 0.004 0.998 ± 0.004
103-104 0.989 ± 0.006 0.993 ± 0.006 0.982 ± 0.006
104-105 0.954 ± 0.008 0.973 ± 0.008 0.935 ± 0.008

Table 3.6: Ratio between the obtained experimental 235U(n,f) cross-section and the evaluated libraries ENDF/B-
VII.1 [9], JENDL-4.0u2 [10] and JEFF-3.2 [11] for different neutron energy bins.

3.2.5 Monte Carlo simulation of the FTMG response to the 235U fission frag-
ments

The understanding of the FTMG response to the fission fragments plays an important role in many aspects
of the 235U(n,γ) analysis. Besides the neutron-induced fission cross-section calculated from the counting
rate of the FTMG detectors (section 3.2.4), it is used in other critical manners such as the prompt-fission
background subtraction (section 3.4.3) and the normalization of the measurement (section 3.8). Thus, the
comprehensive understanding of the detector response to fission events is needed for the reliable 235U(n,γ)
analysis and the explanation of the correlation between fission fragments and prompt fission γ-ray cascades
observed in the experimental data (section 3.5).

The detector responses to fission events have been calculated via Monte Carlo simulations. The simu-
lation is divided into two parts:

• The production of the fission observables used for the calculation: the 235U neutron-induced fission
observables such as the fission fragments masses, charge, total kinetic energies, excitation energies,
prompt-neutrons and γ-rays cascades emitted from the fission fragments have been obtained event
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by event using the Monte Carlo GEF code [93]. It describes the observables for spontaneous fission,
neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance
channel, with given excitation energy and angular momentum. The GEF model is based on a general
approach to nuclear fission that explains a great part of the complex appearance of fission observ-
ables on the basis of fundamental laws of physics and general properties of microscopic systems and
mathematical objects. The description reproduces a number of somewhat peculiar observed features
of the prompt-neutron multiplicities and of the even-odd effect in fission-fragment Z distributions.

• The Monte Carlo simulation of the FTMG response to the ions (fission fragments) generated by the
GEF code in the step before: the 235U fission fragments generated by the GEF code are used as input
for the Monte Carlo simulation of the detector response based on the GEANT4 toolkit [91, 92]. The
procedure adopted in the simulations will be explained in the following sections.

The event generator
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Figure 3.15: Left: The two-dimensional distribution of fission fragment mass, A, and fission fragment kinetic energy,
TKE, used for the Monte Carlo simulation of the FTMG response to the fission fragments. Right: The angle θLAB

is taken from the perpendicular plane of the 235U sample. This angle coincides with the angle with respect to the
direction of the neutron beam.

The event generator used for the GEANT4 application uses the output file from the Monte Carlo
GEF code as input. In the Monte Carlo simulations we assume that the prompt-neutrons are quasi-
instantaneously emitted after the scission process, i. e. at very prompt times. Following this, we have used
the mass of the fission fragments and the total kinetic energy given after the prompt-neutron emission. The
kinetic energy of each fission fragment is obtained by applying the conservation laws of the kinetic energy
and momentum, assuming that the momentum of the incident neutron is negligible. Then:

TKEa
Tot = TKEa

A1
+ TKEa

A2
(3.3)

−→
0 =

−→
P Aa

1
+
−→
P Aa

2
(3.4)

where Aa
1,2 are the masses of the fission fragments after the emission of the prompt fission neutrons.

Thus, solving Eqs. 3.3 and 3.4, the kinetic energy of each individual fission fragments is:

TKEa
Aa

1,2
= TKEa

Tot

Aa
2,1

Aa
1 +Aa

2

(3.5)
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whereas, the direction of both fission fragments is fully determined by the conservation of the momentum,−→
P Aa

1
=−−→

P Aa
2
.

The two-dimensional fission-fragment mass (X axis) and kinetic energy (Y axis) is shown in left panel
of Fig. 3.15. The light fission fragments, in general, have larger kinetic energies than the heavy fission
fragments because of their smaller mass. The minimum and the maximum kinetic energy values of the
light fission fragments goes from ∼90 MeV to ∼115 MeV. For the heaviest nuclei, the kinetic energies go
from ∼45 MeV to ∼90 MeV as it shown in left panel of Fig. 3.15.

A schematic picture of the coordinate system used for the Monte Carlo simulation is shown in rigth
panel of Fig. 3.15. The emission angles θLAB , φLAB , are defined as the angle with respect to the norm
and the polar angle of the 235U samples, respectively. This coordinate system (in section 3.5) will be used
later on as the TAC reference system. The θLAB=0 angle coincides with the direction of the neutron beam,
while θLAB=π/2 is perpendicular to the direction of the neutron beam. The coordinate system is placed
in the perpendicular plane of the 235U sample, x and y being the 235U sample plane coordinates and z the
depth.

Fission fragments are emitted isotropically in the coordinate system, simulating only one of the fission
fragments per event. The emission position is sorted randomly along the radius of the targets, using a
gaussian function of σ=0.7 cm, that describes the spatial neutron beam profile. The depth of the emission
is chosen randomly between 0 and the 235U sample thickness. Once direction and initial position are chosen,
the fission fragment is emitted as a fully striped ion with excitation energy given by the output of the GEF
code.

Simplified geometry model of the fission tagging detectors

Since the simulation is intended for the understanding of the detector response, a simplified geometry has
been used as shown in Fig. 3.16. The geometry consists of a cylindrical aluminum tube which is 8.1 mm
long and with a 2.5 cm radius, closed at one end by the aluminum backing of the 235U sample, and at
the other end by the FTMG detector itself. The tube is filled with a gas mixture of 88% Ar, 10% CF4

and 2% isobutane at 1 atm as was explained in the experimental setup (section 2.2). Aluminum samples
backing, 235U samples and FTMG are: 20µm, 0.03µm and 0.035 mm, corresponding to the experimental
setup. The PCB pieces that support the fission tagging micromegas detectors and the 235U targets have
not been included in the simplified geometrical model of the detector.
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Figure 3.16: Simplified geometry implemented in the GEANT4 application for the simulation of the FTMG response
to the fission fragments.

Reconstruction of the Monte Carlo events

The reconstruction process of the fission events from the Monte Carlo simulation of the fission fragments
through the geometric model described before have been obtained as follows:

• The deposited energy in the active volume is converted to FTMG signal amplitude, AmpFTMG, in
ADC channels by a linear transformation. This is equivalent that the deposited energy is proportional
to the signal amplitude. Thus:

AmpFTMG = m · Edep + b (3.6)

The parameters of this linear transformation, m and b, were obtained by a comparison between the
Monte Carlo simulation and the experimental data.

• The resolution broadening of the FTMG was produced by a Landau+gaussian function. The Landau
function is used for the simulation of the avalanche process in the detector while the Gaussian function
describes the energy resolution of the detectors.

• If after the conversion and broadening, the signal amplitude simulated is larger than 165 ADC chan-
nels, the signal amplitude is kept in the 165th ADC channel, simulating the saturation effect observed
in the amplitude spectra of the experimental data.
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Figure 3.17: Experimental amplitude spectra of the FTMG (red) compared with the Monte Carlo reconstruction
(blue).

m (ADC/MeV) b (ADC) σ
1.0 8.0 0.28

Table 3.7: Values of the parameters adjusted by the comparison of the Monte Carlo simulation and the experimental
data (Fig. 3.17). The parameters m and b are the slope and the offset used for the deposited energy conversion. The
parameter σ is the parameter used in the Gaussian function for the resolution broadening.

A reasonable reproduction of the experimental data, even with the simplified geometric model, is ob-
tained as is shown in Fig. 3.17. The experimental amplitude spectra, shown as the blue solid line, has been
taken from the 2FTMG configuration. The Monte Carlo amplitude spectra is shown in the same figure as
the red curve. The parameters used for the reasonable reproduction of the experimental data and Monte
Carlo simulation are shown in the table 3.7.
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FTMG response to the fission fragments

Two different aspects of the FTMG response to the fission fragments have been investigated through the
Monte Carlo simulations:

• The total and angular fission detection efficiency as a function of the FTMG amplitude, AmpFTMG.
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Figure 3.18: Left: Total FTMG detection efficiency as a function of AmpFTMG. Right: Angular detection efficiency
as a function of cos(θLAB) for different AmpFTMG thresholds.

The total detection efficiency decreases rapidly with AmpFTMG as is shown in the left panel of
Fig. 3.18. From the Monte Carlo simulation, using low amplitude detection threshold of ∼20 ADC
channels, implies an estimated fraction of lost fission fragments due to absorption in the 235U samples
is close to ∼10%.

The angular detection efficiency of the detector is similar to a cos(θLAB)-behavior as shown by the
blue and red curves in the right panel of Fig. 3.18; only for emission angles near-parallel to the 235U
samples does the detection efficiency decrease rapidly. This is due to the self-absorption of fission
fragments in the 235U samples. For larger AmpFTMG thresholds (dashed-red, dashed-blue, dashed-
black and green curves) another experimental effect plays an important role. The gap chosen for the
fission tagging micromegas detectors is not enough to stop the fission fragments emitted near-parallel
to the neutron beam, thus the fission fragments with emission angles near-perpendicular to the 235U
samples are not detected because these fission fragments do not deposit all their kinetic energies in
the active volume.

To illustrate this angular effect, the simulated FTMG amplitude spectra, selecting different emission
angles, are shown in Fig. 3.19. The blue curve represents the fission fragments emitted with the
largest emission angles, i. e. the fission fragments emitted near- parallel to the 235U samples and lost
due to self-absorption. These events are the main component of the low amplitude events detected by
the FTMG. On the other hand, the fission fragments with the smallest emission angles (green curve)
are not located in the upper part of the simulated AmpFTMG spectra but near to the neck because
of the gap effect mentioned previously. Thus, the fission fragments with the emission angles close to
45 degrees with respect to the normal of the 235U samples are the events with the largest deposition
in the detectors.
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Figure 3.19: Monte Carlo reconstruction of the FTMG amplitude. The amplitude spectra are shown in different
colors, selecting some emission angles.

• The detection efficiency for different types of fission events. Since only one of the fission fragments
can be detected per fission event, the question is whether: do the FTMG have a different detection
efficiency, depending on the fission fragment mass?; This could provoke a different detection efficiency
depending on the pairs of fission fragments produced during the fission process, i. e. fission products
with similar or very different masses. To answer this question, the detection efficiency has been
calculated as a function of the heavy fragment mass A. If in the Monte Carlo calculation the light
fission fragment is simulated, then the fission event detected/simulated is marked by the corresponding
heavy fission fragment mass. The results of this calculation, for different amplitude FTMG thresholds,
are shown in the left panel of Fig. 3.20.
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Figure 3.20: Left: Fission detection efficiency of the FTMG as a function of the mass of the heavy fission fragment
A, for different FTMG amplitudes. Right: FTMG amplitude spectra are plotted for different fission fragments
masses.

In the left panel of Fig. 3.20, the fission detection efficiency of the events to smallest mass A cor-
responds to more symmetric fission fragments while the events with the largest mass A correspond
to more asymmetric events. As the FTMG detection threshold is increased the detection efficiency
of the symmetric and asymmetric fragments changes. Then, the masses of the fission fragments are
not uniformly are plotted for the FTMG amplitude spectra. Therefore, applying a cut in amplitude,
we are selecting a specific kind of fission fragment. In the right panel of the same figure shows the
amplitude spectra for fission events with, 115<A<135 and 135<A<165. As in the case of the angle
emission, the fission fragments mass is non-uniformly distributed; thus, we have different efficiencies
depending on the FTMG amplitude.
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3.3 Coincidence analysis between the TAC and the FTMG

This sections describes the analysis carried out regarding the coincidences between the fissions detected by
the FTMG and the events detected by the TAC. As was suggested in previous works [23, 32], the prompt
fission events are characterized by high γ-ray multiplicity [93]. Thus, the prompt fission events will be
detected by the TAC with high probability as high crystal multiplicity events.
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Figure 3.21: Time coincidence events distribution between the TAC and the FTMG detectors for different conditions
applied to the TAC signals in the neutron energy range from 0.2 to 1.2 eV.

Fig. 3.21 shows coincidence time distributions between the TAC and the FTMG detectors. The black
histogram represents the distribution without any conditions applied. The distribution is explained as
follows:

• For time differences tTAC-tFTMG <-300 ns, there is a flat distribution corresponding to random
coincidences. It can be appreciated that all the events detected by the TAC in this time period have
low mcr and low Esum, i.e are non-fission events.

• For time differences in the range -300<tTAC -tFTMG <-50, there is an exponential distribution ex-
plained by the existence of the (n,γ f) process (fission isomers) in the fissile nuclei [98]. This process
will be discussed later in the section 3.3.1.

• For time differences in the range -50<tTAC -tFTMG <30, the events correspond to the prompt fission
events as suggested by the characteristic of the events, large Esum and mcr.

• For time differences tTAC-tFTMG >30 ns, the exponential tail of the distribution corresponds to the
detection of prompt fission neutrons, after being moderated by the neutron absorber, and to γ-rays
from the decay of the fission products.
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3.3.1 The coincidence time window and the event selection

Due to the time resolution of both detection systems, there is an optimum coincidence time window between
the TAC and the FTMG detectors. This has been calculated based on TAC events with large multiplicity,
mcr >5, as shown in the left panel of Fig. 3.22. These events, called plausible fission events, follow
the physical properties of the prompt fission γ-ray cascades suggested in other works [23, 32, 93]. The
optimum coincidence time window is chosen based on two opposite criteria: the maximization of prompt-
fission γ-ray cascades tagged as fission events included in the coincidence time window, requirement for the
correct determination of the fission detection efficiency (section 3.5), and the minimization of the random
coincidences with other background sources and (n,γ) events.

The optimum has been calculated by the integration of the coincidence time distribution, shown in the
right panel of Fig. 3.22 1 For a time window of 80 ns, (-50,30) ns, it covers more than 99% of the distribution.
Thus, it seems reasonable to use this time window for the coincidences between both detection systems.
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Figure 3.22: Left: Ccoincidence TAC-FTMG time distribution for events with crystal multiplicity larger than 5.
Right: The integral of the same distribution as a function of integration time.

Selecting more than one TAC event as prompt fission event in coincidence with the FTMG detectors
leads inevitably to a mismatch in the subtraction of the background. For this reason, if two or more TAC
events are detected within the time coincidence window, the TAC event with the largest crystal multiplicity
is chosen as the prompt fission event. If both events have the same crystal multiplicity, then the fission
event is selected as the TAC event with the shortest ∆(tFTMG-tTAC). Fig. 3.23 shows the performance of
this criteria. By the use of this criteria, the events from the neutron capture in the neutron absorber (470
keV signals) are avoided, giving a clean, prompt fission spectrum.

1The limits of the time distribution are [5.0,-5.0], [10,-10], [+20,-30], [+30,-40], [+30,-50], [+30,-70], [+40,-70] (ns).
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Figure 3.23: Deposited TAC energy of tagged prompt fission events taking into account all events in the coincidence
time window, only events with the largest crystal multiplicity and with the shortest ∆(tFTMG-tTAC).

The (n,γ f) process and the random coincidences

As has been recently suggested by Patrick Talou et al. [97], the (n,γ f) process [98, 99] could be important
in the actinide region for low neutron energy resonances. This process corresponds to the decay of the
fission isomers (see section 1.2.3). After the formation of the compound nucleus, the configuration of the
compound nucleus (deformation) can be situated either in the first, second or even third minimum of the
fission barrier [100], thus fissioning or decaying to the first minimum by tunnel effect [49], emitting a γ-ray
cascade in the decay path to the ground state (Fig. 1.6). Since the tunnel effect is not instantaneous,
this metastable state has a half-life that depends on the excitation energy of the minimum and height and
width of the fission barrier. Fig. 3.21 and Fig. 3.24 show an exponential tail in the coincidence distribution
corresponding to γ-ray events detected before the fission is detected by the FTMG detectors. In 1965, V.
Stavinsky et al. suggested in [98] that for the fissile isotopes, 233U, 235U and 239Pu, the comparable average
values of radiation width, Γ̄γ , fission width , Γ̄f , and the low Γ̄n in the neutron resonances leads to an
appreciable probability of fission after preliminary emission of a γ-ray. Therefore, it leads to an appreciable
population of one or various fission isomers (section 1.2.3). The exponential tail observed in the coincidence
distribution agree with the characteristics of this process.

The coincidence distribution has been fitted from -1µs to -50 ns, avoiding the prompt fission events, to
the following functional form:

f(t) = a0 + a1e
a2t (3.7)

where a0, a1 and a2 are the parameters that describe the random coincidences, the amount of (n,γf)
counts present in the coincidence spectra and the half-life of the isomer respectively. The fit has been
performed for two different neutron energy periods: from 0.2 to 1.2 eV where the first neutron resonance
is located; and from 1.2 to 12 eV where the largest neutron resonances are situated. The fits are shown in
both panels of Fig. 3.24, and numerical results are given in the table 3.8, where the uncertainties only refer
to the statistical contribution.

The values obtained were used for the estimation of the isomer half-life t1/2, the ratio between (n,γf),
(n,f) events and the total number of random coincidences. Table 3.9 shows the values of the two first
quantities.
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Figure 3.24: Fit performed on the coincidence distribution to the function described in Eq. 3.7, showing pronounced
tails in the neutron energy interval 0.2 - 1.2 eV (left) and 1.2 - 12.0 eV (right) due to fission isomers.

En(eV) a0 (counts) a1 (counts) a2(·10−2) (ns−1)
0.2 – 1.2 13.4±0.3 3.7±0.1 1.02±0.09
1.2 – 12.0 20.6±0.3 4.4±0.6 1.05±0.06

Table 3.8: Values of the fitted parameters for the different neutron energy intervals. The uncertainties are only the
statistical contributions.

En(eV) t1/2 (ns) (n,γf)/(n,f) (%)
0.2 – 1.2 68±6 0.12±0.01
1.2 – 12.0 66±3 0.28±0.04

Table 3.9: Values calculated for the half life of the fission isomer and the ratio between (n,γf) and (n,f) counts in
the TAC-FTMG coincidence time window. The uncertainties are only the statistical contributions.
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Figure 3.25: Probability of random coincidences for a given counting rate as a function of the coincidence time
window.

The values of half-life obtained from this calculation in both neutron energy intervals are compatible.
The probability of the (n, γf) process is around 0.1% in respect to the (n,f) process. The (n,γf) ratio is
different from one resonance to another. In particular, a lower value is expected in the first resonance due
to the lower (n,γ)/(n,f) ratio [98].

The (n,γf) process will not present any problem for the analysis, taking into account that it represents
0.1% of the fission events and that these are strongly suppressed by the conditions applied to the TAC
for (n,γ) as explained in the section 4.1. The probability for the random coincidences obtained from this
calculation, i.e, a0, are in agreement with it as expected from the counting rate detected by the TAC in
the neutron energy interval from 0.2 to 200 eV (0.1-0.3)c/µs as shown in Fig. 3.25.
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3.4 Background subtraction in the 235U(n,γ) cross-section mea-
surement

The background, cbkg(En) present in the measurement is the sum of multiple contributions described as
follows:

• No-beam background (cNobeam): background related to the internal radioactive decay of the BaF2

crystals, environmental background and natural radioactivity of the 235U samples. This component
is obtained from dedicated measurements without neutron beam, retaining the same experimental
setup.

• Beam background not related to the 235U samples (cBeam): the interaction of the neutron beam with
the dead material layers of the fission chamber produces background events detected by the TAC.
The component is obtained from the dedicated measurements replacing the 235U targets with dummy
samples with the same experimental setup.

• Prompt fission background (cFiss): during the neutron-induced fission process, prompt γ-ray cascades
and neutrons are emitted from the highly excited fission fragments and detected by the TAC during
the first nanoseconds. This component is obtained from the coincidences between the TAC and the
FTMG detectors [23, 32].

• Other components related to the 235U targets different to cFiss (cOthers): background induced by
the interaction of the neutron beam with the targets, i. e., elastic scattering on the 235U targets,
delayed detection of the prompt fission neutrons and γ-ray decay from the fission fragments. These
components, which are somewhat smaller than the previous components, have been calculated using
Monte Carlo simulations.

Thus, the background is written as a function of the components described below:

cbkg(En) = cNobeam(En) + cBeam(En) + cFiss(En) + cOthers(En) (3.8)

In the following sections the analysis performed of the individual components for the background esti-
mation will be described.
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3.4.1 The no-beam background component

The background related to the internal radioactive decay of the BaF2 crystals, environmental background
and natural radioactivity of the 235U samples is obtained from dedicated measurements without neutron
beam. As explained in [34, 77] the detected internal decay of the BaF2 detectors is produced by the decay
chain of the Ra isotopes, radiochemical contaminants of the BaF2 crystals. The γ-ray emissions after the
natural α decay of the 235U samples produce a very low number of detected signals compared to the internal
background of the BaF2 detectors as shown in Fig. 3.26.
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Figure 3.26: TAC deposited energy spectra measured without neutron beam, with the 235U samples in place (blue),
and with the TAC empty (red).

3.4.2 Beam background not related with the 235U samples

The interaction of the neutron beam with the dead material that composes the fission chamber and the
backing of the 235U samples is measured directly by dedicated measurements, replacing the 235U samples
with dummy targets.

Despite the fact that, in principle, the calculation of this component is straightforward with the ded-
icated measurements, we noticed after the subtraction of this component together with the fission back-
ground component, that negative counts appeared above the neutron separation energy of 236U as shown
in Fig. 3.27. Some hypotheses that could explain this effect are:

• The gas density inside the fission chamber fluctuates throughout the measurement as was shown
by the effects observed in the FTMG detectors explained in the section 3.2. Therefore, a different
amount of material was present in the fission chamber at the time when the dedicated background
configuration was measured.

• The neutron absorber was not entirely closed during the dedicated background configuration. Fig. 3.28
shows the counting rate of the individual BaF2 detectors (Eγ >3 MeV) during the 235U(n,γ) mea-
surement (red) and during the dedicated background measurement (blue).

As can be observed, the counting rate of some individual BaF2 detectors was larger during the
background measurement. These detectors are in the same geometrical plane, so one possibility could
be that the neutron absorber, made of two hemisphere, was not perfectly closed.

66



3.4. Background subtraction in the 235U(n,γ) cross-section measurement 67

Edep (KeV)

2000 4000 6000 8000 10000 12000

c
/7

.0
e

1
2

 p

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Total measured
No beam background
Beam Background

tagged fission
Fission
Capture

mT A C > 2, 50.0 < En (eV) < 100.0

Bad 

background 

subtraction

Sn(236U)

Figure 3.27: TAC Deposited energy spectra for mcr >2 in the neutron energy range from 50 to 100 eV. The different
components are shown by the different colored lines.

We have corrected the measured background using a factor which depends on the neutron energy and
crystal multiplicity. This is based on the assumption that the deposited energy shape of the background with
the 235U targets in place is similar to the component obtained from the dedicated background measurement.

The scaling factor is calculated for a determined neutron energy period and crystal multiplicity condition
by fitting the total deposited energy spectra with the 235U samples in place, Ct(En;Esum,mcr) above the
236U neutron separation energy, Esum >7 MeV, to two different components:

• The beam background CB(En;Esum,mcr): obtained from the background configuration measurement.

• The prompt fission component Cf (En;Esum,mcr), that will be discussed in the section 3.4.3.

Thus, the fit performed on the total deposited energy is:

Ct(En;Esum,mcr) = αB(En,mcr)CB(En;Esum,mcr) + αfCf (En;Esum,mcr) (3.9)

where αB(En,mcr) and αf are the corresponding scaling factors for the beam background and prompt
fission components. The prompt fission background will be examined in another section and no further
correction is needed for this component. Thus, the value of αf is fixed and the calculated scaling factor
αB(En,mcr) is the correction needed for this background component.

We have used three different methods for the determination of αB(En,mcr): least squares (LS) [94],
extended maximum likelihood (ELS) [95] and zero area method (ZA). The correction is then calculated as
the average of the three fits and the uncertainty has been estimated as the difference between the maximum
and minimum value obtained, divided by two. In the resultant background it has been ascertained that:

• The total deposited energy detected by the TAC is well reproduced as shown by the green line in the
left hand panel of Fig. 3.29.

• The deposited energy shape of the capture signal is reasonably reproduced after the modification of
the background, as shown in both panels of Fig. 3.30. The black solid line is the reference 236U(n,γ)
signature taken from the low energy resonances and the pink histogram the 235U(n,γ) signature after
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Figure 3.28: Counting rate of the BaF2 detectors during different dedicated runs. Left: For 10<En(eV)<100. Right:
For 100<En(eV)<1000.

the correction. The solid and dashed blue lines are the beam background components before and
after the modification, respectively.

The correction as a function of the neutron energy for different conditions applied to mcr is shown in
Fig 3.29. For neutron energies below 20 eV, no correction is needed.

The corrected deposited energy spectras measured for the TAC for different conditions are shown in the
appendix A.

The impact of this correction is considerable when the neutron capture cross-section is integrated in
large neutron energy intervals due to the valleys between resonances. However, it is very small in the
resonance analyses of the experimental data.
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Figure 3.29: In the left panel is the fit performed on the total deposited energy for mcr >2 in the neutron energy
range from 20 to 50 eV. In the right panel are values obtained for αB(En,mcr) as a function of the neutron energy
and crystal multiplicity.
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3.4.3 The prompt fission background component

The prompt fission background component, cFiss(En;Esum,mcr), is determined as was explained 1.3 by the
coincidences between the TAC and the FTMG detectors [23, 32], ctagg(En;Esum,mcr), divided by a factor
labelled as fission tagging efficiency, ε∗f . Thus:

cFiss(En;Esum,mcr) =
1

ε∗f
ctagg(En;Esum,mcr) (3.10)

As was demonstrated by C. Guerrero et al. in [23], the fission tagging efficiency, ε∗f , is the FTMG fission
efficiency, εf , under the condition that the probability of detecting a fission reaction in one of the detectors
does not depend on whether it has been detected in the other detector. However, for this experimental
setup this is not entirely true, due to a small degree of correlation between the TAC and the FTMG detector
systems as will be shown in section 3.5.
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Figure 3.31: Left: The deposited energy of the tagged prompt fission γ-ray cascades for different crystal multiplicities.
Right: The crystal multiplicity distribution of the tagged prompt fission γ-ray cascades.

Fig 3.31 presents the projections of the tagged prompt fission events in the TAC: The left panel shows
the deposited energy, Esum, as a function of the crystal multiplicity, mcr, and in the right panel the crystal
multiplicity distribution. The average deposited energy of these cascades is shown in the table 3.10. As
was expected, these events are characterized by a large energy deposition in the TAC and a large crystal
multiplicity.

mcr > <Esum(MeV)> mcr > <Esum(MeV)>
0 4.51 5 6.84
1 4.77 6 7.48
2 5.17 7 8.14
3 5.66 8 8.81
4 6.23 9 9.49

Table 3.10: Average deposited energy of the tagged prompt fission γ-ray cascades for different crystal multiplicities.
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3.4.4 Other background components related to the 235U targets

The other small backgrounds related to the 235U targets such as the prompt fission neutrons, neutron elastic
scattering and γ-ray activity from the fission products has been calculated by Monte Carlo simulations
using the GEANT4 toolkit with the thermal libraries for neutrons [91, 92], and the detailed model of the
TAC [34, 77, 105], with the addition of the fission chamber and the FTMG detectors.

Neutron sensitivity and the background induced by the elastic scattering on the 235U targets

The neutron sensitivity, εn, is defined as the probability of detecting a scattered neutron with kinetic
energy En by the TAC. This quantity depends on the analysis conditions applied to the variables, Esum

and mcr. For the TAC response, neutrons of different kinetic energies, emitted from the 235U samples, were
simulated2. The data reconstruction performed is analogous to the process carried out for the experimental
data [34]. Fig. 3.32 shows the result as a function of mcr for 2.5<Esum(MeV)<6.5, conditions applied for
the calculation of the 235U(n,γ) cross section.
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Figure 3.32: Neutron sensitivity, εs(En;Esum,mcr), as a function of the neutron energy and crystal multiplicity for
events with 2.5<Esum(MeV)<6.5. In the left panel, for 0.1<En(eV)<106 and in the right panel, for En >1 MeV.

To account for this background component, the following quantity has been determined:

R(En;Esum,mcr) =
εn(En;Esum,mcr)σn(En)

εγ(En;Esum,mcr)σγ(En)
(3.11)

where σn(En), σγ(En), εn(En;Esum,mcr) and εγ(En;Esum,mcr) are the neutron elastic cross-section, the
(n,γ) cross-section, the TAC neutron sensitivity, and the (n,γ) TAC detection efficiency respectively. This
ratio compares the background due to the neutron scattering in the samples with the expected number of
(n,γ) reactions.

In Fig. 3.33 R(En;Esum,mcr) is shown, as a function of neutron energy, for different conditions applied
to the crystal multiplicity and for deposited energies in the range 2.5<Esum(MeV)<6.5. The calculation
has been performed in the neutron energy interval of interest, from 0.2 to 200 eV. The peaks observed
in the figure correspond to the valleys between resonances and the regions of low R(En) to the neutron
capture resonances.

The contribution of this background is strongly suppressed for mcr >2. It is larger (6% at most) for the
valleys between neutron resonances where the (n,γ) cross-section drops close to zero. This component is
negligible compared to the elastic scattering background produced by the components of the fission chamber
and was not taken into account in the further analysis.

2The specific neutron kinetic energies are: 0.1 eV, 1 eV, 10 eV, 100 eV, 1000 eV, 100000 eV, and every 0.1 MeV for neutron
energies from 1 MeV up to 10 MeV.
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Figure 3.33: R(En) as a function of the neutron energy and crystal multiplicity. The conditions applied to the Esum

for all the cases is 2.5< Esum(MeV)<6.5

Delayed background induced by the prompt-fission neutrons

As was explained in section 1.3 and shown in section 3.3, the fission background is not entirely included
in the fission tagging technique. The prompt fission neutrons can be detected even milliseconds after the
fission occurs, thus producing the delayed fission background explained in section 3.3.

The average number of prompt fission neutrons released during the neutron-induced fission process, ν̄,
and the kinetic energy distribution depends on the fissioning nuclei and slightly on the incident neutron
energy. In the case of 235U and thermal neutron energies, the average number of neutrons released is ν̄=2.4
and their kinetic energy distribution is shown in Fig. 3.34.
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Figure 3.34: Kinetic energy distribution of the prompt fission neutrons released from the 235U(n,f) at thermal
energies. The distribution has been taken from ENDF/B-VII.1.

The TAC response has been obtained by Monte Carlo simulations, as it was described in the previous
section. The neutrons were emitted from the samples randomly taking into account the spatial profile
of the neutron beam, and their kinetic energies were selected following the kinetic energy distribution of
Fig. 3.34. The results obtained in the simulations are shown in both panels of Fig. 3.35. The left panel is
shows the deposited energy detected spectra for different detection times:

• For times below 20 ns (included in the prompt component), the signals detected by the TAC are
mainly 470 keV γ-rays from neutron capture in the neutron absorber and 1435 keV γ-rays from
inelastic scattering in the BaF2 crystals.

• In the long tail, which extends to hundreds of microseconds, the detected signals correspond to
neutrons moderated and absorbed in the different parts of the TAC, mostly in the BaF2 crystals.

The delayed fission background induced by the prompt fission neutrons for certain conditions applied
to Esum and mcr, Cdelayed(En;Esum,mcr), is then calculated as a function of the neutron energy, by the
convolution of the TAC time response shown in the right panel of Fig. 3.35, Pprompt−n(t;Esum,mcr), with
the total number of fissions occurring for a particular neutron energy En. The last quantity is calculated as
the ratio between the fission events detected by the FTMG detectors, CFTMG(En) and the fission detection
efficiency, εf , calculated in the section 3.5. In the calculation we assume that coincident detection of two
or more neutrons is extremely rare.

Therefore, the delayed fission component is calculated as:

Cdelayed(En;Esum,mcr) =
ν̄

εf
CFTMG(En) ◦ Pprompt−n(mcr, Esum, t > 20ns) (3.12)

The right panel of Fig. 3.35 shows the timing response for different crystal multiplicity and deposited
energy conditions applied to the TAC. This timing response lasts for milliseconds after the emission of the
prompt-fission neutrons due to the large moderation times.

The delayed fission background is compared with the other background sources for the conditions
applied to the (n,γ) cross-section calculation in Fig. 3.36 as the light green line. The correction due to this
background source represents ∼1-2 % of the prompt fission background.
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Figure 3.37: Projections of the 2D Mass/Charge distribution of the fission yields produced at thermal energies taken
from ENDF/B-VII.1. In the left panel, mass distribution, A and in the right panel, atomic number distribution, Z.

The delayed γ-rays from the decay of the fission fragments has been simulated using the GEANT4
toolkit [91, 92]. The fission products were produced randomly according to the two-dimensional distribution
of mass and atomic number from the ENDF/B-VII.1 yields. The projections of this distribution are shown
in Fig. 3.37. The decay of the fission products was simulated using the specific decay function of the
GEANT4 toolkit. For the estimation of this component, only the events in the first 10 milliseconds after
the generation were taken into account. After the reconstruction of the events the conclusion was that this
contribution can be neglected, due to the low amount of events registered in the first 10 milliseconds.
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3.5 The fission detection efficiency and the fission tagging detec-
tion efficiency

The fission detection efficiency and the fission tagging detection efficiency are closely related quantities. We
consider that both quantities do not depend on the neutron energy as was shown in section 3.2.4. Their
definitions are given by:

• The fission detection efficiency, εf (Ath): this is the probability of detecting a fission reaction
induced in any of the ten 235U samples by the FTMG detectors. This quantity depends only on the
amplitude threshold applied to the FTMG events, Ath.

• The fission tagging detection efficiency, ε∗f (Ath,Esum,mcr): this is the factor needed to rescale
the tagged fissions for the prompt fission background subtraction. This factor, by definition, is the
ratio between the tagged fission counts, cTagg(Ath,Esum,mcr), and the total fission counts detected
by the TAC, cFiss TAC(Esum,mcr):

ε∗f (Ath, Esum,mcr) =
cTagg(Ath, Esum,mcr)

cFiss TAC(Esum,mcr)
(3.13)

Provided that the probability of detecting a fission reaction in one of the detectors does not depend on
whether it has been detected in the other detector [23], then:

1. The fission tagging detection efficiency, ε∗f (Ath), and the fission detection efficiency, εf (Ath), are the
same quantity. In addition, if the samples are well characterized, the individual FTMG detection
efficiencies can be determined as explained in appendix B.

2. As a consequence of 1., the fission tagging detection efficiency depends only on Ath:

ε∗f (Ath, Esum,mcr) = ε∗f (Ath) (3.14)

The condition 1 is easily proven: on the one hand, the fissions detected by the TAC, cFiss TAC(Esum,mcr),
are expressed as a function of the TAC fission detection efficiency, εfγ(Esum,mcr), and the total number of
fission reactions occurring, Nfiss:

cFiss TAC(Esum,mcr) = εfγ(Esum,mcr)Nfiss (3.15)

On the other hand, the tagged fission counts, cTagg(Ath,Esum,mcr), are written as a function of the
fission detection efficiency, εf (Ath), the TAC fission detection efficiency εfγ(Esum,mcr), and the total
number of fission reactions occurring, Nfiss,

cTagg(Ath, Esum,mcr) = εf (Ath)εfγ(Esum,mcr)Nfiss (3.16)

Thus, dividing both quantities the relationship is demonstrated:

ε∗f (Ath) =
cTagg(Ath, Esum,mcr)

cFiss TAC(Esum,mcr)
=

εf (Ath)εfγ(Esum,mcr)Nfiss

εfγ(Esum,mcr)Nfiss
= εf (Ath) (3.17)

If the probability of detecting a fission reaction in one of the detectors depends on whether it has been
detected in the other detector, then the relation 3.16 is not fulfilled and thus, in general, ε∗f 6= εf . In the
case of this measurement, the assumption of independence detecting (n,f) events is almost fulfilled, but not
strictly. We have calculated ε∗f (=εf ) first ignoring any correlation between both detectors in the detection
of (n,f) events, and then some corrections of the obtained results have been applied.
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Figure 3.38: In the left hand panel, mcr distribution for the different components detected by the TAC. In the right
panel, deposited energy spectra detected by the TAC for mcr >5 in the neutron energy range from 0.2 to 1.0 eV.

The methodology used for the calculation of these two quantities, which is more precise than the Monte
Carlo simulations, has been applied to the first large neutron fission resonances, in the neutron energy
interval from 0.2 to 20 eV. It is based on the equation 3.13:

• The prompt tagged fission events are obtained by the coincidence of the TAC and FTMG as was
explained in the section 3.3.

• The TAC detects many background components besides the 235U(n,γ) reactions as was discussed in
section 3.4. However, the number of components can be reduced to the prompt fission component and
the background related to the dead material intercepting the neutron beam, selecting events with large
crystal multiplicity, mcr >5, and large total deposited energy, Esum >Sn(

236U). For these conditions,
the 235U(n,γ) reactions and the background related to the no-beam background are removed from the
analysis as is shown in both panels of Fig. 3.38. In addition, the contribution of the prompt fission
neutrons is negligible as was shown in Fig. 3.35. Nevertheless, it has been experimantally checked
that ε∗f only changes as a function of Ath as is shown in Fig. 3.39 and tables 3.11 and 3.12.

The more restrictions are applied to the TAC events, the less sensitive becomes the analysis to
systematic uncertainties such as the determination of the background as shown in both panels of
Fig. 3.39. However, the statistical uncertainty increases. Thus, the calculation must be performed
with attention paid to the compromise between systematic and statistical uncertainties.

For those conditions, the total fission events detected by the TAC are obtained by the difference between
the total number of counts detected, cT (Esum,mcr), and the background related to the dead material
intercepting the neutron beam, cB(Esum,mcr). Then:

cFiss TAC(Esum,mcr) = cT (Esum,mcr)− cB(Esum,mcr) (3.18)

For the calculation of the statistical analysis of ε∗f , we have to take into account the correlation between
cT (Esum,mcr) and cTagg(Ath,Esum,mcr): cT (Esum,mcr)=cTagg(Ath,Esum,mcr)+cnoTagg(Ath,Esum,mcr), where
cnoTagg is the number of non-tagged events. Thus, the statistical uncertainty for ε∗f is given by:

∆(ε∗f ) = ∆(εf ) =

√
ctagg

(cT − cB)2

√
(cT − ctagg − cB)2 + ctagg(cT + ctagg + cB) (3.19)
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Figure 3.39: Fission detection efficiency as a function of mcr and different amplitude thresholds applied to
AmpFTMG, in the left hand panel for the 2FTMG configuration and in the right panel, for the 10FTMG con-
figuration.

3.5.1 Results for the 2FTMG configuration

The fission tagging efficiency has been calculated for the 2FTMG configuration as was explained in the
previous section, in the first largest neutron fission resonances, from 0.2 to 20 eV. For the calculation,
the TAC events were restricted to events with mcr >5 and Esum >10 MeV. For the FTMG detector, the
threshold applied was Ath=40 ADC channels. The values obtained in the different neutron resonances are
shown in the left hand panel of Fig. 3.40 by the black points. The value obtained for other conditions of
the TAC and FTMG signals are shown in the table 3.11 and in the left hand panel of Fig. 3.39.
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Figure 3.40: In the left hand panel, ε∗f (Ath=40) for the different neutron resonances for the 2FTMG configuration
and in the right panel, variation of the fission detection efficiency as a function of the background variation.

The value of ε∗f was calculated as the weighted average of the values obtained from the different neutron
resonances. The value is shown in the left hand panel of Fig.3.40 by the solid red line and the statistical
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uncertainty by the dashed blue lines. The fission tagging detection efficiency for this configuration is:

ε∗f (Ath = 40) = 0.1887(15)(3) (3.20)

where the first uncertainty is the statistical component and the second one is the systematic uncertainty
due to the beam background subtraction. We estimated the latter by propagating a 2% uncertainty in the
determination of the beam background.

Note that ε∗f should vary only with AmpFTMG as shown in the table 3.11.

En(eV) ε∗f (1) ε∗f (2) ε∗f (3) ε∗f (4)

0.2 – 1 0.1994(12) 0.1990(22) 0.1877(12) 0.1869(21)
6.2 – 6.5 0.206(7) 0.198(12) 0.197(7) 0.188(11)
6.9 – 7.2 0.190(8) 0.184(1) 0.181(8) 0.175(14)
8.3 – 9.5 0.2011(25) 0.205(5) 0.190(3) 0.195(4)

11.4 – 11.8 0.200(10) 0.192(17) 0.195(10) 0.185(17)
12.0 – 12.5 0.210(5) 0.209(8) 0.201(5) 0.201(8)
12.5 – 14.5 0.200(5) 0.196(9) 0.187(5) 0.185(8)
18.5 – 19.5 0.199(3) 0.198(6) 0.185(4) 0.188(6)

Table 3.11: ε∗f calculated for the 2FTMG configuration applying conditions to the TAC and FTMG
signals: (1) AmpFTMG >20,mcr >5,Esum >8MeV;(2) AmpFTMG >20,mcr >5,Esum >10MeV;(3)
AmpFTMG >40,mcr >5,Esum >8MeV; (4) AmpFTMG >40,mcr >5,Esum >10MeV.

3.5.2 Results for the 10FTMG configuration

The fission tagging detection efficiency for the 10FTMG configuration was calculated following the same
procedure as in the case of the 2FTMG configuration. The conditions applied to the TAC were the same;
meanwhile, the amplitude threshold of the FTMG detectors in this configuration is Ath =20. The left
panel of Fig. 3.41 are shown the values obtained for the different neutron fission resonances in the neutron
range from 0.2 to 20 eV for the specific conditions for the calculation of ε∗f . The value for other conditions
applied to the TAC and FTMG signals are shown in the table 3.12 and in the right panel of Fig. 3.39.

The value of ε∗f was calculated as the weighted average of the values obtained in the different resonances.
It is shown in the left hand panel of Fig. 3.41 by the solid red line and the statistical uncertainty by the
dashed blue lines. The value obtained for this configuration is:

ε∗f (Ath = 20) = 0.859(3)(1) (3.21)

where the first uncertainty is the statistical component and the second one is the systematic uncertainty
due to the beam background subtraction. We estimated the latter by propagating a 2% uncertainty in the
determination of the beam background.

Note that ε∗f , as in the case of the 2FTMG, should vary only with AmpFTMG as is shown in the
table 3.12.
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Figure 3.41: In the left panel ε∗f calculated for the different neutron resonances for the 10FTMG configuration. The
of the fission detection efficiency as a function of the background variation is given in the right panel.

En(eV) ε∗f (1) ε∗f (2) ε∗f (3) ε∗f (4)

0.2 – 1 0.854(3) 0.861(4) 0.798(3) 0.799(4)
6.2 – 6.5 0.829(15) 0.82(2) 0.7535(17) 0.75(2)
6.9 – 7.2 0.81(2) 0.81(3) 0.74(2) 0.74(3)
8.3 – 9.5 0.860(5) 0.853(8) 0.791(5) 0.796(9)
11.4 – 11.8 0.87(2) 0.89(4) 0.81(3) 0.85(4)
12.0 – 12.5 0.865(1) 0.865(1) 0.81(1) 0.82(2)
12.5 – 14.5 0.85(1) 0.870(17) 0.79(1) 0.81(2)
18.5 – 19.5 0.862(8) 0.86(11) 0.807(8) 0.82(1)

Table 3.12: ε∗f calculated for 10FTMG configuration applying conditions applied to the TAC and FTMG
signals: (1) AmpFTMG >20,mcr >5,Esum >8MeV;(2) AmpFTMG >20,mcr >5,Esum >10MeV;(3)
AmpFTMG >40,mcr >5,Esum >8MeV; (4) AmpFTMG >40,mcr >5,Esum >10MeV.

3.5.3 Correlation detecting the (n,f) events between the TAC and the FTMG
detectors

In the previous sections ( 3.5.1 3.5.2), ε∗f and εf have been calculated under the hypothesis that the
probability of detecting a fission reaction by one of the detectors does not depend on whether it has been
detected by the other detector [23]. However, due to the complexity of this process, most of the observables
are correlated. For instance, the average number of prompt fission neutrons and γ-rays emitted are closely
related quantities with the pair of fission fragments produced and the primary nuclei involved [101].

Thus, the correlation of the fission observables introduces small correlations in the simultaneous de-
tection of fission events by the TAC and the FTMG detectors. That is, the fission reaction detected by
one of the detectors depends slightly on whether it has been detected by the other detector as is shown in
Fig. 3.42.

The left panel shows the tagged prompt fission γ-ray cascades for different conditions applied to the
FTMG amplitude, AmpFTMG, normalized in area. The differences observed, as a function of the deposited
energy, are shown in the bottom section of the same panel. Despite the differences not being greater than
3σ, most of them are located in the large deposited energy tail.
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Figure 3.42: In the left panel, tagged prompt fission γ-ray cascades for different conditions applied to AmpFTMG

normalized in area. In the right panel, tagged prompt fission γ-ray cascades for different conditions applied to
AmpFTMG normalized in the large deposited energy tail (Esum >10 MeV). A detailed discussion of the figure is
given in the text.

To be precise, as was explained in the previous sections, this large deposited tail is used for the nor-
malization and subtraction of the prompt fission component. Thus, this small correlation could introduce
large differences in the background subtraction as is shown in the right panel of Fig. 3.42.
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Figure 3.43: Angular distribution of the tagged prompt fission γ-ray cascades; in the left hand panel, for the 2FTMG
configuration and in the right panel, for the 10FTMG configuration.

The correlation is not only observed in the deposited energy detected by the coincidence between the
TAC and the FTMG, but is also measured in the angular distribution of the tagged prompt fission γ-rays.
In Fig. 3.43 are shown the angular distribution of the tagged prompt fission γ-ray cascades for the 2FTMG
(left panel) and for 10FTMG (right panel) configurations, using as the z-axis the direction of the neutron
beam: θLAB=0 and θLAB=π corresponding with the entrance and exit of the TAC, respectively. As shown
in this figure, the distribution of the tagged prompt fission γ-ray cascades changes as a function of the
AmpFTMG conditions applied for both configurations.
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Therefore, a small correlation exists in detecting the (n,f) events in coincidence between the TAC and
the FTMG detectors. This experimental effect has been investigated by Monte Carlo simulations, using
the fission observables provided by the GEF code [93], and detailed models of the TAC and the FTMG
detectors using the GEANT4 toolkit. Three different types of causes were investigated:

• The kinematic boost of the prompt fission γ-ray cascades due to the high kinetic energy of the fission
fragments: the effect of the kinematic boost is quite small. Therefore, this effect cannot explain the
correlation observed in the experimental data.

• The directional correlation between the fission fragments and the prompt fission γ-ray cascades [102]:
According to the simulations, it produces an appreciable effect in the simultaneous detection of the
(n,f) events between the TAC and the FTMG detectors, thus correlating the simultaneous detection
by both detectors. However, the Monte Carlo results do not reproduce the experimental data.

• The FTMG fission detection efficiency depending on the mass of the heavy fission fragments: accord-
ing to the simulations, the fission detection efficiency of the FTMG detectors is slightly depending on
the difference between the mass of the heavy and light fission fragments is greater (∼1%). Because the
γ-ray cascades emitted in fission events with different fragment-mass asymmetries may be different,
this could introduce correlations between both detectors in the detection of the fission events.

The correction of the correlation observed has been calculated experimentally in the section 3.5.4.

The kinematic boost of the prompt fission γ-ray cascades

The fission products are accelerated quasi-instantaneously after the scission of the primary nuclei (10−20s)
by the Coulomb forces. Then, the γ-rays cascades are emitted from fission fragments with large kinetic
energies and detected by the TAC with slightly different directions and energies due to the Doppler effect.

To quantify this effect, the prompt fission γ-ray cascades correlated with the fission fragments were
uniformly emitted from the fission fragment and transformed into the laboratory system using the Lorentz
transformation, explained in appendix C. The β parameter needed for the transformation, defined as the
speed of the fission fragments in terms of the light speed, c, is easily calculated from the kinetic energy Tff

and the fission fragment mass ,mff , by:

T = mffc
2(γ − 1) (3.22)

where γ is a dimensionless parameter;

γ =
1√

1 + β2
(3.23)

Therefore, combining Eq. 3.23 and Eq. 3.23, the β parameter is easily deduced:

β =


1− 1

(
Tff

mff c2
+ 1
)2




1/2

(3.24)

The transformed prompt fission γ-ray cascades in the laboratory system were simulated in the TAC+FTMG
geometry using the GEANT4 toolkit and event reconstruction as was performed with the 235U(n,γ) cascades
and the prompt fission neutrons explained in the sections 3.6 and 3.4.4, respectively.

Three different cases were studied and compared with the simulation without the kinematic boost. The
results are shown in Fig. 3.44:

• The fission fragments were emitted isotropically in the laboratory system (black line).
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• The fission fragments were emitted only parallel to the neutron beam direction (blue line).

• The fission fragments were emitted only perpendicular to the neutron beam direction (pink line).

Figure 3.44: Prompt fission γ-rays cascades reconstructed from the Monte Carlo simulated data for different as-
sumptions on the emission angle of the simulated fission events.

No substantial differences are observed between the deposited energy spectra of the different simulations.
This is because the Doppler effect in the prompt fission γ-ray cascades induced by the kinematic boost
is very low. Hence, this effect cannot be observed in the experimental data, and does not explain the
experimental correlation observed between the fission fragments and the prompt fission γ-ray cascades.

Directional correlation between the fission fragments and the prompt fission γ-ray cascades

As was demonstrated by M. Marvin in [102], there is an angular anisotropy between the prompt fission
γ-ray cascades and the motion direction of the fission fragments. The experimental angular distribution was
described by two components with different angular spatial components: the first one, accounting for about
85% of the γ-rays, was isotropic. The remaining 15% had the angular distribution according to quadrupole
transitions in the fission fragments. The angular distribution is described in the fission fragment reference
system by the following W(θff , φff ) function [103]:

W (θff , φff ) = a0 + a1 cos
2(θff ) + a2 cos

4(θff ) (3.25)

where a0, a1 and a0 are the weighting factor for the isotropic, dipole and quadrupole components
respectively. In the description given by M. Marvin, no dipole component is needed, thus a1=0, and the
ratio between the weighting factors a0 and a2 determine anisotropy of the prompt fission γ-ray cascades.

The left panel of Fig. 3.45 shows the angular distributions measured for three different isotopes, 233U,
235U and 239Pu, with anisotropies between 12% and 19% [102]. The right panel of the same figure shows
a schematic picture of the TAC and the FTMG detectors placed in the center of the TAC. The red and
blue regions are characterized by different fission detection efficiencies in the TAC and the FTMG due to
the angular anisotropy 3:

• The blue colored region corresponds to a high detection efficiency for the TAC and low detection
efficiency for the FTMG detectors, because the fission fragments are emitted near parallel to the 235U

3In any of these cases, the detection efficiencies of both detectors are high. Note that ’low’ and ’high’ mean here ’slightly
lower’ and ’slightly higher
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Figure 3.45: In the left panel, prompt fission γ-rays angular anisotropy in the fission fragment reference system for
the 235U, 233U and 239Pu isotopes taken from [102]. In the right panel, a schematic drawn of the TAC and the
FTMG detection systems.

samples, where fission detection efficiency of the FTMG decreases rapidly due to the self- absorption of
the fission fragments in the targets as was explained in the section 3.2.5. Hence, the fission fragments
are barely detected by the FTMG but, at the same time, geometrically the prompt fission γ-ray
cascades are almost entirely detected by the TAC.

• The red colored region corresponds to a low detection efficiency for the TAC and high detection
efficiency for the FTMG detectors, because almost all the fission fragments deposit an appreciable
energy in the active volume of the FTMG detectors. However, part of the prompt γ-rays cascades
are not detected by the TAC due to the entrance and exit holes of the neutron beam.
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Figure 3.46: The left panel shows the angular distribution of the prompt-fission γ-rays generated in the fission frag-
ment reference system compared with the fitted curve taken from [102]. The right panel shows angular distributions
of the fission fragments and prompt-fission γ-ray cascades simulated in the laboratory system.

The impact of the directional correlation was estimated using Monte Carlo simulations. As in the
previous cases the output from the GEF code was used for the simulation of this effect.

Previous to the Monte Carlo simulation in the GEANT4 applications, the direction of the fission frag-
ments was sampled isotropically, as shown by the black line in the right panel of Fig. 3.47. Then, each
individual γ-ray cascade associated with the individual fission fragment was sampled in this coordinate
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system following the angular anisotropy described by the equation 3.25. The angular γ-ray distribution
obtained is compared with the model used in the left hand panel of Fig. 3.47. Then, the correlated γ-ray
cascades were transformed in the laboratory system following the procedure explained in the appendix D.
The γ-ray distribution in the laboratory system is shown by the blue line in the right panel of Fig. 3.47.
At this point the simulation was split:

• The fission fragments were simulated in the FTMG model as described in section 3.2.5.

• The correlated prompt fission γ-ray cascades were simulated in the TAC+FTMG geometry as per-
formed with the 235U(n,γ) cascades, explained in section 3.6.

The Monte Carlo data from the simulation is then reconstructed by correlating the FTMG events with
TAC events. From the reconstruction of the correlated data, only a general behavior is expected for two
reasons:

• The FTMG geometry has been simplified and other experimental effects such as deformations of the
electric field, the charge recollection and the electronics of the FTMG detectors need to be included
for an accurate simulation.

• The results of the Monte Carlo simulations using the fission γ-rays from the GEF code do not
reproduce the experimental results.

0 2000 4000 6000 8000 10000 12000 14000 16000
(keV)sumE

0

10000

20000

30000

40000

50000

A
rb

. 
u

n
it

s

< 60
FTMG

0<Amp

< 120
FTMG

60<Amp

< 170
FTMG

120<Amp

20 40 60 80 100 120 140 160
 (ADC)

FTMG
Amp

4400

4500

4600

4700

4800

4900

(k
e

V
)>

γ
<

E

Exp. data

Sim. data

Figure 3.47: In the left panel is shown the deposited energy signature of the prompt fission γ-ray cascades obtained
from the Monte Carlo reconstruction for different FTMG amplitude cuts. In the right panel is the average deposited
energy of the prompt fission γ-ray cascades as a function of the FTMG amplitude.

The left hand panel of Fig. 3.47 shows the prompt fission γ-ray deposited energy spectrum reconstructed
from the Monte Carlo data for three different amplitude conditions applied to the FTMG events. The
deposited energy distributions were normalized in the high deposited energy tail for the comparison. As
for the experimental data, shown in Fig. 3.42, the distributions reconstructed for 0<AmpFTMG <40 and
40<AmpFTMG <120 cannot be distinguished. However, for AmpFTMG >120, the simulated data does not
reproduce the experimental behavior: in the experimental data the ratio between the belly and the long
deposited energy tail decreases, but in the reconstructed Monte Carlo data this ratio increases.

The right panel of Fig. 3.47 shows the average deposited energy of the simulated prompt fission γ-ray
cascades (red line) and the experimental one (blue line) as a function of the simulated FTMG amplitude.
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Despite the fact that the Monte Carlo data does not reproduce the experimental data, there is an appreciable
effect as a function of the FTMG amplitude. Therefore, it is expected that in the experimental data the
anisotropy in the emission of the prompt fission γ-ray cascades will produce an appreciable effect. Thus, as
was explained previously, a fraction of the prompt fission γ-rays of the prompt cascades are not detected
by the TAC due to the angular anisotropy, hence reducing the number of γ-rays detected and lowering the
total deposited energy in the TAC.

In conclusion, the anisotropy of the prompt fission γ-ray cascades could be part of the cause of the
correlation between the detectors, but we were not able to reproduce the effect with simulations.

The fission fragments detection efficiency depending on the mass and the FTMG amplitude

As was shown in section 3.2.5, the fission detection efficiency of the fission fragments as a function of the
mass depends on the FTMG amplitude conditions. Fig. 3.20 shows the detection probability as a function
of the heaviest fission fragment mass for different amplitude thresholds applied to the FTMG detectors.

For the conditions applied to the FTMG in this analysis (AmpFTMG >40 ADC channels), there is a
difference of 1.2% for detecting fission events with small and large fragment-mass asymmetries. In terms
of the heavy fission fragment masses, the difference in the detection efficiency corresponds to fissions with
heavy fission fragment masses of 120<A<130 and 150<A<150. Therefore, since the number of γ-rays and
prompt fission neutrons are closely related to the pair of fission fragments produced, it is expected that the
prompt fission γ-ray cascades detected only by the TAC and by the coincidences between the TAC and the
fission fragments will be slightly different. This detection efficiency effect, added to the angular anisotropy
explained in the previous section, could be a reasonable explanation of the correlation observed detecting
simultaneously the (n,f) events between the TAC and the FTMG.

3.5.4 Experimental correction of the fission tagging detection efficiency and
the fission detection efficiency

As was explained at the beginning of this section, the fission tagging detection efficiency is calculated using
the equation 3.13. In the specific case of (n,f) reactions being independently detected by the TAC and
the FTMG detectors [23], ε∗f only depends on the threshold applied to the FTMG events 3.14. Thus,
ε∗f (Ath) can be obtained from the equation 3.13 using certain restrictive conditions in Esum and mcr

(sections 3.5.1 and 3.5.2), and the obtained value used for the less restrictive conditions in Esum mcr used
to obtain the capture cross section. However, due to the small correlation observed in the experimental
data (section 3.5.3):

1. The fission tagging detection efficiency depends slightly on the conditions applied to the TAC. There-
fore, this quantity must be determined for the conditions of the 235U(n,γ) cross-section: 2.5<Esum(MeV)<7.0
2<mcr <6.

2. The fission detection efficiency has to be calculated, since in general, εf 6= ε∗f .

For this purpose, the ratio between the ε∗f for restrictive conditions applied to the TAC, i.e. condi-
tions such as applied in the sections 3.5.1 and 3.5.2 (superscript 1), and ε∗f for relaxed conditions applied

to the TAC (superscript 2), i.e. conditions used for the 235U(n,γ) cross-section, is computed using the
equation 3.13:

ε∗f (Ath, E
1
sum,m1

cr)

ε∗f (Ath, E2
sum,m2

cr)
=

cTagg(Ath, E
1
sum,m1

cr)

cTagg(Ath, E2
sum,m2

cr)
· cFiss TAC(E

2
sum,m2

cr)

cFiss TAC(E1
sum,m1

cr)
;

ε∗f (Ath, E
1
sum,m1

cr)

ε∗f (Ath, E2
sum,m2

cr)
= f(Ath) ·

cFiss TAC(E
2
sum,m2

cr)

cFiss TAC(E1
sum,m1

cr)
(3.26)
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where f(Ath) is defined as the ratio between the tagged fission counts for restrictive conditions and the
tagged fission counts for relaxed conditions:

f(Ath) =
cTagg(Ath, E

1
sum,m1

cr)

cTagg(Ath, E2
sum,m2

cr)
(3.27)

and for simplicity, the dependence of f(Ath) with the Esum and mcr variables is implicit.
The fission tagging detection efficiency for the relaxed conditions, ε∗f (Ath,E

2
sum,m2

cr), can be calculated
using the equation 3.26 since:

• ε∗f (Ath,E
1
sum,m1

cr) and cFiss TAC(E
1
sum,m1

cr) can be calculated using restrictive conditions such as
was calculated in the sections 3.5.1 and 3.5.2.

• f(Ath) is easily computed for any condition applied to the TAC events restricted to Ath above the
detection threshold.

The only value that must be estimated is the number of fissions for the Relaxed conditions: cFiss TAC(E
2
sum,m2

cr).
For the estimation, let us assume that the detection efficiency of the FTMG detectors is 100%, corre-
sponding to Ath=0. Here we include the fission reactions which induce a signal in the FTMG below the
detection threshold and also those (n,f) reactions in which the fission fragments are absorbed in the sam-
ple. In this special case, the (n,f) events are detected independently by both detection systems. Thus,
ε∗f (Ath=0,E1

sum,m1
cr)=ε∗f (Ath=0,E2

sum,m2
cr) and the equation 3.26 can be solved for cFiss TAC(E

2
sum,m2

cr),

cFiss TAC(E
2
sum,m2

cr) =
1

f(Ath = 0)
cFiss TAC(E

1
sum,m1

cr) (3.28)

Inserting the equation 3.28 in equation 3.26 we obtain:

ε∗f (Ath, E
1
sum,m1

cr)

ε∗f (Ath, E2
sum,m2

cr)
=

f(Ath)

f(Ath = 0)
· cFiss TAC(E

1
sum,m1

cr)

cFiss TAC(E1
sum,m1

cr)
(3.29)

Rewriting the last equation, we obtain the relationship between fission tagging detection efficiencies for
any amplitude threshold applied to the FTMG, Ath.

ε∗f (Ath, E
2
sum,m2

cr) =
f(Ath)

f(Ath = 0)
ε∗f (Ath, E

1
sum,m1

cr) (3.30)

In order to calculate f(Ath=0), some assumptions need to be taken into account:

1. From the study presented in the sections 3.5.1 and 3.5.2 we know that the FTMG detectors have
individual efficiencies close to 90%.

2. The ratio between the ∼10% of non-tagged fission counts for restrictive conditions and for relaxed
conditions has a similar value to that of the same ratio but obtained with tagged counts with low
Ath.

The ratio between these two quantities for different FTMG amplitude regions is shown in Fig. 3.48.
Each region represents ∼10% of the fission reactions detected by the TAC, under the conditions in Esum

and mcr. f(Ath) is then calculated for any threshold as the average of all the amplitude intervals. In order
to get f(Ath=0), we compute this average including the 10% of artificial tagged events shown in the figure
by the shadowed region.

For the conditions used in the sections 3.5.1 and 3.5.2 and the conditions used for 235U(n,γ) cross
section:
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Figure 3.48: Ratio between the number of fission counts detected in coincidence by the TAC and the FTMG for
restrictive conditions (Esum >10 MeV, mcr > 5 and relaxed conditions (2.5<Esum(MeV)<7 MeV, 2<mcr <6)
conditions in the detected TAC events, as a function of AmpFTMG.

f(Ath = 40)

f(Ath = 0)
= 0.98 (3.31)

Thus, the fission tagging detection efficiency for both the 2FTMG and 10FTMG obtained in the sec-
tions 3.5.1 and 3.5.2 have to be lowered by 2%. We estimate that the systematic uncertainty of this
correction is 15%. Thus, propagating it to the value of ε∗f , the uncertainty is:

∆(ε∗f ) ∼ 0.25%. (3.32)

Due to the high (n,f) detection efficiency of the TAC for the capture conditions we can consider that, the
(n,f) reactions are detected (practically) independently in both detectors. Note that the ratio of efficiencies
under the restrictive conditions and the relaxed conditions is ∼ 0.08 (Figure 3.48), and the ratio between
their corresponding fission tagging efficiencies is 1.02. Thus, we can assume that:

εf (Ath) = ε∗f (Ath, E
2
sum,m2

cr) (3.33)

including an additional systematic uncertainty equal to the 0.25% uncertainty calculated for ε∗f .

3.5.5 Final results

The results of the fission tagging detection efficiency, ε∗f , and the fission detection efficiency, εf , are sum-
marized as follow:

• Fission tagging efficiency ε∗f : This quantity has been determined for the 235U(n,γ) conditions for
both configurations as explained in section 3.5 and corrected in section 3.5.4. We include the following
uncertainties:

– Statistical uncertainty: The statistical uncertainty for the 2FTMG configuration is 0.8%, and
for the 10FTMG configuration 0.4%.
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– The background subtraction and the prompt fission neutrons: 0.14% for the 2FTMG
configuration and 0.1% for the 10FTMG configuration.

– The correction applied due to the correlation: In this case, for both configurations, the
systematic uncertainty due to the correction is 0.25%.

Thus, the value of ε∗f in the 235U(n,γ) conditions for the 2FTMG configuration is:

ε∗f = 0.1847(22) (3.34)

and for the 10FTMG configuration is:

ε∗f = 0.842(5) (3.35)

The uncertainty given for both configurations is the linear sum of the statistical and systematic
uncertainty.

• Fission detection efficiency εf : As was explained before, we consider that for the relaxed con-
ditions, i.e., 235U(n,γ) conditions, the fission detection efficiency and the fission tagging detection
efficiency have the same value due to the large TAC efficiency for the (n,f) events in such conditions.
Thus, the εf value for the 2FTMG configuration is:

εf = 0.1847(22) (3.36)

and for the 10FTMG configuration:

εf = 0.842(5) (3.37)
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3.6 The TAC detection efficiency of the 235U(n,γ) events

The neutron capture detection efficiency, εγ , is defined as the probability of detecting a (n,γ) reaction in a
certain nucleus by the TAC. It depends on the BaF2 deposited energy thresholds, the conditions applied
to the TAC events in Esum and mcr, and the counting rate of the detectors due to pile-up effects. In our
case, the pile-up effects for the calculation of εγ are negligible. We assume that the detection efficiency
does not depend on the neutron energy of interest. This is because:

• The energies of the incident neutrons are much smaller than the neutron separation energy (Sn), thus
the total energy of the cascade is almost always the same (Etot

∼=Sn+En).

• The nuclear level density is large below Sn, thus the number of possible decay paths of the com-
pound nucleus are large enough, and the signature of the capture cascades registered by the TAC
is independent of the resonance (nuclear level of the compound nucleus) where the neutron capture
occurs.

As both conditions are fulfilled, the neutron capture signature registered by the TAC are almost identical,
independent of neutron energy.

The efficiency has been calculated by Monte Carlo simulations as was performed for previous measure-
ments with the TAC [34, 77]. It is obtained by the comparison between the experimental signature and the
Monte Carlo deposited energy spectra of the γ-ray cascades. For the comparison the following is necessary:

• Neutron capture cascades generator: the (n,γ) cascades are generated by Monte Carlo codes, such as
the DICEBOX code [47] or the DECAYGEN code [48], attending to the nuclear structure and decay
models as was explained in the section 1.2.2.

• Geometry for the simulation of the (n,γ) cascades: the cascades generated must be simulated in
an accurate geometric implementation of the experimental setup with a realistic description of its
interactions. For this purpose, the TAC-FTMG geometry has been implemented using the GEANT4
toolkit [91, 92].

• Event reconstruction from the Monte Carlo data [34, 77]: the data obtained from the simulation of
the (n,γ) cascades in the geometry are reconstructed taking into account experimental effects such as
the energy resolution of the BaF2 crystals or the pile-up effects.

3.6.1 The event generator used for the 235U(n,γ) reaction

The event generator used for the 235U(n,γ) cascades is the Monte Carlo DICEBOX code [47]. The (n,γ)
cascades can generally proceed via many intermediate levels. In the particular case of the decay of neutron
capturing levels in heavy nuclei, the overall number of encountered intermediate levels is 105—106. The
proposed method used in the DICEBOX code is based on the following:

• Below a certain energy Ecr a full set of experimentally determined nuclear levels are known, including
the level energies E, spins J, parities π and all branching ratios for the transitions between levels.

• The nuclear levels above Ecr are generated randomly according to a level density formula, ρ(E,Jπ).

• The probability for transitions between a nuclear level a, above Ecr, and nuclear level b are given by
the radiation widths, Γaγb, which are obtained from:

Γaγb =
∑

X,L

y2XL(Ea − Eb)
2L+1S

(XL)
γ (Ea − Eb)

ρ(Ea, J
πa
a )

(3.38)
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Figure 3.49: Simplified schematic decay of the DICEBOX code. The figure has been taken from [47].

Here, S
(XL)
γ (Eγ) is the photon strength function for a given type X (electric or magnetic) and mul-

tipolarity L. The summation is assumed over all allowed values XL. The Porter-Thomas fluctuations
of the nuclear densities are included by the random value yXL, sampled from a normal distribution
with zero mean and unit variance.

• Each cascade starts from a single, well-defined initial level with a known excitation energy, spin and
parity E1,J1 and π1, respectively.

The algorithm for the de-excitation of the nuclear level can be summarized as follows:

1. The level density ρ(E, Jπ) is discretized to yield energies Ea, spins Ja and parities πa of individual
levels a above the critical energy Ecr. For the sake of simplicity, the levels are labeled by integer
numbers (a=1,2,...,n), assuming that the energy Ea decreases with increasing a. Levels a=1 and a=n
correspond, respectively, to the initial level, where all cascades starts, and the ground state where
they stop.

2. To each level a with energy Ea >Ecr a generator seed αa is ascribed, including the level a=1;

3. The partial widths Γaγa′ for a full set of transitions 1→ a′, leading from the initial level to all possible
final levels a′ with Ea′ <Ecr are generated.

4. A total radiation width Γaγ is calculated from the initial level a=1:

Γ1γ =
∑

a′>1

Γ1γa′ (3.39)

A set of intensities I1a′ for all the transitions initiating at the same level are then determined following
a simple expression:

I1a′ = Γ1γa′/Γ1γ (3.40)

These intensities are in fact ’branching intensities’
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5. It is assumed that the level a=1 is populated. A level, a1, to which it decays is determined from a
random number, s1, yielded by another random number generator. The choice of a1 follows from the
requirement:

a1−1∑

a′=2

I1a′ ≤ s1 ≤
a1∑

a′=2

I1a′ (3.41)

As a result, the level a1, reached by the first cascade step, is known.

6. If the energy Ea1
of level the a1 is greater than Ecr, a full set of partial widths Γa1γa′ for a full set of

transitions a1 →a′, leading from the fixed level a1 are generated. Then, the branching intensities Ia1a′

are calculated for the same level. If Ea1
falls below Ecr, the branching intensities Ia1a′ are deduced

exclusively from the evaluated data. Using these intensities, a second intermediate level, a2, to which
the level a1 decays, is chosen at random following the requirement:

a2−1∑

a′=2

Ia1a′ ≤ s2 ≤
a2∑

a′=a1+1

Ia1a′ (3.42)

7. The part of the simulation procedure outlined before is repeated until the excited nuclei reach the
ground state or metastable state.

The cascades are then characterized by the γ-ray energies Eγ , multiplicity mγ , and the intermediate levels
described by Jai

, πai
and Eai

. A simplified scheme of the decay process followed by the algorithm is shown
in Fig. 3.49.

As was explained in the section 1.2.2, the nuclear level density ρ(E, Jπ) and the photon strength function
Sn
γ are obtained from physical models depending on some adjustable parameters. These parameters are

adjusted to reproduce the experimental data obtained from the deposited energy registered by the TAC
for different conditions applied to the crystal multiplicity mcr.

3.6.2 The simulation of the (n,γ) cascades in the GEANT4 geometry

The detailed geometry of the TAC already implemented [34, 77, 105] in the GEANT4 [91, 92] application
includes the BaF2 crystals with their capsules, the photomultipliers and the whole structure that supports
the array detector as shown in the left panel of Fig. 3.50. To this geometry, we have added the fission
chamber including the FTMG detectors, with the PCB structures, the gas and the kapton windows. Also
included are the aluminum beam pipes and the geometry of the borated neutron absorber used during the
235U(n,γ) cross-section measurement. The new geometry added to the model is shown in the right panel
of Fig. 3.50.

The γ-ray cascades generated by the DICEBOX Monte Carlo code were simulated in this GEANT4
geometry taking into account the particle interaction physics and recording in a binary file the time,
deposited energy and the BaF2 crystal number where the energy deposition occurs.
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Figure 3.50: In the left panel, TAC geometry used in the previous measurements; in the right panel, the geometry
of the FTMG fission chamber with the aluminum beam pipes implemented in the center of the TAC geometry.

3.6.3 The event reconstruction software

The results obtained from the GEANT4 simulations are processed by an event reconstruction software [34,
77], analogous to the reconstruction process performed on the experimental data:

1. All the hits (signals) registered in the BaF2 crystals are read from the binary file. The deposited
energy in each crystal is sampled according to the energy resolution of the detector (section 3.1.2). The
uncertainty in the experimental energy calibration is taken into account including an artificial error
in the Monte Carlo energy calibration according to a Gaussian distribution with standard deviation
of 3%, obtained from the comparison with the experimental data. All the Monte Carlo energies are
thus simulating the error committed of experimental energy calibration. The starting time of each
simulated cascade is sampled according to a certain predefined reaction rate, and the time between
the origin of the cascade and the detection of the γ-rays, which is very small, is given by the Monte
Carlo simulation.

2. In the case of the 235U(n,γ) measurement, it is not necessary to apply the pile-up effects for the
neutron energies where εγ is calculated since the counting rates detected due to the capture reactions
are very low. Therefore, pile-up corrections are not applied to the reconstruction process.

3. Then, the coincidences of the BaF2 are made with a coincidence time window of 20 ns, in the same
way as is done with the experimental data. The result is a list of events with a total deposited energy,
detected multiplicity and detection time.

3.6.4 Validation of the simulation process

The whole simulation process was validated by the comparison of the experimental data from the γ-ray
calibration sources, 137Cs and 88Y, with the simulated deposited energy spectra applying different conditions
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to the TAC events in mcr.
The validation for 137Cs is shown in Fig. 3.51, and for 88Y in 3.52. For both figures, the solid lines are

the experimental data for different mcr conditions and the dashed lines the Monte Carlo results.
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Figure 3.51: Comparison between the experimental data and the Monte Carlo results for the standard the 137Cs
calibration source.

The close agreement between the experimental and Monte Carlo results shown for both calibration
sources permits the determination of the two essential parameters for the simulations:

• The experimental BaF2 detection threshold (Eth): by the comparison of the experimental data and
the Monte Carlo results it is possible it is possible to identify the low-energy γ threshold.

• The inner radius of the TAC (RTAC): this parameter was modified by ±2 mm until the experimental
data was reproduced by the Monte Carlo results.

The values determined for those parameters are shown in table 3.13.

Eth=300 keV RTAC=11.40 mm

Table 3.13: Detection energy threshold determined for the individual BaF2 detectors and the inner radius obtained
from the comparison of the simulations with the experimental data.

In addition, the detection efficiency for monoenergetic γ-rays has been determined shown in Fig 3.53.
The black, blue, and red lines are the TAC detection efficiencies a TAC threshold of 300, 400 and 500 keV.
The TAC detection efficiency increases with the energy and reaches a maximum which depends on the
BaF2 threshold.
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Figure 3.52: Comparison between the experimental data and the Monte Carlo results for the standard γ-ray 88Y
calibration source. In the left hand panel the y-axis is in linear scale and in the right panel in logarithmic scale.
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Figure 3.53: Calculated TAC detection efficiency for monoenergetic γ-rays a function of the γ energy and for
different BaF2 detection thresholds.
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3.6.5 The generation of the 235U(n,γ) cascades

The γ-ray cascades used for the determination of εγ were adjusted from previous calculations, which had
been calculated by Milan Krtička for the DANCE detector at Los Alamos [32] using the DICEBOX code [47].
The parameters of the photon strength functions were adjusted based on the data from the Oslo nuclear
physics group [109, 110, 111], which show evidence of large M1 resonances in the photon strength functions
at γ energies of 2.5 MeV for the actinide region as shown in the right panel of Fig. 3.54. In this figure the
E1 component, M1 component and the total photon strength function are plotted as blue, red and black
lines respectively. Higher multipolarities were neglected for this calculation.

The 235U is a special nucleus compared with others measured before at the n TOF facility due to fissile
character and the presence of the fission isomers, as was explained in section 1.2.3. This fact complicates
the description of the γ-decay for the fissile nuclei such as the 235U and 239Pu.
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Figure 3.54: In the left hand panel, theoretical cumulative nuclear levels density [46] of 236U compared with the
experimental nuclear states accessible in the ENDSF library [104]. In the right panel, the Photon Strength Function
adjusted to reproduce the 236U γ-ray decay measured at DANCE in Los Alamos.

In the particular case of 236U, the population of isomers was reported for the first time by Lars in
1969 [106] through (d,p) reactions. Studies via surrogate reactions performed in 1972 [107] led to a half-life
for this fission isomer of t1/2 ∼100 ns. Later on, in 1976, studies with thermal neutron reactions [108]
suggest that the isomeric state mainly decays by the γ de-excitation channel instead of the isomeric fission
channel, since experimentally delayed fission events were not observed. The effect of this delayed isomeric
γ-ray decay, present in our experimental 235U(n,γ) data, has to be taken into account for the determination
of the 235U(n,γ) detection efficiency because the population of this nuclear state via nuclear reactions is
10-20% of the total (n,γ) reactions [56].

The DANCE experimental data indicate also the existence of another fission isomer: the deposited
energy shape of the γ-ray cascade depends on the coincidence time window used. This fact strongly
supports the presence of isomeric states one at about 687 keV with a very short half-live T1/2 ∼4 ns and
another one at about 1154 keV with a relatively long half-live t1/2 ∼100 ns.

From the DANCE experimental data, it is deduced that the population of these long-lived isomeric states
the γ-ray decay is estimated to be very likely more than 10%. In order to obtain a reasonable reproduction
of the experimental data, several completely artificial long-lived isomeric 3− and 4− levels were added to
the 236U level scheme near to 1155 keV. In the calculation, the level scheme used has been taken from the
ENDSF library [104] below 1160 keV, where the number of known nuclear levels starts to deviate from
the expected numbers of nuclear states given by the nuclear state density model integral [51, 52]. That is
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the limit of the applicability of the experimental nuclear level scheme. From this point, the experimental
nuclear scheme has been replaced by a statistical model up to the neutron separation energy of the 236U.
The comparison between the experimental number of levels (dotted points) and the integral of the statistical
model (blue line) in the left panel of Fig. 3.54 shows that the the number of missing nuclear levels increases
strongly for for excitation energies above 1160 keV deviates.

3.6.6 The TAC efficiency for 235U(n,γ) reactions

The DICEBOX γ-ray cascades were simulated in the n TOF experimental setup for the three different
measurement configurations: 2FTMG with the borated neutron absorber; 2FTMG without the borated
neutron absorber and 10FTMG with the neutron absorber. No significant differences were observed between
the deposited energy spectra for the configurations 2FTMG and 10FTMG with neutron absorber as is shown
in Fig. 3.56. For this reason, in the following the 10FTMG and 2FTMG configurations will be labelled as
FTMG configuration with absorber in terms of εγ .
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Figure 3.55: Monte Carlo simulated 235U(n,γ) deposited energy spectra compared with the experimental data for
different mcr conditions. In the upper panel are the results for the experimental FTMG configuration with the
borated neutron absorber. In the bottom panel are the results for the FTMG configuration without the borated
neutron absorber.
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In Fig. 3.55 are shown the simulated and experimental deposited energy spectra detected by the TAC
for both configurations and conditions applied in mcr: in the upper panel, for the configuration with
the neutron absorber and in the bottom panel, for the configuration without the neutron absorber. The
experimental data is shown as colored solid lines and the simulated data as dashed lines. A significant
agreement has been obtained between the simulated and experimental data in all the deposited energy
spectra for the different mcr conditions.

The TAC efficiency obtained for 235U(n,γ) events in both configurations applying different conditions
in mcr are shown in the table. 3.14.

mcr > <Esum(MeV)< εγ(Abs) (%) εγ(No Abs) (%)
0 2.5 - 7.0 78.4 85.8
1 2.5 - 7.0 75.8 83.5
2 2.5 - 7.0 58.8 67.3
3 2.5 - 7.0 30.9 38.4
4 2.5 - 7.0 10.6 14.7
5 2.5 - 7.0 2.3 3.8
6 2.5 - 7.0 0.3 0.6

Table 3.14: TAC efficiency calculated for 235U(n,γ) reactions using different conditions applied to the TAC events.
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Figure 3.56: 235U(n,γ) signature reconstructed from the Monte Carlo simulations for the 2FTMG and 10FTMG
configurations with the neutron absorber.

3.6.7 Uncertainty in the determination of the TAC efficiency

The larger sources of uncertainty for the TAC efficiency to the 235U(n,γ) events have been identified:
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• The uncertainty due to the geometry modeled: in previous works [34, 77, 105] it was determined that
the parameter with the greatest impact on the εγ was the TAC inner radius. We have assumed that
an uncertainty in the determination of this parameter is ∆(RTAC)=±1 mm. For larger variations,
the deposited energy spectra from the calibration sources shown in Fig. 3.51 and Fig. 3.52 were not
accurately reproduced by the Monte Carlo simulations.

The uncertainty of this parameter has been propagated in the result, thus obtaining the uncertainty
in the neutron capture efficiency due to this parameter. It is estimated as the difference between the
maximum and minimum efficiencies divided by two. The values obtained for the different conditions
applied to the TAC are shown in table 3.15.

< mcr < < Esum(MeV) < ∆Geom(εGeom
γ (Abs)) (%)

2 - 6 2.5 - 7.0 1.2
2 - 6 2.5 - 6.5 1.5
2 - 6 3.0 - 6.5 1.6
3 - 6 2.5 - 6.5 2.0
3 - 6 3.0 - 6.5 2.2

Table 3.15: TAC detection efficiency uncertainty due to the TAC inner radius parameter.

In the worst scenario, using very restrictive analysis conditions, the systematic uncertainty associated
with the model implemented in the GEANT4 application is 2.2%. For the conditions that will be
used for the calculation of the neutron capture cross section, the systematic uncertainty is 1.2%.

• The uncertainty due to the 235U(n,γ) cascades model used: it has been estimated from the dispersion
of the ratio between the integral of the experimental deposited energy spectra, Iexp, and the Monte
Carlo reconstruction, IMC for different crystal multiplicities conditions as is shown in the table 3.16.

mcr > <Esum(MeV)< IMC/Iexp
0 2.5 - 6.5 1
1 2.5 - 6.5 1.00
2 2.5 - 6.5 1.01
3 2.5 - 6.5 1.01
4 2.5 - 6.5 1.03

Table 3.16: Ratio between the experimental and the Monte Carlo deposited energy spectra integral for
2.5<Esum(MeV)<7.0 and different mcr. The normalization of the deposited energy spectras was carried out for
mcr >0.

The excellent reproduction of the experimental data by the Monte Carlo reconstruction permits the
estimation of the uncertainty due to the model of 235U(n,γ) cascades model for the configuration with
the neutron absorber:

∆Model(εγ) = 1% (3.43)

Therefore, the uncertainty in the determination of εγ for the analysis conditions used for the calculation
of the neutron capture cross section (2< mcr <6 2.5<Esum(MeV)<7.0) is:

∆(εγ) =
√

(∆Geom(εγ))2 + (∆Model(εγ))2 ≈ 1.7% (3.44)
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3.7 The neutron fluence

During the 2012 campaign, the neutron fluence was monitored with the SiMon [73]. In previous campaigns,
the neutron fluence was determined by dedicated measurements together with other detectors such as the
PPACS or the absolute calibrated PTB chamber [63, 64, 65]. Because the concentration of 10B dissolved in
the moderator of the spallation target changed from year to year, small differences in the neutron fluence
shape for low neutron energies could appear. Three different aspects of the neutron fluence have been
checked:

• The shape of the neutron fluence, as a function of the neutron energy, explained in section 3.7.1.

• Correction of the neutron fluence due to the dead material layers intercepting the neutron beam,
explained in section 3.7.2.

• The effect of the different samples positions in the neutron capture cross-section is discussed in
section 3.7.3.

3.7.1 The neutron fluence shape as a function of the neutron energy

The shape of the neutron fluence during the 2012 campaign has been determined from the counting rate
of the SiMon as a function of neutron energy, using the well-known 6Li(n,t)4He cross-section, and taking
into account that the detection efficiency does not vary for neutron energies below 1 keV [73]. For neutron
energies above this limit, the explicit knowledge of the SiMon detection efficiency as a function of the
neutron energy is required.

The calculated 2012 neutron fluence is compared with the values in the campaigns of 2009, 2010 and
2011 in Fig 3.57. The neutron fluence at low neutron energies is smaller compared with the previous years,
suggesting a higher amount of boron present in the moderator during the 2012 campaign.
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Figure 3.57: The Neutron fluence as a function of the neutron energy during the campaigns from 2009 to 2012.
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3.7.2 Fluence correction due to dead in-beam materials

The neutron fluence shown in the previous section is the neutron fluence at the entrance of the experimental
area. The fission chamber used in the experimental setup is composed of a large amount of material
intercepting the neutron beam: the kapton windows, aluminum backings of the 235U targets, the gas for
the operation of the FTMG detectors, the FTMG detectors themselves, etcetera. Thus, a small correction
of the neutron fluence is necessary. The correction has been obtained analytically, as is explained in the
appendix E, and verified by Monte Carlo simulations.

The correction calculated for both configurations in the neutron energy period from 0.1 to 104 eV is
shown in the left hand panel of Fig. 3.58: the 2FTMG and 10FTMG configurations are shown by the blue
and red lines respectively.
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Figure 3.58: Left: Neutron fluence attenuation due to the dead material present during the measurement for the
2FTMG and 10FTMG configurations, shown by blue and red line. Right: Demonstrates that increasing the 235U
total neutron cross section ten times has no effect on the shape of the neutron fluence.

For the neutron energy period of interest, from 0.2 to 200 eV there are no neutron resonance in the the
dead materials. The results from the configurations are summarized as:

• 2FTMG configuration: The net effect for this configuration is a global attenuation of the ∼0.6% in
the neutron energy range of interest. Non-appreciable differences in the neutron fluence shape are
observed, thus no correction is needed in the neutron energy shape.

• 10FTMG configuration: The attenuation in this case is ∼1.2%, due to the large amount of dead
material. In addition, it appreciably changes the shape of the incoming neutron fluence. Therefore,
a the correction due to the material must be applied.

In order to check the impact of total neutron cross section of the 235U in this calculation, the correction
factor for the neutron fluence has been recalculated by multiplying the 235U total cross-section by a factor
of ten. The results are shown in the right panel of Fig. 3.58. As can be observed that the 235U neutron
cross-section does not play a significant role in the correction of the neutron fluence.

3.7.3 Effect of the samples position

The 235U targets were situated at slightly different flight path. This could broaden the measured neutron
capture cross-section, since an event measured at the same time of flight in two different samples (i and j),
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could correspond with different neutron energies:

Ei
n(dTOF (i), tTOF ) 6= Ej

n(dTOF (j), tTOF ) (3.45)

The effect on the 235U(n,γ) cross-section has been calculated by comparing the cross-section and shifting
the flight path from the nominal position to first and last sample positions.
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Figure 3.59: Apparent 235U(n,γ) cross-section for the nominal as well as for the first and last position of the 235U
samples in the FTMG chamber. Left: from 11 eV to 13 eV. Right: from 150 to 175 eV.

As is shown in both panels of Fig. 3.59, this effect on the neutron energy period of interest is negligible,
from 0.2 eV to 200 eV. For higher neutron energies, the effect should be taken into account.
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3.8 The normalization

As was shown in the section 1.3, two different quantities can be determined from the simultaneous mea-
surement of the neutron capture and neutron induced fission cross-section. Depending on the quantity,
different normalizations are performed to the experimental data. Thus, different uncertainties due to the
normalization are obtained.

• The α(En) ratio: This quantity is determined experimentally using 1.17. This is an absolute mea-
surement of the ratio between the neutron capture and fission cross-section and no additional external
normalization is required. The normalization, Nα, is the ratio between the detection efficiencies:

Nα =
εf
εγ

(3.46)

Therefore, the uncertainty in the normalization of this quantity is the sum of the uncertainty of these
two parameters:

∆(Nα) = 2.95% (3.47)

where 1.7% is the uncertainty due to the TAC efficiency, εγ , and 1.25% the uncertainty due to the
fission detection efficiency, εf .

• The neutron capture cross-section, σγ(En): the normalization of the experimental neutron
capture cross-section data has been carried out relative to the well-known 235U(n,f) cross-section in
the neutron energy range which is almost cross-section standard. Thus, the neutron capture cross-
section is given, as was explained in the section 1.3, by Eq. 1.15 and 3.1, where NNorm includes the
normalization due to sample thickness and the absolute value of the neutron fluence. The methodology
applied almost removes any systematic uncertainty such as the target thickness and the absolute value
of the neutron fluence. As was explained in the section 1.3, the experimental neutron reaction yield
for any reaction channel x is experimentally determined by equation 1.15 and theoretically by 1.11.
Therefore:

∫ E2

E1

Yγ,thdEn
∫ E2

E1

Yf,thdEn

=

∫ E2

E1

σγ(En)
σT (En)

(
1− e−nsσT (En)

)
dEn

∫ E2

E1

σf (En)
σT (En)

(
1− e−nsσT (En)

)
dEn

(3.48)

The only difference between the numerator and the denominator of Eq. 3.48 are the capture and the
neutron-induced fission cross-sections, σγ(En) and σf (En). Therefore, this ratio has a small depen-
dency on the total neutron cross-section σT (En) and the target thickness, ns since both quantities
appear in the same way in the numerator and denominator. In the thin target approximation, which
is a very good approximation for this measurement, this quantity yields to:

∫ E2

E1

Yγ,thdEn
∫ E2

E1

Yf,thdEn

≈
∫ E2

E1

nsσγ(En)dEn
∫ E2

E1

nsσf (En)dEn

=

∫ E2

E1

σγ(En)dEn
∫ E2

E1

σf (En)dEn

(3.49)

In Eq. 3.49, the dependency with σT (En) and ns disappears. On the other hand:

∫ E2

E1

Yγ,expdEn
∫ E2

E1

Yf,expdEn

=

∫ E2

E1

Ctot,γ(En)−Cbkg(En)
εγ(En)φn(En)

dEn

∫ E2

E1

Cf (En)
εf (En)φn(En)

dEn

(3.50)
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In the Eq. 3.50 it is assumed that the background for the fission reaction channel is completely
removed. We consider that εf and εγ do not vary in the neutron energy range from E1 to E2. Hence,
these quantities are removed from the integral and Eq. 3.50 amounts to:

∫ E2

E1

Yγ,expdEn
∫ E2

E1

Yf,expdEn

≈ εf
εγ

∫ E2

E1

Ctot,γ(En)−Cbkg(En)
φn(En)

dEn

∫ E2

E1

Cf (En)
φn(En)

dEn

(3.51)

Eq. 3.51 explicitly shows that the reaction yields ratio does not depend on the absolute value of the
neutron fluence. The dependency with the neutron fluence shape is also very small if E1 and E2

are close because it appears in the numerator and denominator as a weighting function. Combining
Eq. 3.49 and 3.51 we obtain the normalization of the neutron capture cross section:

Nγ =

∫ E2

E1

σγ(En)dEn =

∫ E2

E1

σf (En)dEn
εf
εγ

∫ E2

E1

CT (En)−CB(En)
φN (En)

dEn

∫ E2

E1

Cf (En)
φN (En)

dEn

(3.52)

The integral value of the 235U neutron-induced fission cross-section is a well-known reference value
of the OCDE Nuclear Energy Agency (NEA) in the neutron energy range from E1=7.8 to E2=11.0
eV [9]. This integral value is known with an accuracy below 0.5%:

∫ E1=7.8eV

E2=11.0eV

σf (En)dEn = (246.4± 1.2)barns · eV (3.53)

Then, the normalization of the neutron capture cross-section is performed to this well-known 235U(n,f)
integral value. The uncertainty only depends on the the accuracy of the detection efficiencies and
the statistics achieved by the FTMG detectors. The methodology is equivalent to normalizing our
neutron-induced fission data to the well-known integral value. Therefore, the systematic uncertainty
associated with the normalization is:

∆(Nγ) = 3.35% (3.54)

where 1.7% is due to the uncertainty of εγ , 1.25% due to the uncertainty of εf and 0.4% due to the
statistics achieved by the FTMG detectors.

Note that εf and ε∗f are correlated, therefore producing larger systematic uncertainties. The systematic
uncertainty due to the determination of ε∗f will be treated in the section 4.2.
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3.9 The dead time corrections

One of the corrections which has to be applied to the experimental data in the procurement of the experi-
mental neutron capture cross-ction is related to the dead time in the TAC detection system, which begins
to be non-negligible for counting rates larger than several hundred events per ms. Notice that the entire
response of each BaF2 detector is digitized every 2 or 4 ns, and thus the detection system does not have a
dead time as it is usually defined. The dead time is defined here as the difficulty of resolving a signal pile-up.
Hence, the dead time of the detectors depends on the counting rate, the signal amplitude and the dedicated
pulse shape routine used for the reconstruction of the events from the digitized signals [34, 77, 89, 112]. In
the case of a pile-up event, the dedicated pulse shape routine has three possible outcomes:

• The signal pile-up is not resolved: The second signal is lost and the parameters of the first signal
determined by the pulse shape routine cannot be well estimated; i.e., wrong particle identification,
poor determination of the signal area (deposited energy),etcetera.

• The signal pile-up is not well-resolved: the individual signals are detected, but their parameters are
not determined: i.e., incorrect particle identification, poor determination of the signal area, etcetera.

• The signal pile-up is well-resolved: the individual signals are detected and the parameters obtained
from the dedicated pulse shape routine are well-determined.

In two of the three possible cases, the parameters reconstructed from the digitized signals are dis-
torted by the dead time effects, thereby distorting the detected deposited energy spectra and the detected
counting rate, complicating the background subtraction and the determination of the neutron capture
cross-section [34, 77, 89]. If the global reaction rate during the measurement is large enough, the TAC
can suffer from an additional problem - the summing effect: two or more γ-ray cascades could be detected
within the time window used for the BaF2 detector coincidence. Therefore the γ-ray signals of all the
detectors are detected as the same cascade, hence summing-up the deposited energy of the cascades and
the crystal multiplicity of all the detected cascades.

Hence, the dead time effects distort the total deposited energy and the crystal multiplicity detected by
the TAC. Fortunately, in the case of the 235U(n,γ) measurement, the counting rate of the individual BaF2

detectors were large enough to have pile effects, but small enough to avoid the summing. For the analysis
performed, the FTMG are considered free from dead time effects in the neutron energy region of interest,
since the average time between the next two signals was much greater when compared with the typical
signal width.

For a detailed discussion of the dead time effects in the TAC use the references [34, 77, 89, 112].

3.9.1 The dead time correction model

The dead time model used for the 235U(n,γ) measurement is based on the methodology described in [34, 89]
to correct the dead time effects in the TAC. The model maps the performance of the dedicated pulse shape
routine, reconstructing the parameters from the BaF2 signals at different counting rates. The model uses
digitized signals of different amplitude (deposited energy), Eγ , and the experimental raw digitized buffers to
provide two related probability distributions needed for the correction of the dead time effects as a function
of the neutron energy: the total detection probability, PEγ

(En), defined as the probability to detect a γ-ray
with energy Eγ ; and the detected energy probability, PEγ ,E′

γ
(En), defined as the probability of detecting

the incident γ-ray with a different energy E′

n.
For the calculation of these probability distributions, the BaF2 signals were grouped in different de-

posited energy intervals and amplitude intervals. The detection probability depends on the BaF2 signal
amplitude: this is lower for the small digitized signals and increases with the signal amplitude. Hence, the
width of these intervals was not regular, being narrow for the low amplitude signal intervals and large for
the intervals that enclose higher BaF2 signal amplitudes.
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More than 90% of the counting rate registered in the BaF2 detectors during the measurement of the
235U(n,γ) is the large background induced by the dead material intercepting the neutron beam, and not
from the (n,f) and (n,γ) reactions. Therefore, the dead time effects as a function of neutron energy
were characterized using the experimental BaF2 digitized buffers from the dedicated 2FTMG background
measurement. The procedure followed for the determination of the probability distributions is summarized
as follow:

• The BaF2 digitized buffers from the dedicated background measurement of the 2FTMG configuration
were read individually.

• These digitized raw buffers were analyzed by the dedicated pulse shape routine at low neutron energies,
from 0.2 to 1 eV. If the pulse shape routine detects a γ-ray signal with the amplitude in the deposited
energy interval of interest, then the signal is saved for the study of the routine performance. If there
is no signal in the amplitude region of interest, then the next pulse is analyzed.

• The digitized signal is copied into the digitized buffers at times corresponding to higher neutron
energies for its reconstruction by the dedicated pulse shape routine as shown in Fig. 3.60. In this
figure, the original buffer is shown as the solid blue-grey color, whereas the original digitized buffer
plus signal under study is shown as the solid red line.

• The composed signal buffers, original buffer + signal under analysis, were then analyzed by the
dedicated pulse shape routine. In Fig. 3.60, the black solid lines correspond to BaF2 signals identified
by the pulse shape routine,while the dotted green lines are the signals not detected by the pulse shape
routine. The correspondence of time-of-flight energies to each buffer and the signal energies obtained
by the routine are indicated on top of each panel.

• The detection probability functions PEγ
(En) and PEγ ,E′

γ
(En) were calculated from the analysis of

these composed digitized buffers. An example of the probability functions obtained for different
conditions is shown in Fig. 3.61.

The left panel shows the PEγ ,E′

γ
(En) obtained for signals of different amplitude at different positions

of the digitized buffer. In this, the ξ variable is defined by the relationship E′

γ=(1+ξ)Eγ and provides
information about the difference in deposited energy reconstructed for different neutron energies.
The right panel shows the total detection probability PEγ

(En) for different deposited energy signal
intervals at different neutron energies.

• The procedure is repeated for all the BaF2 detectors, thus obtaining the probability distributions as
a function of neutron energy for all deposited energy intervals and individual detectors.

As the counting rate increases, the detection probability decreases due to the signal pile-up as is shown
in the right panel of Fig. 3.61. Moreover, the deposited energy reconstructed from the detected signals
tends to be larger due to the pile-up as shown in the left hand panel of Fig. 3.61. This behavior changes
slightly, depending on the signal amplitude, as was explained previously For a further discussion of the
dead time effect as a function of the signal amplitude see references [34, 77].
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Figure 3.60: Detection of the same BaF2 digitized signal at four different places on the digitized buffers. The original
signal buffers are shown as the solid blue-grey color, whereas the original digitized buffer plus signal under study is
shown as the solid red line. The signals identified by the pulse shape analysis routine are shown with solid lines;
otherwise, the original pulse shape is indicated by a dotted green line. The correspondence of time-of-flight energies
and the signal energies obtained by the routine are indicated at the top of each panel.

Once the probability functions that map the performance of the routine are built, the dead time model
reconstructs the efficiency as follows:

• Given a distribution of γ-ray cascades which is not affected by dead time effects, i.e. the Monte
Carlo 235U(n,γ) cascades or the tagged prompt fission γ-rays cascades at low neutron energy, these
are translated to high neutron energies by applying the dead time effects.

• The dead time effects are applied to the individual γ-rays of the cascades, distorting them by Monte
Carlo methods following the probability distributions PEγ

(En) and PEγ ,E′

γ
(En).

• The TAC events are then reconstructed from these built γ-ray distributions, producing a distorting
signature in the TAC.

• Applying the desired analysis conditions to the TAC, Esum and mcr, the dead time correction is
obtained by the comparison of the efficiency calculated at low neutron energies, where the dead time
corrections are not needed, and the distorted one.
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Figure 3.61: In the left hand panel,PEγ ,E′

γ
(En) obtained for different deposited energies in the BaF2 crystals at

different neutron energies. The ξ variable is defined from the relationship E′

γ=(1+ξ)Eγ , where Eγ is the real energy
of the γ-ray and E′

γ the energy reconstructed from the routine. In the right panel, PEγ (En) for different deposited
energy signal intervals at different neutron energies.

3.9.2 Validation of the dead time model with the prompt-fission γ-ray cascades

The validation of the dead time model applied to the BaF2 signals has been performed using the tagged
prompt fission γ-ray cascades. Since these cascades do not change for any physical reason in the neutron
energy period of interest, their distortion as a function of neutron energy is due to the dead time effects in
the TAC. For this reason, these γ-ray cascades are a perfect candidate for testing the dead time corrections.
The validation has focused on three different aspects of these γ-ray distributions: the individual energy
deposition of the γ-rays in the BaF2 crystals; the summed signature of the prompt fission γ-rays in the
TAC; and the ratio between the tagged fission counts and the total fission counts detected in the FTMG
as a function of neutron energy.

Prompt fission γ-ray deposited energy for the BaF2detectors

The individual prompt fission γ-ray distribution for different neutron energy intervals is shown in Fig. 3.62.
The solid black line shows the distribution for low neutron energies, from 0.2 to 1 eV, where the counting
rate is low. The solid red line is the tagged prompt fission γ-ray distribution for higher neutron energies,
from 100 to 150 eV. From the low neutron energy distribution, a distorted one has been reconstructed
applying the dead time probability functions mapped for the neutron energy from 100 to 150 eV. This is
shown as the solid blue line. A high level of agreement is obtained by comparing the distorted with the
experimental distribution obtained by the fission tagging procedure for neutron energies from 100 to 150
eV.
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Figure 3.62: Comparison between the deposited energy of the individual tagged prompt fission γ-rays for different
neutron energy intervals and the corrected one. The distribution measured at the low neutron energies, from 0.2 to
1.0 eV, is shown as a black solid line. The distribution measured at high neutron energies, from 100 eV to 200 eV,
is shown as a solid red line and the blue solid line plots the reconstructed γ-ray distribution applying the dead time
corrections to the low neutron energy distribution.

Prompt fission γ-ray deposited energy signature detected by the TAC

The dead time corrections have been validated for the TAC events using the prompt fission γ-ray deposited
energy signature for different crystal multiplicity as is shown in Fig. 3.63. The left panel shows the prompt
fission signature for different crystal multiplicities in two different situations: at low neutron energies, from
0.2 to 1 eV, where the dead time effects are negligible, shown as colored solid lines, and at high neutron
energies, from 100 to 200 eV, where the dead time effects have an appreciable impact on the γ-ray cascades,
shown as dashed black lines. The right panel of the same figure is shows the high level of agreement obtained
between the experimental and the corrected γ-ray distributions at high neutron energy.
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Figure 3.63: In the left hand panel, the deposited energy signatures of prompt tagged fission events for different crystal
multiplicities measured at low neutron energies (solid colored lines) and high neutron energies (dashed black lines).
In the right panel are the same deposited energy signatures but applying the dead time effects to the experimental
data at low neutron energies.
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Figure 3.64: Ratio between the tagged counts detected in the TAC and the fission counts detected in the FTMG as
a function of the neutron energy for different analysis conditions in the TAC. The red line is the experimental data
and the blue line is the expected one from the dead time model.

Another aspect of the dead time corrections that have been validated is the ratio between the tagged
fission counts detected by the TAC and the total number of fission events detected by the FTMG. Because
the FTMG are considered free of dead time effects, the ratio between these two quantities offers information
about the dead time effects for different cuts applied to the TAC as a function of neutron energy.

Two examples are shown in both panels of Fig. 3.65. The red lines are the experimental ratio between
the number of tagged prompt fission γ-ray cascades for a given analysis cut and the total fission detected
by the FTMG as a function of neutron energy. The blue line is the same ratio, calculated using the prompt
fission γ-ray distribution obtained at low neutron energy, and applying the dead time corrections. As is
shown, a high level of agreement is obtained for both cases in Fig. 3.65.
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By these three checks, it can be concluded that the dead time model developed corrects in a very precise
way the three different fundamental aspects:

• The individual deposited energy detected by the individual BaF2 crystals.

• The deposited energy detected by the TAC for different crystal multiplicity and deposited energy.

• The behavior of the dead time effects as a function of neutron energy.

3.9.3 Dead time corrections for the 235U(n,γ) cascades
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Figure 3.65: Reduction of the detection probability for the 235U(n,γ) cascades as a function of neutron energy, from
0.2 to 200 eV.

The dead time corrections for the 235U(n,γ) cascades, as a function of neutron energy, are then calculated
by the above methodology. Hence, the efficiency for 235U(n,γ) cascade has been calculated for a specific
analysis conditions applied to the TAC.

Fig. 3.65 shows the dead time correction as a function of neutron energy for three different conditions
applied to the TAC events. The more restrictive the conditions applied are, the greater are the dead time
corrections, reaching more than 20% at 200 eV.

The dead time correction applied to the 235U(n,γ) data introduces a systematic uncertainty that must
be considered. In order to estimate the related systematic uncertainty, the experimental 235U neutron
capture cross-section has been determined for different cuts in mcr and Esum. As we are finding compatible
results in all neutron resonances.The systematic uncertainty due to the dead time corrections, is estimated
to 0.8% corresponding to the standard deviation of the different capture cross sections in the individual
resonances obtained with different cuts. This small systematic uncertainty source could be neglected in the
determination of the neutron capture cross-section.
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Chapter 4

The experimental 235U(n,γ)
cross-section

This chapter is devoted to the results of the experimental 235U(n,γ) cross-section obtained from the analysis
outlined in chapter 3. The chapter is organized as follows:

• Section 4.1 the choice of the analysis conditions for the calculation of 235U(n,γ) cross-section is
described.

• Section 4.2 the estimated systematic uncertainties are presented.

• Section 4.3 shows the comparison of the experimental 235U(n,γ) cross-section obtained in the different
experimental configurations.

• Section 4.4 gives the results in this work, including the comparison with evaluated libraries and
previous measurements.

• The section 4.5 presents the ENDF/B-VIII.0 (Beta-II) neutron library for the 235U isotope released
from the CIELO pilot project [12] after the incorporation this work.

4.1 Analysis conditions for the 235U(n,γ) cross-section

In order to improve the 235U(n,γ) signal-to-background ratio, specific conditions were applied to the TAC
events. The more restrictive the conditions are the better is the ratio, but the TAC detection efficiency is
lower, thus compromising the statistics achieved and increasing the sensitivity of the 235U(n,γ) cross-section
to the background subtraction and corrections applied.

In Fig. 4.1 the signature of the different components detected by the TAC is shown. In the left hand
panel the mcr distributions are shown: the background events related to the dead material intercepting
the neutron beam and the no-beam background is indicated by the blue line; the tagged prompt fission
background is indicated by the red line; and the 235U(n,γ) events obtained from the Monte Carlo simulations
are shown as the green line. In the right hand panel the deposited energy signature for these components
is given: the deposited energy by the 235U(n,γ) reactions is shown by the pink line; the tagged prompt
fission is indicated by the red line; the background due to the dead material intercepting the neutron
beam is shown by the blue line; and the no-beam background is indicated by the green line. Therefore,
paying attention to the distributions of the different components, the conditions that improve the signal to
background ratio are chosen as follows:
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Figure 4.1: In the left hand panel, mcr distribution for Esum >2.2 MeV of the different components detected by the
TAC. In the right hand panel, Esum distribution is shown for the deposited energy signature of these components
for mcr >2 at low neutron energies.

• Conditions applied to mcr: The non-related background events of the prompt fission component
are strongly suppressed for mcr >2-3. In addition, due to the mcr signature of the (n,γ) and (n,f)
events, the prompt fission background is strongly suppressed, removing the events with mcr >5. Thus,
the best conditions in crystal multiplicity are: 2<mcr <6 and/or 3<mcr <6.

• Conditions applied to Esum: Background events non-related to the prompt fission component are
strongly suppressed for Esum >2.5 MeV. In addition, as is shown in the right hand panel of Fig. 4.1
the deposited energy of the 235U(n,γ) reactions is not detected above 7.0 MeV. Thus, the signal-
to-background ratio is improved, excluding the events with Esum >6.5-7.0 MeV. Therefore, the best
conditions for the signal to background ratio in Esum are 2.5<Esum <6.5 MeV and/or 2.5<Esum <7.0.

We have finally selected the following conditions of the TAC events: 2.5<Esum <7.0 and 2<mcr <6,
because they are a satisfactory compromise between the TAC detection efficiency and the improvement of
the signal-to-background ratio. Fig. 4.2 shows the experimental 235U neutron capture cross-section obtained
by applying the best conditions, including all subtracted components.
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Figure 4.2: 235U(n,γ) cross-section from 0.2 to 200 eV for the specific conditions: 2.5<Esum <7.0 and 2<mcr <6.
The subtracted background components are shown as well.

4.2 Systematic uncertainties

Fig. 4.3 shows the different uncertainty sources considered for the 235U(n,γ), integrated in the neutron
resonances for the different neutron energy intervals.

The uncertainty sources are separated as follow:

• The TAC detection efficiency, εγ : as was explained in the section 3.6, the systematic uncertainty
in this parameter is:

∆(εγ) = 1.7% (4.1)

Thus, propagated in the 235U(n,γ) cross-section this produces an uncertainty of 1.7% for the entire
neutron energy range as is indicated by the green line in Fig.4.3.

• The Fission detection efficiency and the fission tagging detection efficiency, εf and ε∗f :
The systematic uncertainty in both parameters has been propagated in the neutron capture cross-
section. the integrated uncertainty along the different neutron energy intervals is shown by the red
ine in Fig. 4.3. The uncertainty for the individual resonances is shown by the red lines in the bottom
panels of Fig. 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10.

• The correction applied to the beam background: The uncertainty of this correction, explained
in section 3.4.2, was propagated in the neutron capture cross-section and is shown by the blue line
in Fig. 4.3. The uncertainty for the individual resonances is shown by the blue lines in the bottom
panels of Fig. 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10.
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Figure 4.3: Systematic uncertainty sources for the different neutron energy intervals. The black line represents the
total uncertainty, calculated as the linear sum of statistical and systematic components.

• Normalization uncertainty: Due to the normalization explained in section 3.8, an additional 0.4%
of systematic uncertainty must be added along the entire neutron energy range due to the statistics
achieved by the FTMG detectors as shown by the light blue line in Fig. 4.3.

• The pile-up corrections: The small uncertainty due to pile-up corrections, for the conditions used
for the calculation of the 235U(n,γ) cross-section, has been considered neglected.

• The subtraction of the prompt fission neutrons. The uncertainty in the determination of
the background induced by the prompt fission neutrons has been considered low enough to be ex-
cluded from the calculation. Even if we consider an uncertainty of 20% in the determination of this
component, the contribution to the total systematic uncertainty is very low (1.0%).

In addition, Fig. 4.3 shows the statistical and systematic uncertainties integrated over the cross-section
resonances for the different neutron energy intervals (pink line) and the total uncertainty (black line),
calculated as the linear sum of the systematic and statistical components.
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4.3 Comparison between the results obtained with the 2FTMG
and the 10FTMG configurations

The 235U(n,γ) cross-section obtained for the different experimental configurations has been compared at at
the example of the large resonances at 6.38 and 8.69 eV. The background due to dead material intercepting
the neutron beam for the 10FTMG experimental configuration is much larger when compared to the
2FTMG configuration. For this reason, the data of the 2FTMG experimental configuration was used for
the calculation of the 235U(n,γ) cross-section. However, the comparison is necessary for two reasons:

• Validation of the prompt fission background subtraction: For the 10FTMG, εf is much larger
when compared to the 2FTMG. Thus, for the 10FTMG the prompt fission background subtraction is
more accurate. The comparison permits us to validate the reliable subtraction of the prompt fission
background for the 2FTMG experimental configuration.

• Validation of the normalization performed: The compatibility of the experimental 235U(n,γ)
cross-section for both configurations also validates the normalization of the experimental data to the
well-known 235U(n,f) cross-section.
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Figure 4.4: Comparison between the 235U(n,γ) cross-section obtained from 2FTMG and the 10FTMG configurations
in the largest neutron resonances at low neutron energy: in the left hand panel, for the neutron energy range from
6.1 and 6.6 eV; in the right hand panel for the neutron energy range from 8.2 eV to 9.5 eV.

The 235U(n,γ) cross-sections obtained for both experimental configurations are shown in Fig. 4.4: the
2FTMG configuration data are given by the red points and the 10FTMG data by the blue points. The left
hand panel shows the results for the neutron energy period from 6.1 to 6.6 eV and the right hand panel for
the neutron energy range from 8.2 eV to 9.5 eV. The residuals between the two configurations, computed
as y1-y2/

√
σ2
1 + σ2

2 , are shown in the respective bottom panels. In terms of absolute value, the 235U(n,γ)
cross-sections obtained with both configurations are compatible within 2%.

Therefore, this calculation validates the prompt fission background subtraction and the normalization
performed to the experimental 235U(n,γ) cross-section calculated with the 2FTMG experimental configu-
ration.
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4.4 Results and comparison with evaluations and other experi-
mental data

As was explained in section 3.4.2, the correction applied to the beam background introduces large systematic
uncertainties in the experimental 235U(n,γ) cross-section integrated over large neutron energy intervals,
specifically due to the valleys of the neutron resonances. For this reason, the comparison of the experimental
235U(n,γ) cross-section with the evaluations and other measurements has been performed in specifc energy
intervals. This section is organized as follows:

• Subsection 4.4.1 shows the comparison with the evaluated libraries ENDF/B-VII.1 [9], JENDL-
4.0a [10], JEFF-3.2 [11] and the ENDF/B-VIII.0 (Beta-I) [12].

• Subsection 4.4.2 shows the comparison with other experimental data sets.

4.4.1 Comparison with the evaluated libraries

The obtained 235U(n,γ) cross-section has been compared with the evaluations ENDF/B-VII.1 1 and the
ENDF/B-VIII.0 (Beta-I) released by the IAEA CIELO pilot project [12, 31]. For the comparison, the
resonance parameters of the different evaluations were processed with SAMMY8 code [113] the Doppler
broadening and resolution function of the n TOF facility properly into account [63, 64, 65].

The comparison, for the different neutron energy intervals is shown in Figs. 4.5, 4.6, 4.7, 4.8, 4.9
and 4.10. The top panel shows the point-wise 235U(n,γ) cross-section as a function of neutron energy. The
data obtained from this work are represented by the blue points; ENDF/B-VII.1 is shown by the red line;
and ENDF/B-VIII.0 (Beta-I) is shown by the green line. The ratio between the experimental 235U(n,γ)
resonance integrals and the ENDF/B-VII.1 in red, including the largest sources of systematic uncertainties.
The uncertainty due to εf and ε∗f is shown in red, and the uncertainty due to background correction is
shown in blue. The statistical uncertainty is shown by the black points.

Figure Neutron energy period I(σγ(En))/I(ENDF/B-VII.1) Sys. uncertainty (%)
4.5 0.2 – 2.2 1.03±0.01 5.1
4.6 2.2 – 20.0 1.088±0.004 4.2
4.7 20.0 – 40.0 1.072±0.007 5.3
4.8 40.0 – 60.0 1.10±0.01 6.1
4.9 60.0 – 100.0 1.09±0.02 6.8
4.10 100.0 – 200.0 1.06±0.02 7.4

Table 4.1: Ratio between the integral of the resonances from this work and ENDF/B-VII.1 for the different neutron
energy intervals.

The integral of the neutron resonances has been computed and compared with the ENDF/B-VII.1 data
for the different neutron energy intervals as shown in the table. 4.1.

The data obtained from this work is, in general, greater than the ENDF/B-VII.1 values, but compatible
within the quoted uncertainties.

1The evaluated libraries ENDF/B-VII.1, JEFF-3.2 and JENDL-4.0a have the same resonance parameters for the resolved
resonance region. Hence, the 235U(n,γ) cross-section is equally described by all the evaluated libraries.
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Figure 4.5: In the upper panel, the experimental 235U(n,γ) cross-section compared with ENDF/B-VII.1, JEFF-3.2,
JENDL-4.0a and the ENDF/B-VIII.0 (Beta) in the neutron energy range from 0.2 to 2.2 eV. In the lower panel,
ratio of the experimental cross-section resonance integrals compared to the evaluated data.
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Figure 4.6: In the upper panel, the experimental 235U(n,γ) cross-section compared with ENDF/B-VII.1, JEFF-3.2,
JENDL-4.0a and the ENDF/B-VIII.0 (Beta) in the neutron energy range from 2.2 to 20.0 eV. In the lower panel,
ratio of the experimental cross-section resonance integrals compared to the evaluated data.
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Figure 4.7: In the upper panel, the experimental 235U(n,γ) cross-section compared with ENDF/B-VII.1, JEFF-3.2,
JENDL-4.0a and the ENDF/B-VIII.0 (Beta) in the neutron energy range from 20.0 to 40.0 eV. In the lower panel,
ratio of the experimental cross-section resonance integrals compared to the evaluated data.
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Figure 4.8: In the upper panel, the experimental 235U(n,γ) cross-section compared with ENDF/B-VII.1, JEFF-3.2,
JENDL-4.0a and the ENDF/B-VIII.0 (Beta) in the neutron energy range from 40.0 to 60.0 eV. In the lower panel,
ratio of the experimental cross-section resonance integrals compared to the evaluated data.
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Figure 4.9: In the upper panel, the experimental 235U(n,γ) cross-section compared with ENDF/B-VII.1, JEFF-3.2,
JENDL-4.0a and the ENDF/B-VIII.0 (Beta) in the neutron energy range from 60.0 to 100.0 eV. In the lower panel,
ratio of the experimental cross-section resonance integrals compared to the evaluated data.
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Figure 4.10: In the upper panel, the experimental 235U(n,γ) cross-section compared with ENDF/B-VII.1, JEFF-3.2,
JENDL-4.0a and the ENDF/B-VIII.0 (Beta) in the neutron energy range from 100.0 to 200.0 eV. In the lower
panel, ratio of the experimental cross-section resonance integrals compared to the evaluated data.
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4.4.2 Comparison with previous measurements

The obtained experimental 235U(n,γ) cross-sections and α have been compared with all the previous mea-
surements overlapping within the neutron energy range. These experimental data sets, retrieved from the
EXFOR database [24], are listed in table 4.2.

Quantity measured Author Year Neutron energy range (eV) Reference
η(En) H. Palevsky et al. 1956 0.01 - 0.9 [13]
η(En) J. R. Smith et al. 1957 0.1 - 9.0 [14]
σγ(En) G. de Saussure et al. 1966 0.4 - 62.0 [15]∫
σγ(En) G. de Saussure et al. 1966 10.0- 1800.0 [15]
η(En F.D. Brooks et al. 1966 0.9 - 200 [16]∫
σγ(En) F.D. Brooks et al. 1966 10 - 200 [16]
σγ(En) R.B. Perez et al. 1973 8.0 - 200.0 [17]∫
σγ(En) G.V. Muradyan et al. 1977 100 - 20000 [18]

αR(En) G.V. Muradyan et al. 1985 2.0 - 32.0 [19]
η(En) H. Weigmann et al. 1990 0.001 0.4 [20]
σγ(En) M. Jandel et al. 2012 4.0 - 8·106 [32]
σγ(En) C. Guerrero et al. 2012 - [23]

Table 4.2: List of 235U(n,γ) cross-section measurements retrieved from the EXFOR database [24] overlapping within
the neutron energy interval in this work.

There are three different techniques for the determination of the 235U(n,γ) cross-section:

• The reactivity measurements (H.Palevsky [13], J. R. Smith [14], F.D.Brooks [16] and H.Weigmann [20]):
The quantity measured is the reproduction factor, η(En), defined as the ratio between the number of
neutrons produced by the fission reactions divided by the total number of neutrons absorbed by the
sample. That is:

η(En) =
ν̄σf (En)

σf (En) + σγ(En)
(4.2)

where ν̄ is the average number of neutrons emitted per fission and σf (En), σγ(En) are the neutron-
induced fission and the capture cross-section respectively. The alpha ratio, α(En), is easily derived
from this parameter:

α(En) =
σγ(En)

σf (En)
=

ν̄

η(En)
− 1 (4.3)

• The simultaneous measurement of capture and fission cross-section (G. de Saussure [15], R.B. Perez [17],
M. Jandel [32], C. Guerrero [23] and this work): Despite the wide variety of scintillation detectors and
fission chambers used for this technique, all measurements are based on an accurate subtraction of
the prompt fission background using the coincidences between the fission and γ-ray detection system.

• The multiplicity spectrometry technique, developed by G. V. Muradyan [19, 21]: This technique is
based on the physical properties of the γ-ray cascades of the (n,f) and (n,γ) reactions. Due to the
high efficiency and the different γ-ray multiplicity signature of the (n,f) and (n,γ) events observed
by a high efficiency segmented detector, the neutron capture events are efficiently discriminated from
fission and other background events [19]. Hence, α(En) is determined from the ratio between the
(n,γ) and (n,f) events registered by the same detector.
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The present 235U(n,γ) cross-section obtained is compared with the results of measurements using the
same technique [15, 17, 32] in Fig. 4.14 and Fig. 4.12. The left hand panel shows the point-wise experimental
235U(n,γ) cross-section with the rest of the measurements and ENDF/B-VII.1 and the right hand panel
presents the resonance integral for different neutron energy intervals.

The resonance integrals were computed in the neutron energy intervals shown in table 4.4 and 4.5.
The left panel of Fig. 4.13 shows the differences between resonance integrals for these measurements and
this work. On average, the data of M. Jandel et al. and G. de Saussure et al. are 6% lower than the
experimental 235U(n,γ) cross- section from this work. The R.B.Perez et al. data is a 2% larger. The right
panel of Fig. 4.13 shows the differences as functions of neutron energy.

Despite the different data sets being measured independently, they were not normalized. The G. de
Saussure [15] experimental data was normalized to the 235U(n,γ) cross-section estimated by F.J Shore and
V.L Sailor (1958) [22] at low neutron energies, from 0.45 eV to 1.0 eV. This normalization was preferred to
their own in order to reduce the systematic uncertainty [15]. In the case of the R.B. Perez et al. data set [17],
the neutron capture cross-section was normalized to the evaluated ENDF/B-V data in the neutron energy
range from 100 to 200 eV, derived from the experimental data of G. de Saussure [15]. The M. Jandel
et al. experimental data set [32] was normalized to the integral value of the ENDF/B-VII.1 235U(n,γ)
cross-section in the neutron energy range from 45 to 100 eV. The values used for the normalization of each
individual experimental data set are shown in the table 4.3.

Exp. data set Normalization (barns·eV)
G.de Saussure et al. [15]

∫ 1eV

0.4eV
σγ(En)dEn=53.02

R.B.Perez et al. [17]
∫ 200eV

100eV
σγ(En)dEn=1145

M.Jandel et al. [32]
∫ 100eV

45eV
σγ(En)dEn=837.8

This work
∫ 11.0eV

7.4eV
σf (En)dEn=246±1

Table 4.3: Normalization for the different experimental data sets used for the comparison with the 235U(n,γ) cross-
section from this work.

Fig. 4.14 shows the α-ratio obtained from this work compared with the experimental data from Brooks [16],
Muradyan [19, 21], Weigmann [20] and the α-ratio from the ENDF/B-VVI.1 library. The α-ratio obtained
in this work is compatible with these measurements.
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Figure 4.11: The left hand panel shows the n TOF 235U(n,γ) cross-section compared with the experimental data
from G. De Saussure [15], R. B. Perez [17] and M. Jandel [32] for the neutron energy intervals 0.2–2.2, 2.2–20
and 20.0–40.0 eV. The right hand panel shows the integral resonance integrals obtained for the same neutron energy
intervals.
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Figure 4.12: The left hand panel shows the n TOF 235U(n,γ) cross-section compared with the experimental data from
G. De Saussure [15], R. B. Perez [17] and M. Jandel [32] for the neutron energy intervals 40.0–60.0, 60.0–100.0
and 100.0–200.0 eV. The right panel shows the resonance integrals obtained for the same neutron energy intervals.
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Figure 4.13: The left panel presents differences obtained in the neutron resonance integrals between this work and
the different experimental data sets as indicated. The data of G. de Saussure et al. [15], the differences are shown
by the green line. and red lines refer to the data of R.B. Perez et al. [17] and M. Jandel et al. [32].
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En (eV) This work M. Jandel [32] R.B. Perez [17] G. de Saussure [15]
0.2–0.4 7.54±0.11 - - -
0.9–1.6 8.79±0.21 - - 7.63
1.8–2.23 7.03±0.16 - - 6.4
2.91–4.1 16.4±0.3 - - 14.5
4.76–5.22 23.18±0.25 19.7±0.5 - 20.6
5.81–6.8 73.3±0.5 66.5±0.9 - 71.1
6.8–7.5 21.7±0.4 21.0±0.5 - 20.4
8.05–9.59 81±1 82.7±0.7 75.1 75.7
9.92–10.43 5.2±0.3 5.80±0.17 6.6 4.8
11.14–11.99 91.6±0.6 79.5±0.9 93.1 89.1
11.99–12.75 117.9±0.9 117±1 114.0 111.5
14.26–14.8 11.1±0.4 12±0.3 11.7 10.5
15.11–15.74 14.9±0.5 14.5±0.3 15.5 14.1
15.74–16.38 29.1±0.5 26.2±0.5 32.0 29.5
16.38–16.99 8.8±0.5 9.2±0.3 9.00 8.3
17.6–18.38 10.6±0.6 11.3±0.3 10.5 9.4
18.7–19.95 129±1 124±1 121 118
20.36–20.79 10.3±0.4 13.3±0.3 9.6 10.5
20.79–21.4 78.0±0.9 65.3±0.9 79.9 72.0
22.57–23.13 19.0±0.6 18.5±0.4 17.9 18.0
23.13–23.91 64±1 54.6±0.8 64 60
23.912–24.59 18.4±0.7 18.6±0.5 18.2 16.5
26.24–26.7 5.77±0.7 5.9±0.3 4.8 4.6
27.42–28.12 14.7±0.9 14.4±0.5 14.5 10.5
28.12–28.58 4.8±0.5 3.62±0.22 4.8 3.8
29.31–29.96 7.5±0.6 5.69±0.27 8.6 7.2
30.3–31.23 27.5±0.9 24.2±0.6 28.0 26.2

31.61–32.515 46±1 43.9±0.9 43 42.1
33–33.93 66±1 64±1 67 64

33.93–35.83 159±2 150±2 149 146
38.63–40.08 53±1 47.9±0.8 51 49
41.27–42.41 53±1 50.6±0.9 54 51
42.41–43 13.9±0.6 12.2±0.4 14.0 12.4
43–43.74 22.3±0.8 16.1±0.5 23.1 20.7

44.26–45.06 11±1 9.6±0.4 9.8 9.6
46.24–47.41 21±1 19.4±0.6 18 19.0
47.41–49.75 71±2 61±1 70 66.5
49.75–50.767 27±1 31.8±0.7 27 26.2
50.767–51.94 45±2 41±1 42 41.6
54.435–57.14 125±3 118±2 116 115
57.14–59.29 46±2 46±1 42 40

Table 4.4: Resonance integrals for the different experimental data sets with the statistical uncertainties only.
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En (eV) This work M. Jandel [32] R.B. Perez [17] G. de Saussure [15]
63.55–64.75 33±1 31±1 34 -
65.17–66.81 15±1 11.0±0.5 17 -
69.65–71.47 31±2 33±1.0 29 -
71.47–73 22±2 19.1±0.8 18 -
73.8–75.14 30±2 26.9±0.9 32 -
75.14–76.09 8±1 9.23±0.6 6 -
76.8–78.76 15±2 17.4±0.7 17 -
78.76–81.82 22±2 22.1±0.8 21 -
81.82–83.09 30±1 27.6±0.9 30 -
89.4–90.93 85±2 60±2 91 -

91.598–93.223 36±2 40±1 351 -
93.223–95.17 64±2 52±1 73 -
102.176–104.26 37±3 33±1 37 -
106.647–110.573 97±3 105±2 110 -
158.4–162.046 63±3 57±2 68 -
176.2–181.176 100±5 100±3 107 -
181.176–183.02 17±2 16±1 19 -
187.9–193.21 71±4 58±2 75 -

Table 4.5: Resonance integrals for the different experimental data sets with the statistical uncertainties only.
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Figure 4.14: αR as a function of neutron energy, compared with the data retrieved from [16, 19, 20, 21] for different
neutron energy intervals.
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4.5 The ENDF/B-VIII.0 evaluated library

The present experimental 235U(n,γ) cross-section was deployed to the IAEA CIELO project [12, 31] for
evaluation together with all the experimental datasets available up to this moment. From this new evalu-
ation, ENDF/B-VIII.0, a new neutron data library for 235U isotope was produced. The library includes a
new set of standard values for 235U at the thermal point shown in the table 4.6.

Quantity ENDF/B-VII.1 ENDF/B-VIII.0 (Beta-II) ∆ (%)
σel (En=0.025 eV) 15.46±1.06 (barns) 14.09±0.22 (barns) - 8.0
σf (En=0.025 eV) 584.25±1.11 (barns) 587.2±1.4 (barns) + 0.5
σγ (En=0.025 eV) 98.96±0.74 (barns) 99.3±2.0 (barns) + 0.3
ν (En=0.025 eV) 2.4355±0.0023 2.4250±.0045 + 0.4

Table 4.6: Values of the elastic, fission and capture cross-sections and ν̄ at the thermal point taken from the
ENDF/B-VII.1 and ENDF/B-VIII.0 (Beta-II) evaluated libraries.

All the updated standard values are statistically compatible (within 1 or 2 σ) with the values from the
previous ENDF/B-VII.1 library. The elastic cross-section has been decreased 8%, and the neutron induced
fission and capture cross-sections have been increased 0.5% and 0.3%, respectively. In addition, the ν̄ value
has been increased to 0.4%.
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Figure 4.15: 235U(n,γ) cross-section from ENDF/B-VII.1 and ENDF/B-VIII.0 (Beta-II) and the n TOF data for
the neutron energy range from 0.2 to 200 eV.

Concerning the resolved resonance region, which in the case of the 235U isotope covers the neutron
energy range from the thermal point up to 2.2 keV, we separate the results into two regions:

• Neutron energies from 0.2 to 200 eV: In the neutron energy range from 0.2 up to 100 eV, the
evaluated 235U(n,γ) cross-section has been increased by 5% on average shown in the left panel of
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Fig. 4.16 in agreement with our experimental cross-section. In the neutron energy interval from 100
to 200 eV, the evaluation have lowered the neutron capture cross-section to 2%, again our data is
fully compatible for this energy interval. The evaluations and the present experimental data for this
neutron energy range is shown in Fig. 4.15.

• Neutron energy region from 200 eV to 2.2 keV: For neutron energies above 200 eV, the new
evaluation has decreased the 235U(n,γ) cross-section by about -30% in the keV region, in agreement
with the fast criticality experiments performed by the Japanese Nuclear Agency [29] and the exper-
imental data from the DANCE experiment at Los Alamos [32]. The difference between evaluated
libraries is shown in the right hand panel of Fig. 4.16.
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Figure 4.16: In the left panel is the ratio between the ENDF/B-VIII.0 (Beta-II) and ENDF/B-VII.1 for neutron
intervals from 0.2 to 200 eV. In the right panel are the differences (in percent) in the remaining resolved resonance
region from from 0.2 up to 2.2 keV.

The contribution of the n TOF data to the new evaluation fulfills the main goal of this measurement: the
dataset has been included in the evaluation of this important isotope, producing new resonance parameters
that described the neutron capture cross-section in agreement with our experimental data, thus contributing
to the design of new nuclear power reactor plants with improved levels of performance and efficiency.
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Chapter 5

Summary, conclusions and future
work

This manuscript describes the analysis of the measurement of the 235U(n,γ) cross section at the CERN
n TOF facility in 2012. The aim of this measurement was the validation of the fission tagging technique
using the n TOF experimental setup as task 8.2 of the CHANDA project [114] and to provide to the nuclear
data community a set of accurate experimental data with a realistic values of the systematic uncertainties
associated to the technique. This last issue is crucial for the work of the evaluators that combine the
available measurements by weighting each of them by their reliability and accuracy.

The work presented in this manuscript is restricted to the analysis and data reduction performed to the
experimental data, focused on the complementary methodologies for the fission tagging technique [15, 17,
23, 32].

5.1 Analysis and data reduction

The neutron capture cross-section, σγ(En), is usually measured by detecting γ-ray cascades after the
formation of the compound nucleus. For the fissile nucleus the probability of a neutron producing a fission
reaction is, on average, greater than that of producing a neutron capture reaction. Moreover, since the
resonances are the excited levels of the compound nucleus, both cross-sections have the same resonant
structure as a function of neutron energy. In addition, the amount of γ-rays emitted in a fission reaction is
larger than in a (n,γ) reaction. Thus, measuring (n,γ) reactions in fissile isotopes is challenging due to the
fact that it competes with the strongest fission reaction channel.

To accomplish the subtraction of the prompt fission background for the measurement of the 235U(n,γ)
cross-section, the fission tagging technique [15, 17, 23, 32] has been used. The main idea of the technique is
to measure simultaneously the fission and capture reaction channels by means of fission and electromagnetic
detectors respectively. By evaluating the time coincidence between both detection systems, the fission γ-ray
cascades can be tagged. There are some difficulties inherent to the technique:

• The large amount of dead material intercepting the neutron beam: the fission tagging detectors,
together with all the components of the fission chamber implies that this material is producing a
large background in the γ-ray detector.

• The systematic uncertainties associated with the detection efficiencies: these parameters, critical for
the determination of the 235U(n,γ) cross-section, must be carefully determined.
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• The low counting statistics: In order to achieve a high efficiency in detecting fission fragments in
the fission detectors, very thin targets with low mass have to be used. Therefore, the capture to
background ratio will be lower compared to the thicker samples that are normally used in capture
experiments, thus requiring longer measurement times.

The methodology requires:(i) high efficiency γ-ray detectors for (n,γ) cascades such as the segmented
n TOF Total Absorption Calorimeter (TAC) [58]; (i) high efficiency fission detectors for the (n,f) events, of
low mass and sufficiently compact to fit into the experimental setup, such as Fission Tagging Micromegas
detectors [59]. In the thin target approximation, the neutron capture cross-section is obtained as (see
section 1.3)

σγ(En) =
1

Nnorm

ctot(En;Esum,mcr)− cFiss(En;Esum,mcr)− cOther(En;Esum,mcr)

εγ(En, Esum,mcr)φn(En)
(5.1)

where ctot(En;Esum,mcr) is the total counting rate of the Total Absorption Calorimeter, cFiss(En;Esum,mcr)
is the prompt fission background, cOther(En;Esum,mcr) is the rest of background components, φn(En) is
the neutron fluence, εγ(En,Esum,mcr) is the detection efficiency and Nnorm is the normalization factor for
the neutron capture cross-section.

The prompt fission background is determined by the fission tagging technique [23, 32], obtained from
the number of coincidences between the fission and γ-ray detection systems, ctagg(En), divided by a factor
labeled here as fission tagging detection efficiency, ε∗f , which takes into account that not all fission events
are tagged by the fission detection system. Then:

cFiss(En) =
1

ε∗f
ctagg(En) (5.2)

The neutron capture cross section strongly depend on the ε∗f parameter. In the particular case of
235U, the σf (En)/σγ(En) ratio is, on average, a factor of 2-3. Thus, for an uncertainty of 1% in the fission
tagging detection efficiency parameter, contributes a systematic uncertainty of 3-4% to the neutron capture
cross-section. Therefore, the determination of this parameter is critical for the accurate calculation of the
neutron capture cross-section.

The data analysis involves the data reduction of a complex experimental setup including a large number
of detectors and their correlations. In this section, we summarize the critical parts of the analysis during
the 235U(n,γ) cross section measurement:

• Coincidence analysis between the TAC and the FTMG detectors.

• Fission tagging detection efficiency and fission detection efficiency.

• TAC detection efficiency for the 235U(n,γ) reactions.

• Dead time corrections applied to the neutron cross-section.
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5.1.1 Coincidence analysis and the (n,γ f) process
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Figure 5.1: Time coincidence distribution between the TAC and the FTMG detectors for different conditions applied
to the TAC signals in the neutron energy range from 0.2 to 1.2 eV.

Fig. 5.1 shows the coincidence time distribution between the TAC and the FTMG detectors for different
conditions applied to the TAC signals. The optimum coincidence-time window was selected according to
two opposite criteria: the maximization of prompt-fission γ-ray cascades tagged by fission events in the
coincidence time window, and the minimization of the random coincidences with other background sources
and (n,γ) events. By selecting events with high crystal multiplicity (mcr >5) and a time coincidence window
of 80 ns, (-50,30) ns, before and after the maximum in Fig. 5.1. More than 99% of the event distribution
could be covered.

In the coincidence analysis of 5.1 also exhibits a tail characteristic of (n,γ f) process [98] indicating the
existence of long-lived fission isomers. The analysis leads a fission isomers with the characteristics described
in table 5.1.

En(eV) t1/2 (ns) (n,γf)/(n,f) (%)
0.2 – 1.2 68(6) 0.12(1)
1.2 – 12.0 66(3) 0.28(4)

Table 5.1: Fission isomers obtained in the analysis with half-lives and fission probabilities. The uncertainties are
statistical only.
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5.1.2 Fission tagging detection efficiency and fission detection efficiency

The fission detection efficiency and the fission tagging detection efficiency are closely related quantities,
which are assumed to be constant in the investigated neutron energy interval. Their definitions are given
by:

• The fission detection efficiency, εf (Ath): this is the probability for detecting a fission reaction in
any of the ten 235U samples by the FTMG detectors. This quantity depends only on the amplitude
threshold applied to the FTMG events, Ath.

• The fission tagging detection efficiency, ε∗f (Ath,Esum,mcr): this is the factor needed to rescale
the tagged fissions for the prompt fission background subtraction. This factor, by definition, is the
ratio between the tagged fission counts, cTagg(Ath,Esum,mcr), and the total fission counts detected
by the TAC, cFiss TAC(Esum,mcr):

ε∗f (Ath, Esum,mcr) =
cTagg(Ath, Esum,mcr)

cFiss TAC(Esum,mcr)
(5.3)

In the case that the probability of detecting a fission reaction in one of the detectors does not depend
on whether it has been detected in the other detector [23], then: (i) the fission tagging detection efficiency,
ε∗f (Ath), and the fission detection efficiency, εf (Ath), are the same quantity; (ii) as a consequence of (i),
the fission tagging detection efficiency depends only on Ath:

ε∗f (Ath, Esum,mcr) = ε∗f (Ath) (5.4)
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Figure 5.2: Prompt fission γ-ray spectra obtained by the coincidence between the FTMG and TAC for different
conditions applied to the FTMG events and normalized to the high deposited energy tail, Esum > 10 MeV.

As it was explained in the analysis, the inherent correlation of the prompt fission γ-ray cascades with
the primary fission fragments produced in the scission process introduce undesired correlations in the
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simultaneous detection of the (n,f) events by the FTMG and the TAC. This correlation was neglected
in the previous works with similar setups [23, 32] and constitute one of the larger sources of systematic
uncertainty. This correlation introduces heavy consequences in the analysis:

1. The fission tagging detection efficiency, ε∗f , depends slightly on the conditions applied to the TAC and
the FTMG as it shown in Fig. 5.2. Thus, this quantity can not determined for the (n,γ) conditions
using restrictive conditions applied to the TAC events.

2. The fission tagging detection efficiency and the fission detection efficiency are not the same quantity.

Since the experimental correlation is small, both quantities were calculated in first approximation ne-
glecting the correlation. Then, an experimental correction was applied accounting for the (n,f) events
detected by the TAC but not by the FTMG detectors (i.e. fission fragments with large emission angle and
self-absorption corrections in the 235U targets). The results obtained for both experimental configurations
are summarized in table 5.2.

Configuration εf ε∗f
2FTMG 0.1847(22) 0.1847(22)
10FTMG 0.842(5) 0.842(5)

Table 5.2: Fission detection efficiency and fission tagging detection efficiency for the different experimental config-
urations. The uncertainty includes the statistical and the systematic components.
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5.1.3 The TAC detection efficiency and the validation of the 235U(n,γ) cascades

The neutron capture detection efficiency, εγ , is defined as the probability of detecting a (n,γ) reaction by
the TAC. It depends on the BaF2 deposited energy thresholds, the conditions applied to the TAC events
in Esum and mcr, and corrections due to pile-up effects.

The efficiency has been calculated by Monte Carlo simulations as in for previous measurements with
the TAC [34, 77]. It is obtained by the comparison between the experimental signature and the Monte
Carlo deposited energy spectra of the γ-ray cascades.
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Figure 5.3: Experimental 235U(n,γ) signature detected by the TAC compared with the Monte Carlo simulations for
different conditions applied to mcr.

The 235U(n,γ) cascades, adjusted from experiments carried out at DANCE in Los Alamos [32], were
simulated into the experimental setup by a specific GEANT4 application [34, 77]. The cascades includes the
effect of a long-lived isomeric state that distort the γ-ray signature detected by the TAC. The experimental
signature together with the Monte Carlo simulations for the experimental configuration with the neutron
absorber is shown in Fig 5.3. The validation of the γ-ray cascades allows the determination of several
physical parameters:

• The photon strength functions of 236U.

• The characterization of the long-lived isomer through the neutron capture channel.

The good agreement between the simulated and measured spectra in Fig. 5.3 permits the determination
of the TAC detection efficiency with an uncertainty of 1.7%, including the modeling of (n,γ) reactions and
the geometry implemented.
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5.1.4 The dead time corrections

The large counting rate registered in the BaF2 detectors induced by the dead material in the neutron
beam introduces dead time effects in the detected γ-ray cascades as a function of time-of-flight. To correct
this effect, a new dead time model was developed based on the previous works [34, 77, 89, 112] for the
calculation of the 235U(n,γ) cross-section.
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Figure 5.4: Individual γ-ray distribution of the tagged prompt fission cascades for different neutron energy intervals:
0.2-1 eV, black; 100-200 eV red; and the γ-ray with the dead time applied, blue.

The dead time model was validated using the tagged prompt fission γ-ray cascades as it shown in
Fig. 5.4. The good agreement obtained for the individual and coincidence distributions permit a realistic
correction of the dead time effects in a wide neutron energy range.
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5.2 The neutron capture cross-section

The main result from this analysis is the neutron capture cross section of the 235U in the neutron energy
range from 0.2 to 200 eV with a careful identification of the systematic uncertainties associated to the
technique as it was shown in the chapter 4.

The 235U(n,γ) data obtained from this work, which is the absolute ratio between the fission and the
capture cross sections as it was explained in the section 1.3, was normalized to the neutron-induced fission
cross section in the neutron energy range from 7.8 to 11 eV. Our data, in the whole neutron energy range,
is shown in Fig. 5.5 by the blue points. The evaluated libraries are shown for comparison in the same figure
by the black and red lines.
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Figure 5.5: 235U(n,γ) cross section from ENDF/B-VII.1 and ENDF/B-VIII.0 (Beta-II) and the n TOF data for
the neutron energy range from 0.2 to 200 eV.

In this section we summarize the identified systematic uncertainties and the calculated experimental
neutron capture cross section.
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5.2.1 Systematic uncertainties in the measurement

Fig. 5.6 shows the statistical and systematic uncertainties integrated in the cross-section resonances for the
different neutron energy intervals (pink line) and the total uncertainty (black line), calculated as the linear
sum of the systematic and statistical components.
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Figure 5.6: Systematic uncertainty sources for the different neutron energy intervals. The black line represents the
total uncertainty, calculated as the linear sum of statistical and systematic components.

The systematic uncertainty sources identifies are summarized as follow:

• The TAC detection efficiency, εγ : The systematic uncertainty in this parameter, ∆(εγ)=1.7%,
was propagated in the 235U(n,γ) cross-section producing an uncertainty of 1.7% for the entire neutron
energy range as is shown by the green line in Fig. 5.6.

• The Fission detection efficiency and the fission tagging detection efficiency, εf and ε∗f :
The systematic uncertainty in both parameters were propagated in the neutron capture cross-section.
Integration along the different neutron energy intervals is shown by the line in Fig. 5.6.

• The correction applied to the beam background: The uncertainty of this correction was
propagated in the neutron cross-section and is shown for the different neutron energy intervals by the
blue line in Fig. 5.6.

• Additional uncertainty due to the normalization: Due to the normalization performed on the
experimental cross-section an additional 0.4% of systematic uncertainty must be added along the
entire neutron energy range due to the statistics achieved by the FTMG detectors as shown by the
light blue line in Fig. 5.6.

• The pile-up corrections: The uncertainty due to pile-up corrections, for the conditions used for
the calculation of the 235U(n,γ) cross-section, has been considered low enough, when compared with
the rest of systematic uncertainties, not to be taken into account for the calculation.
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• The subtraction of the prompt fission neutrons. The uncertainty in the determination of
the background induced by the prompt fission neutrons has been considered low enough to be ex-
cluded from the calculation. Even if we consider an uncertainty of 20% in the determination of this
component, the contribution to the total systematic uncertainty is very low (1.0%).

5.2.2 Comparison with the evaluated libraries and the CIELO project

Our experimental data, integrated in the largest neutron resonances, is compared with the ENDF/B-VII.1
evaluated library in the second column of the table 5.3. The present results are systematically above this
evaluation in all the neutron energy range but still compatible within the systematic uncertainties.

Energy period (eV) I(This work)/I(ENDF/B-VII.1) I(This work)/I(ENDF/B-VIII.0) Sys. Unc. (%)
0.2 – 2.2 1.03(1) 0.93(1) 5.1
2.2 – 20.0 1.088(4) 1.0148(4) 4.2
20.0 – 40.0 1.072(7) 1.040(7) 5.3
40.0 – 60.0 1.10(1) 1.06(1) 6.1
60.0 – 100.0 1.09(2) 1.07(2) 6.8
100.0 – 200.0 1.06(2) 1.08(2) 7.4

Table 5.3: Ratio between the integral of the resonances from this work and the ENDF/B-VII.1 and ENDF/B-VIII.0
(Beta-II) evaluations. The last column shows the systematic uncertainty (in percent) of the present results.

The systematic increment of the 235U neutron capture cross section is in agreement with other strong
suggestions from integral and differential experiments carried out in the last years. Our experimental data,
together with all the systematic uncertainties was disposed to the IAEA CIELO project [12, 31], which is
devoted to the reevaluation of the neutron cross-sections of the main isotopes important for the nuclear
applications: 1H, 16O, 235U, 238U and 239Pu.

Combining experimental data with previous measurements and experiments available, this reevaluation
released a new evaluated neutron library for 235U, the ENDF/B-VIII.0 (Beta-II) increasing the 235U(n,γ)
cross section in the first neutron resonances as it show in the third column of the table 5.3. The ratio of
the integral resonance value of this work and both evaluations is shown in Fig. 5.8 and Fig. 5.9, where the
uncertainty was omitted for simplicity.

Our experimental dataset, has significantly contribute to the production of new resonance parameters in
the neutron energy range from 0.2 to 200 eV. In this neutron energy range, the neutron capture cross section
was increased by 8% in the first neutron resonances according to our experimental data (see Fig. 5.7), thus
improving the new evaluation of this important nucleus in matter of efficiency, safety and nuclear waste for
actual and future nuclear power plants.
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Figure 5.7: Ratio between the ENDF/B-VIII.0 (Beta-II) and ENDF/B-VII.1 for different neutron energy intervals
from 0.2 to 200 eV.
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5.3 Improvements and future work

Many efforts have been made since 2012 at n TOF in order to improve the front-end electronic of the
data acquisition system, upgrading the TAC and building new detectors. There are two main lines in the
improvement of the fission tagging technique:

• Extension of the neutron energy range of measurement: In this way, the n TOF data acqui-
sition system has been upgraded, with new digitization cards, which are now covering an extended
time interval up to 100 ms with a high sampling rate (1 Gs/s). In this way, even subthermal energies
can be reached with a better quality of the digitized signals.

New detectors are being developed to improve the fission tagging setup. In this matter, a new fission
chamber [115] based on aluminum detectors and fast electronics that permit the measurement of
highly radioactive samples and high counting rates. These fission detectors are planned to replace
the actual fission tagging micromegas detectors since the aluminum doesn’t have resonances in the
neutron energy range of interest, i.e. from the thermal point up to tens of keV. In addition, the study
and design of a new total absorption calorimeter with the new generation of inorganic scintillators is
under study for the experimental area 2 at the n TOF facility. The good energy and time resolution,
low neutron sensitivity and fast γ-flash recovery are to be improved by this study. This new TAC is
being funded by the CHANDA project [114].

• Reduction of the uncertainties: There are two critical points for the reduction of the systematic
uncertainties:

1. Improvement of the signal to background ratio: In this measurement showed that the
accurate prompt fission background subtraction could be accurately subtracted using only few
of the samples in the tagging detectors. Thus, the setup could be improved by the use of thin
targets tagging detectors and thicker targets for the rest of samples.

2. Reduce the correlation effect between the TAC and the FTMG: The correlation ob-
served, could be reduced by a different geometry of the tagging detectors. For instance, since the
principal suspect of the cause is the directional correlation of the prompt fission γ-ray cascades,
the angular effect could be reduced turning the fission samples by 45 degrees as it used for the
neutron-induced fission cross-section measurements with PPAC detectors..

Part of these efforts are already applied for the measurement of the 233U(n,γ) cross-section in 2016,
including the new fission tagging detectors and an upgrading of the TAC electronics.
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Appendix A

The deposited energy spectra in the
TAC 235U(n,γ) measurement

In Fig. A.1 A.2 A.3 A.4 A.5 are presented the deposited energy spectra of the different dedicated back-
grounds and 235U capture measurements. Each plot corresponds to a certain neutron energy range and to
certain conditions applied to the multiplicity of the detected events, given in the upper part of the different
panels.
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Figure A.1: Deposited energy spectra detected by the TAC for different multiplicity conditions in the neutron energy
range from 0.2 to 1 eV.
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Figure A.2: Deposited energy spectra detected by the TAC for different multiplicity conditions in the neutron energy
range from 1 to 20 eV.
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Figure A.3: Deposited energy spectra detected by the TAC for different multiplicity conditions in the neutron energy
range from 20 to 50 eV.
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Figure A.4: Deposited energy spectra detected by the TAC for different multiplicity conditions in the neutron energy
range from 50 to 100 eV.

155



Appendix A. The deposited energy spectra in the TAC 235U(n,γ) measurement 156

 (keV)sumE
0 2000 4000 6000 8000 10000 12000

c
/7

.0
e

1
2

 p

0

0.02

0.04

0.06

0.08

0.1
Total

No beam bkg

Beam+ No beam bkg

Tag. fission

Fission

Capture

> 0, 100.0 < En (eV) < 200.0, (BaF2(Th)= 300 keV)crm

 (keV)sumE
2000 4000 6000 8000 10000 12000

c
/7

.0
e

1
2

 p

0

0.02

0.04

0.06

0.08

0.1

0.12 Total

No beam bkg

Beam+ No beam bkg

Tag. fission

Fission

Capture

> 1, 100.0 < En (eV) < 200.0, (BaF2(Th)= 300 keV)crm

 (keV)sumE
2000 4000 6000 8000 10000 12000

c
/7

.0
e

1
2

 p

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08 Total

No beam bkg

Beam+ No beam bkg

Tag. fission

Fission

Capture

> 2, 100.0 < En (eV) < 200.0, (BaF2(Th)= 300 keV)crm

 (keV)sumE
2000 4000 6000 8000 10000 12000

c
/7

.0
e

1
2

 p

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Total

No beam bkg

Beam+ No beam bkg

Tag. fission

Fission

Capture

> 3, 100.0 < En (eV) < 200.0, (BaF2(Th)= 300 keV)crm

 (keV)sumE
2000 4000 6000 8000 10000 12000

c
/7

.0
e

1
2

 p

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
Total

No beam bkg

Beam+ No beam bkg

Tag. fission

Fission

Capture

> 4, 100.0 < En (eV) < 200.0, (BaF2(Th)= 300 keV)crm

 (keV)sumE
4000 6000 8000 10000 12000

c
/7

.0
e

1
2

 p

0

0.005

0.01

0.015

0.02

Total

No beam bkg

Beam+ No beam bkg

Tag. fission

Fission

Capture

> 5, 100.0 < En (eV) < 200.0, (BaF2(Th)= 300 keV)crm

 (keV)sumE
4000 6000 8000 10000 12000 14000

c
/7

.0
e

1
2

 p

0

0.002

0.004

0.006

0.008

0.01

Total

No beam bkg

Beam+ No beam bkg

Tag. fission

Fission

Capture

> 6, 100.0 < En (eV) < 200.0, (BaF2(Th)= 300 keV)crm

 (keV)sumE
4000 6000 8000 10000 12000 14000

c
/7

.0
e

1
2

 p

0

0.002

0.004

0.006

0.008

0.01

Total

No beam bkg

Beam+ No beam bkg

Tag. fission

Fission

Capture

> 7, 100.0 < En (eV) < 200.0, (BaF2(Th)= 300 keV)crm

Figure A.5: Deposited energy spectra detected by the TAC for different multiplicity conditions in the neutron energy
range from 100 to 200 eV.
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Appendix B

The fission detection efficiency and
the FTMG detection efficiency

If the mass of the fission targets is well known, the fission detection efficiency of the individual FTMG as
well as of the total fission detection efficiency can be accurately determined.

For an individual 235U target with surface density ns, the number of fissions occurring in the target,
N(En), is calculated in the thin target approximation and as a function of the neutron energy as:

N(En) = nsφn(En)σf (En) (B.1)

where φ(En) is the incident neutron flux and σf (En) is the neutron-induced fission cross-section.
The number of fissions detected by the TAC, Ndetfγ , or by the fission detectors, Ndetf , is given by the

number of fission events times the fission detection efficiency of each detection system, εfγ , εf . Thus:

Ndetfγ,f
(En) = εfγ,fN(En) = εfγ,fnsφn(En)σf (En) (B.2)

If both detection system are independent, the number of fission events detected in conjunction between
the TAC and FTMG detectors, Ntagg(En), is expressed as:

Ntagg(En) = εfγεfN(En) = εfγεfnsφn(En)σf (En) (B.3)

B.1 Simplest case: one fission detector and one fission sample

In the simplest case where there is only one FTMG and only one 235U target, the fission detection efficiency
(ε′f ), as was explained in the section 3.5, corresponds to the detection efficiency of the fission tagging
micromegas detector. Therefore:

ε′f =
Ntagg(En)

Ndetfγ

=
εfγεfnsφn(En)σf (En)

εfγ,fnsφn(En)σf (En)
= εf (B.4)

The result is that both detection efficiencies are equal, as was expected.

B.2 General case: Ndet FTMG and Ns fission samples

In the general case with Ndet FTMG and Ns fission samples (Ns ≥Ndet), the fission detection efficiency
and the FTMG detection efficiency of the FTMG are slightly different. For each individual 235U target,
the number of fissions occurring in the TAC-FTMG system are:
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Ni(En) = nsiφn(En)σf (En) (B.5)

Thus, the fission events detected by the TAC are:

Ndetfγ
(En) =

j=Ns∑

j=1

nsjφn(En)σf (En)εfγ = εfγ

j=Ns∑

j=1

nsjφn(En)σf (En) (B.6)

and the number of fission detected in coincidence by the TAC and FTMG:

Ntagg(En) =

i=Ndet∑

i=1

nsiφn(En)σf (En)εfγεfi = εfγ

i=Ndet∑

i=1

εfinsiφn(En)σf (En) (B.7)

Thus, the fission detection efficiency ε′f and the individual fission detection efficiencies of the FTMG
are related as:

ε′f =
Ntagg(En)

Ndetfγ

=
εfγ

∑i=Ndet

i=1 εfinsiφn(En)σf (En)

εfγ
∑j=Ns

j=1 nsjφn(En)σf (En)
=

∑i=Ndet

i=1 εfinsi∑j=Ns

j=1 nsj

(B.8)

Thus, the fission detection efficiency is the weighted sum of the detection efficiency of the individual
fission tagging micromegas detectors.
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Appendix C

The Lorentz transformation for the
prompt fission γ-rays

Since the prompt fission γ-rays are emitted from the fission fragments with high kinematic energy (sec-
tion 3.5.3), the direction and the energies of the γ-rays in the fission fragments and the laboratory systems
are slightly different.

Figure C.1: Inertial reference systems that move with respect to each other at a velocity β in terms of light speed c.

The vectors of the γ-rays of the cascade in the laboratory system, x̃, and in the fission fragment reference
system, x̃′, are defined as:
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x̃ =




E/c
px
py
pz


 (C.1)

x̃′ =




E′/c
p′x
p′y
p′z


 (C.2)

where E is the energy and ~p the momentum of the γ-ray in the respective reference systems. The labo-
ratory and fission fragment reference systems are shown in Fig. C.1. Both reference systems are considered
inertial reference systems with a relative velocity ~v = v~n in the direction ~n = (nx, ny, nz), with the restric-
tion n2x+n2y+n2z=1. Therefore, the quantities x̃ and x̃′ are connected by the Lorentz transformation [116],
B(~v), defined as:

B(~v) =




γ −γβnx −γβny −γβnz

−γβnx 1 + (γ − 1)n2
x (γ − 1)nxny (γ − 1)nxnz

−γβny (γ − 1)nxny 1 + (γ − 1)n2
y (γ − 1)nynz

−γβnz (γ − 1)nxnz (γ − 1)nynz 1 + (γ − 1)n2
z


 (C.3)

where the β and γ quantities are expressed in terms of the speed of light, c, by:

β =
|~v|
c

(C.4)

γ =
1√

1− β2
(C.5)

Therefore, both γ-ray vectors can be transformed from the fission fragment reference system to the
laboratory system by:

x̃ = B(~v)x̃′ (C.6)

where B(~v) is defined by the equation C.3.
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Appendix D

Rotation of the coordinate systems

The directional correlation between the prompt fission γ-rays and fission fragments described in the sec-
tion 3.5.3 is given by the fission fragment coordinate system. In general, this coordinate system does not
correspond to the laboratory system. Only in the particular case of fission fragments emitted in the di-
rection of the neutron beam are both coordinate systems equivalent. In order to simulate correctly the
directional correlation, the prompt fission γ-ray cascades correlated into the fission fragment coordinate
system must be transformed in the laboratory system.

Figure D.1: Laboratory and fission fragment coordinate systems defined by the axis {x, y, z} and {x′, y′, z′}, respec-
tively.
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Both coordinates systems, for the laboratory and the fission fragment, are shown in Fig. D.1:

• The laboratory coordinate system: This is defined by the {x, y, z} axis, where the z axis is the
direction of the neutron beam.

• The fission fragment coordinate system: This is defined by the {x′, y′, z′} axis, where the z′ axis
corresponds to the direction of the emission of the fission fragment, defined by the angles θff and
φff as shown in Fig. D.1.

Therefore, given the direction of the fission fragments defined by the angles θff and φff , and the
direction of the γ-ray in the fission fragment coordinate system defined by the vector ~uff = (ux, uy, uz)
(u2x+u2y+u2z=1), the direction in the laboratory system, ~ulab, is obtained by the transformation defined as:

~ulab = Rx(−θff )Rz(−φff )~uff (D.1)

where Rx(θ) and Rz(θ) are the rotation matrix in the x and z axis, defined by:

Rx(θ) =



1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)


 (D.2)

Rz(θ) =



cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


 (D.3)
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Appendix E

Neutron fluence correction due to the
dead material layers

As was explained in section 1.2, the experimental reaction yield (Yexp,x(En)) is calculated as a function of
the neutron energy by:

Yexp,x(En) =
Cx(En)

εx(En)φ(En)
(E.1)

where Cx(En) is the detected counting rate for the reaction x, εx(En) is the detection efficiency and
φ(En) the neutron fluence. Eq. E.1 is true under the assumption that there is no other dead material layer
intercepting the neutron beam before the target sample under study. Otherwise, the neutron fluence that
interacts with the target sample is distorted by the interaction with the previous dead material. Thus,
the neutron flux needs to be corrected for the effect of these dead material layers. The correction of the
neutron fluence as a function of the neutron energy has been calculated under the following assumptions:

• The total neutron cross-section for all the materials, including the target samples, present in the
calculation, are well-known.

• The neutrons can only interact once: the neutrons that have an interaction with one material are
assumed lost after an elastic scattering.

• Other neutron sources such as the production of neutrons via nuclear reactions (i.e prompt fission
neutrons) are neglected.

In the following sections the calculation performed will be explained, first for the simplest case of one dead
material layer before the target sample and then, for N target samples with dead material layers in between.

E.1 One target sample and one dead material layer

The simplest system under study shown in Fig. E.1 is composed of one layer of dead material and one
target sample. It is assumed that this system, dead material layer + samples, is indistinguishable from the
detection point of view and the incident direction of the neutron beam is from left to right as shown by the
purple arrow.

In this case, the experimental reaction yield of the system dead material + samples is defined as the
probability for a single neutron to produce a reaction in the target sample, Yx,sample(En), times the
probability of the neutron of passing through the dead without interaction, 1-PD.M.(En). Then:
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Figure E.1: The simplest system under study. The dead material layer is shown as the blue colored region and the
target sample is shown as the green layer.

Yexp,x(En) = (1− PD.M.(En)) · Yx,sample(En) (E.2)

The transmission factor for the dead material is defined by:

TD.M (En) = 1− PD.M.(En) = e−natσ
mat
T (En) (E.3)

where nat is the surface density in atoms per barn and σmat
T (En) is the neutron total cross-section of

the dead material. The reaction yield of the target sample is obtained by the use of the definition of the
experimental reaction yield, Eq. E.2 and the definition of the transmission factor Eq. E.3. Therefore:

Ysample,x(En) =
Yexp,x(En)

TD.M (En)
=

Cx(En)

εxTD.M (En)φ(En)
=

Cx(En)

εxφ′(En)
(E.4)

Where φ′(En) is the effective neutron fluence, defined as:

φ′(En) = TD.M (En)φ(En) (E.5)

The partial cross-section of the sample σsample
x (En) can be easily obtained from the definition of the

partial reaction yield in terms of the surface density of the sample, nsample, the neutron total cross-section

of the target, σsample
t (En), and the partial cross-section of the reaction x, σsample

x (En):

Ysample,x(En) =
(
1− e−nsampleσ

sample
t (En)

) σsample
x (En)

σsample
t (En)

(E.6)

Hence, the partial cross-section is obtained using Eq. E.4 and Eq. E.6

σsample
x (En) =

σsample
t (En)(

1− e−nsampleσ
sample
t (En)

) Cx(En)

εxφ′(En)
(E.7)
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E.2 N samples and N dead material layers

The calculation performed for the simplest system composed of one target and one dead material layer has
been generalized in the case where the system is formed by N dead material layers plus N targets, one each
sample between two dead material layers. The experimental reaction yield for this system is defined as the
probability that the neutrons will not interact with the first dead material layer times the reaction yield of
the first sample plus the probability of the neutrons of neither interacting with the first dead material layer
nor with the second one times the probability of not interacting with the first sample times the reaction
yield of the second sample, etcetera. Thus, the experimental reaction yield is written as:

Yexp,x(En) = (1−P1(En))Y1,x(En)+(1−P2(En))Y2,x(En)+...+(1−PN (En))YN,x(En) =

N∑

i=1

Ti(En)Yi,x(En)

(E.8)
The transmission factor for the sample i (Ti(En)) takes all materials, including all targets placed before

the sample i. The reaction cross-section of the N samples is obtained using the sample reaction yield defined
in Eq. E.4 and the relationship between the sample reaction yield and the partial reaction cross-section
given in Eq. E.6. Then:

σx(En) =
Yexp(En)∑[

1− e−niσT (En)
]
Ti(En)/σT (En)

=
Cx(En)

ε(En)φ′(En)
(E.9)

The effective neutron fluence, φ′(En), is expressed in terms of the incoming neutron fluence, the total
neutron cross-section and the individual transmission factors as:

φ′(En) =

∑[
1− e−niσT (En)

]
Ti(En)

σT (En)
φ(En) (E.10)

The effective neutron fluence take the materials in the system into account, including the effect of the
targets that intercept the neutron beam.
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Appendix F

Summary in English

The aim of this manuscript is to present the analysis and results of the 235U neutron capture cross- section
measurement performed at the CERN n TOF facility in the neutron energy range from 0.2 to 200 eV.

F.1 Introduction

Current and future energy demands require the development of new energy sources as well as the improve-
ment of existing ones (Fig. F.1).

Figure F.1: In the left hand panel is the projection of energy consumption, in Btu, for the period from 2012 to 2040.
In the right hand panel is the projection of energy consumption by energy source in Btu from 1990 to 2040 [5].

The first crucial ingredient of reactor and fuel cycle analysis is nuclear data. When designing or assessing
the safety of a reactor system, nuclear data for a wide range of reactions and materials has to be known.
Designers and physicists must address many variants of nuclear plants and undertake extensive calculations
to estimate the performance of critical nuclear system. For accurate and reliable estimates, these studies
should incorporate the most accurate and reliable nuclear data and neutron cross-sections, compiled in
evaluated libraries such as ENDF/B-VII.1 [9], JENDL-4.0a [10] or JEFF-3.2 [11]. These evaluated libraries
are tested against relevant benchmark experimental data, thus validating the current knowledge of nuclear
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cross- sections and nuclear data. These major evaluated libraries predict the measured criticality of nuclear
systems extremely well (for many assemblies, although not for all). However, such good performance in
integral testing creates a false sense of optimism [12] due to compensating errors, calibration of some critical
parameters and discrepancies between libraries.

Quantity measured Author Year Neutron energy period (eV) Reference
η(En) H. Palevsky et al. 1956 0.01 - 0.9 [13]
η(En) J. R. Smith et al. 1957 0.1 - 9.0 [14]
σγ(En) G. de Saussure et al. 1966 0.4 - 62.0 [15]∫
σγ(En) G. de Saussure et al. 1966 10.0- 1800.0 [15]
η(En F.D. Brooks et al. 1966 0.9 - 200 [16]∫
σγ(En) F.D. Brooks et al. 1966 10 - 200 [16]
σγ(En) R.B. Perez et al. 1973 8.0 - 200.0 [17]∫
σγ(En) G.V. Muradyan et al. 1977 100 - 20000 [18]

αR(En) G.V. Muradyan et al. 1985 2.0 - 32.0 [19]
η(En) H. Weigmann et al. 1990 0.001 0.4 [20]
σγ(En) M. Jandel et al. 2012 4.0 - 8·106 [32]
σγ(En) C. Guerrero et al. 2012 - [23]

Table F.1: List of 235U(n,γ) cross-section measurements retrieved from the EXFOR database [24] overlapping in
some regions with the neutron energy range of this work.

Over the years, great efforts have been made to obtain reliable neutron-induced cross-sections of the
235U, which are the most important physical constants in nuclear energy applications. In particular, for the
neutron capture cross-section there are several measurements in the neutron resonance region as is shown
in the table F.1. The neutron-induced cross-sections for this isotope are very important, not only for major
nuclear thermal reactors but for Fast Breeder Reactors (FBRs) because many critical experiments for FBRs
have been performed at critical assemblies where UO2 fuels were used as driver fuels. The experimental
data obtained at such critical assemblies has a great impact on design work for FBRs. Recent studies show
that calculated sodium void reactivity values for BFS experiments underestimate the experimental results
by 30-50% [25]. These significant discrepancies not only exceed the target accuracy of 20% for a FBR
design but also undermine the design accuracy estimated with the cross-section adjustment and bias factor
techniques.

Therefore, there is a requested accuracy of the 235U neutron capture cross-section reflected in the High
Priority Request List [26] of the International Atomic Energy Agency (IAEA). The accuracy as a function
of the neutron energy range is included in the table F.2.

Neutron energy interval Accuracy target (%)
100 eV - 1 keV 5
1keV -30 keV 8

30 keV - 1 MeV 3

Table F.2: Required accuracy of the 235U neutron capture cross-section requested in the High Priority Request List
of the Nuclear Energy Agency [26].

To tackle the discrepancies in the neutron cross-section data of the major nuclides, the IAEA CIELO
pilot project [12, 31] is re-evaluating the major nuclides important for the nuclear applications: 1H, 16U,
235U, 238U and 239Pu. The main goal of this project is the production of improved and validated evaluated
nuclear data files. The work presented in this manuscript focuses on the framework for improving the
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neutron capture cross-section at low neutron energy and improving current knowledge of the resonance
parameters in the 235U isotope.

F.2 Experimental configuration

The experiment was carried out at the n TOF facility at CERN. The n TOF facility at CERN [61] is
a pulsed neutron beam time-of-flight facility with a high instantaneous flux and low repetition rate and
two neutron beam lines ending in two separated experimental areas [69]. The 235U(n,γ) cross-section
measurement was performed at the horizontal 185 m long beam line. The facility was designed to measure
low mass samples and high radioactivity in the neutron energy period from meV to GeV.

The neutron beam is produced by CERN’s PS proton beam impinging on the spallation target formed
by a lead block surrounded by a thin layer of water acting as moderator and refrigerant. In addition, for
the horizontal beam line, there is another layer of borated water to reduce the amount of thermal neutrons
and γ-ray background measured in the experimental area. The neutrons travel from the spallation target
to the experimental areas and their energy is determined by the time-of-flight technique. In the neutron
beam line are placed two collimators and magnets to deflect the neutrons produced outside the neutron
beam and the charged particles created in the spallation reactions such as π+ and π− particles.

The facility, whose main purpose is to provide neutron-induced reaction data for astrophysics ans nuclear
technology applications, has been used to measure neutron-induced fission and capture reactions in different
isotopes. A list of the measurements performed at the facility since the beginning of the operation is found
in the reference [69].

During the measurement of the 235U(n,γ) cross-section, five different detectors were used for different
purposes:

• Three different neutron beam monitors: Wall current monitor [82], wall current transformer [82]
and the silicon monitor [73] used for the motorization of the neutron beam and for normalization
purposes.

• Two independent detection systems for the determination of the reaction rate in the 235U samples:

– The Total Absorption Calorimeter (TAC) [58], formed by 40 BaF2 crystals used for the detection
of the 235U(n,γ) cascades. A schematic view of the detector is shown in the figure F.2.

– The Fission Tagging Micromegas detectors(FTMG) [59], gaseous detectors used for the detection
of fission fragments produced in the 235U(n,f) reactions. A schematic plot of these detectors is
shown in the figure F.3.

Between the fission chamber, where the FTMG and 235U samples were placed, and the TAC were placed
a borated neutron absorber ∼5 cm thicker in order to reduce the amount of neutrons detected by the TAC.

The signals from the detectors were recorded by the n TOF Digital Acquisition System [75] based
on Acquiris-DC270 digitization cards with 8 bits of resolution operated with the specific requirement of
each detector. The data registered was saved for its posterior analysis by the dedicated pulse shape
routines [78, 84]. For the measurement of the neutron capture cross-section, 41 mg of U3O8 distributed
in ten non-encapsulated samples with high purity of 235U (>99%) were used. Two different experimental
configurations were used:

• 2FTMG: With a low simultaneous TAC-FTMG detection efficiency for fission events, this was used for
the calculation of the neutron cross-section of the 235U due to the low amount of material intercepting
the neutron beam, therefore improving the signal-to-background ratio.

• 10 FTMG: The experimental configuration with ten FTMG, one per sample, had a high TAC-FTMG
detection efficiency for the fission events. However, the large amount of dead material that intercepted

169



Appendix F. Summary in English 170

Figure F.2: Geometry of the TAC already implemented for the GEANT4 application.

the neutron beam resulted in a worse signal-to-background ratio. This configuration was used to
cross-check the experimental data obtained in the 2FTMG configuration.

In total, more than 4·1018 was used for the measurement. The protons were used in different mea-
surements with different experimental configurations as shown in Fig. F.4. However, due to experimental
problems, only ∼2.5·1018 was useful for the determination of the 235U(n,γ) cross-section.
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Figure F.3: Schematic drawn of the FTMG used during the measurement of the 235U(n,γ) cross section [59].

Figure F.4: Detailed time calendar of the 235U(n,γ) cross-section. The dedicated total number of protons and the
number of pules is shown for each period detailed in the calendar.
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F.3 Data reduction

The neutron capture cross-section is experimentally calculated in the thin target approximation by:

σγ(En) =
Ctot(En)− Cbkg(En)

Nnormεγφ(En)
(F.1)

where Ctot(En) are Cbkg(En) the total number of counts detected and background counts respectively:
under the analysis conditions Esum and mcr; εγ is the detection efficiency for the 235U(n,γ) events; φ(En) is
the neutron fluence; and Nnorm is the normalization factor that encloses the target masses and the fraction
of the neutron beam intercept.

The analysis performed in this work is very similar to the previous analysis performed with the TAC [34,
77]. However, for the analysis performed in coincidence with the FTMG, new tools have been developed.
The background, Cbkg(En), is the sum of the different contributions:

• No-beam background (CNB): The background related to the internal radioactive decay of the BaF2

crystals [34, 77], environmental background and natural radioactive decay of the 235U samples. This
component has been obtained from the dedicated measurements without neutron beam, keeping the
same experimental setup.

• Beam background (CB): The interaction of the neutron beam with the dead material that intercepts
the neutron beam profile produces background events that are detected by the TAC. This background
component is obtained from the dedicated measurements replacing the 235U targets by the dummy
samples and keeping the same experimental setup.

• Prompt fission background (CF ): During the fission process, prompt γ-ray cascades and neutrons
are emitted from the highly excited fission fragments that are detected by the TAC [23, 32]. This
background component is difficult to subtract due to the resonant character of the neutron-induced
fission cross-section, coincident with the neutron capture cross-section. It is accurately obtained by
the fission tagging procedure.

• Other components related to the 235U targets (COther): Background induced by the neutron beam
with the targets, i. e., background induced by the elastic scattering of the neutron beam with the
235U targets, prompt-neutron emission that is detected and delayed γ-ray emitted during the β-decay
of the the fission fragments. The magnitude of these background components cannot be directly
measured; thus, these components have been calculated by means of Monte Carlo simulations.

Therefore:

Cbkg(En) = CnoBeam(En) + CBeam(En) +
1

ε∗f
Ctagg(En) + COther(En) (F.2)

where ε∗f is the fission tagging detection efficiency. Figure F.5 shows an example of the different com-
ponents measured by the TAC and the background subtractions.

The fission detection efficiency and the fission tagging detection efficiency are closely related quantities.
We consider that neither quantities depend on neutron energy. Their definitions are given by:

• The fission detection efficiency, εf (Ath): This is the probability of detecting a fission reaction
induced in any of the ten 235U samples by the FTMG detectors. This quantity depends only on the
amplitude threshold applied to the FTMG events, Ath.

• The fission tagging detection efficiency, ε∗f (Ath,Esum,mcr): This is the factor needed to rescale
the tagged fissions for the prompt fission background subtraction. This factor, by definition, is the
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Figure F.5: Deposited energy spectra detected by the TAC for mcr >2 in the neutron energy period from 1.0 to 20
eV.

ratio between the tagged fission counts, cTagg(Ath,Esum,mcr), and the total fission counts detected
by the TAC, cFiss TAC(Esum,mcr):

ε∗f (Ath, Esum,mcr) =
cTagg(Ath, Esum,mcr)

cFiss TAC(Esum,mcr)
(F.3)

In the case that the probability of detecting a fission reaction in one of the detectors does not depend
on whether it has been detected in the other detector [23], then:

1. The fission tagging detection efficiency, ε∗f (Ath), and the fission detection efficiency, εf (Ath), are the
same quantity.

2. As a consequence of 1., the fission tagging detection efficiency depends only on Ath:

ε∗f (Ath, Esum,mcr) = ε∗f (Ath) (F.4)

The methodology used for the calculation of these two quantities, which is more precise than the Monte
Carlo simulations, has been applied in the first large neutron fission resonances, in the neutron energy
period from 0.2 to 20 eV. It is based on the equation F.3:

• The prompt tagged fission events are obtained by the coincidence of the TAC and FTMG as was
explained in the section 3.3.

• The TAC detects many background components besides the 235U(n,γ) reactions as was discussed in
section 3.4. However, the number of components can be reduced to the prompt fission component and
the background related to the dead material intercepting the neutron beam, selecting events with large
crystal multiplicity, mcr >5, and large total deposited energy, Esum >Sn(

236U). For these conditions,
the 235U(n,γ) reactions and the background related to the no-beam background are removed from the
analysis as is shown in both panels of Fig. 3.38. In addition, the contribution of the prompt fission
neutrons is negligible as was shown in Fig. 3.35. Nevertheless, it has been ascertained experimentally
that ε∗f only changes as a function of Ath as is shown in Fig. 3.39 and tables 3.11 and 3.12.

As more restrictions are applied to the TAC events, the calculation is less sensitive to systematic
uncertainty sources such as the determination of the background as shown in both panels of Fig. 3.39.
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However, the statistical uncertainty increases. Thus, the calculation must be performed taking into
consideration the compromise between the systematic and statistical uncertainties.

For those conditions, the total fission events detected by the TAC are obtained by the difference between
the total number of counts detected, cT (Esum,mcr), and the background related to the dead material
intercepting the neutron beam obtained from the dedicated experimental measurement; cB(Esum,mcr).

The fission tagging detection efficiency has been calculated for both experimental configurations in
the first largest neutron fission resonances, from 0.2 to 20 eV. For the calculation, the TAC events were
restricted to events with mcr >5 and Esum >10 MeV. For the FTMG detector, the threshold applied was
Ath=40 ADC channels.

However, due to the complexity of this process, most of the observables are correlated. For instance, the
average number of prompt fission neutrons and γ-rays emitted are closely related quantities with the pair
of fission fragments produced and the primary nuclei involved [101]. Thus, the correlation of the fission
observables introduces small correlations in the simultaneous detection of fission events by the TAC and
FTMG detectors.

Therefore, a experimental correction was applied as explained in the section 3.5.4 and the final results
obtained for both experimental configurations are shown in the table F.3. The uncertainty shown is the
sum of the statistical and systematic components.

Quantity 2FTMG 10FTMG
εf 0.1847(22) 0.842(5)
ε∗f 0.1847(22) 0.842(5)

Table F.3: Fission detection efficiency and fission tagging detection efficiency calculated for both experimental
configurations.

The TAC detection efficiency was determined by Monte Carlo simulation as was obtained in previous
works [105, 34, 77]. The γ-ray cascades were generated by the DICEBOX [47] including a long-lived isomeric
state T1/2 ∼100 ns that distorts the neutron capture signal detected by the TAC. The γ-ray cascades were
simulated in the detailed model of the TAC including the fission chamber with the 235U samples.
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Figure F.6: Monte Carlo simulated 235U(n,γ) deposited energy spectra compared with the experimental data for
different mcr conditions. In the left hand panel are the results for the experimental FTMG configuration with the
borated neutron absorber. In the right hand panel are the results for the FTMG experimental configuration without
the borated neutron absorber.

The excellent reproduction of the experimental data by the Monte Carlo cascades permits the determi-
nation of this parameter with an accuracy of 1.7%.
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The normalization of the 235U(n,γ) cross-section was performed to the well-known integral value of
the 235U(n,f) cross-section in the neutron energy range from 7.8 to 11.0 eV, thus reducing systematic
uncertainties. The uncertainty in the normalization is ∆(Nnorm)=2.1%

The high count rate registered in the BaF2 detectors induced by the large amount of material that
intercepts the neutron beam introduces pile-up effects distorting the γ-ray cascades, thus the detection
efficiency changes as a function of the neutron energy. To correct these effects, a new dead time model has
been developed, based on previous works [77, 34, 89, 112]. The dead time model was tested in the prompt
γ-ray cascades detected in conjunction between the TAC and FTMG. The excellent results are shown in
the left hand panel of Fig.F.7. In the right hand panel of the same figure is shown the dead time corrections
needed for the 235U(n,γ) cross- section.
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Figure F.7: The left hand panel gives a comparison between the deposited energy of the tagged prompt fission
individual γ-rays for different neutron energy ranges and the corrected one. The distribution measured at low
neutron energies, from 0.2 to 1.0 eV, is shown as a black solid line. The distribution measured at high neutron
energies, from 100 eV to 200 eV, is shown as a solid red line and as blue solid line plots the reconstructed γ-ray
distribution applying the dead time corrections to the low neutron energy distribution. In the right hand panel are
the dead time corrections for the 235U(n,γ) cross section.

F.4 Results

The integral of the neutron resonances has been computed and compared with the ENDF/B-VII.1 for the
different neutron energy periods as shown in the table. F.4. In the final column is shown the systematic
uncertainty (in percent) calculated for each neutron energy period.

The data obtained from this work is, in general, greater than the ENDF/B-VII.1. However, taking
into account the uncertainties calculated, the 235U(n,γ) cross-section obtained from this analysis is com-
patible with the evaluations. The experimental neutron capture cross-section was deployed to the CIELO
collaboration [31, 12] for its analysis. As result, an update of the evaluated libraries will be released
(ENDF/B-VIII.0), improving current knowledge of the neutron induced cross-section of the 235U.
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Figure Neutron energy period I(σγ(En))/I(ENDF/B-VII.1) Sys. uncertainty (%)
4.5 0.2 – 2.2 1.03±0.01 5.1
4.6 2.2 – 20.0 1.088±0.004 4.2
4.7 20.0 – 40.0 1.072±0.007 5.3
4.8 40.0 – 60.0 1.10±0.01 6.1
4.9 60.0 – 100.0 1.09±0.02 6.8
4.10 100.0 – 200.0 1.06±0.02 7.4

Table F.4: Ratio between the integral of the resonances from this work and ENDF/B-VII.1 for the different neutron
energy periods. In the last column is shown the systematic uncertainty (in percent) for each neutron energy period.

F.5 Conclusions

The neutron capture cross-section of the 235U has been measured in the n TOF facility at CERN in the
neutron energy range from 0.2 to 200 eV.

In the measurement, two different and independent detection systems have been used; the Total Ab-
sorption Calorimeter and the Fission Tagging Micromegas detectors.

Due to the high resolution power of the n TOF facility, the results obtained improve current knowledge
of the resolved resonance region. However, due to systematic uncertainties, the data from this work is
compatible with current evaluated neutron libraries.

The data has been used by the CIELO collaboration, contributing to the creation of a new evaluated
library for use in the design of new and more efficient nuclear power plants.
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Appendix G

Resumen en español

El objetivo de este manuscrito es presentar el análisis y resultados de la medida de la sección eficaz de
captura del 235U llevado a cabo en la instalación n TOF del CERN en el rango de enerǵıas del neutrón
desde 0.2 a 200 eV.

G.1 Introducción

Las actuales y futuras demandas de enerǵıa requieren el desarrollo de nuevas fuentes de producción aśı
como la mejora de las ya existentes (Fig. G.1).

Figure G.1: En el panel izquierdo, proyección de consumo de enerǵıa en los proximos años (2012-2040) en Btu. En
el panel derecho, proyección de consumo de enerǵıa en el periodo desde 1990 hasta 2040 [5].

El primer y crucial ingrediente para el diseño de los reactores nucleares y el ciclo de combustible son los
datos nucleares. A la hora de diseñar y evaluar la seguridad de los reactores nucleares es necesario una gran
cantidad de datos nucleares para distintos materiales. Los ingenieros y f́ısicos deben afrontar diferentes
variantes de los reactores nucleares y realizar grandes cálculos para estimar el rendimiento de los sistemas
nucleares cŕıticos. Para tener estimaciones fiables, estos estudios deben incoporar las secciones eficaces más
precisas que se conocen, habitualmente incluidas en las librarias evualadas tales como ENDF/B-VII.1 [9],
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JENDL-4.0a [10] o JEFF-3.2 [11]. Estas libreŕıas evaluadas son probadas con experimentos integrales y de
esta manera se valida los actuales datos y secciones eficaces nucleares. Estas libreŕıas predicen de manera
muy precisa para la mayoria de sistemas nucleares cŕıticos su comportamiento. Sin embargo, la buena
estimación en estos experimentos integrales crea la falsa sensación de optimismo debido a la compensación
de errores, calibraciones de los datos y discrepancias entre libreŕıas [12].

Quantity measured Author Year Neutron energy period (eV) Reference
η(En) H. Palevsky et al. 1956 0.01 - 0.9 [13]
η(En) J. R. Smith et al. 1957 0.1 - 9.0 [14]
σγ(En) G. de Saussure et al. 1966 0.4 - 62.0 [15]∫
σγ(En) G. de Saussure et al. 1966 10.0- 1800.0 [15]
η(En F.D. Brooks et al. 1966 0.9 - 200 [16]∫
σγ(En) F.D. Brooks et al. 1966 10 - 200 [16]
σγ(En) R.B. Perez et al. 1973 8.0 - 200.0 [17]∫
σγ(En) G.V. Muradyan et al. 1977 100 - 20000 [18]

αR(En) G.V. Muradyan et al. 1985 2.0 - 32.0 [19]
η(En) H. Weigmann et al. 1990 0.001 0.4 [20]
σγ(En) M. Jandel et al. 2012 4.0 - 8·106 [32]
σγ(En) C. Guerrero et al. 2012 - [23]

Table G.1: Lista de medidas de la sección eficaz de captura del 235U extraida de la base de datos EXFOR [24]
solapando en alguna región con los datos de este trabajo.

A lo largo de los años, se han hecho gran esfuerzos para obtener datos fiables de las secciones eficaces
del 235U inducidas por neutrones, uno de las constantes f́ısicas más importantes en apliaciones nucleares
relacionadas con la enerǵıa. En particular, para la región de resonancias del canal de captura, existen
diveras medidas aśı como se muestra en la tabla G.1. Estas medidas no son solo importantes para los
reactores térmicos sino que también lo son para los reactores rápidos ya que los experimentos de criticidad
se realizan con combustibles de UO2. Recientes experimentos han concluido que la reactividad en los
reactores de sodio se subestiman entre un 30-50% [25]. Estas discrepancias significativas no solo exceden
la precisión deseada para el diseño de los reactores rápidos sino que también devaluan el diseño de estos
reactores debido al ajuste de las secciones eficaces para los reactores térmicos.

Por lo tanto, para acabar con estas discrepancias existe una necesidad de mejorar la precisón de esta
importante sección eficaz aśı como se refleja en la High Priority Request List [26] de la Agencia Internacional
de la Enerǵıa Atómica (IEAA). La precisión requerida en función de la enerǵıa del neutrón está reflejada
en la tabla G.2.

Neutron energy interval Accuracy target (%)
100 eV - 1 keV 5
1keV -30 keV 8

30 keV - 1 MeV 3

Table G.2: Precisión requerida en la High Priority Request List of the Nuclear Energy Agency [26] para la sección
eficaz de captura del 235.

Para afrontar las discrepancias de los isótopos de mayor relevancia en las aplicaciones nucleares en-
ergéticas, 1H, 16U, 235U, 238U y 239Pu, el proyecto CIELO de la IAEA [12, 31] está reevaluando las secciones
eficaces inducida por neutrones para dichos elementos. La principal meta de este proyecto es la producción
de una mejorada y validada libreŕıa evaluada. El trabajo presentado en este manuscrito está centrado en
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el marco de la mejora de la sección eficaz de captura del 235U aśı como en la mejora de parámetros de las
resonancias actuales.

G.2 Configuración experimental

El experimento fué llevado a cabo en la instalación n TOF del CERN [61]. Esta, es una instalación de
tiempo de vuelo con un haz de neutrones pulsado con gran flujo instantaneo y baja repetición [69]. La
medida fue realizada en la ĺınea horizontal con una longitud de 185 m. La instalación fúe diseñada para
medir muestras de baja masa y/o alta radioactividad en un rango de enerǵıas desde los meV hasta los GeV.

El haz de neutrones es producido por los pulsos dedicados del PS que impactan sobre un bloque de
espalación formado por un bloque de plomo rodeado de agua que actúa como moderador y refrigerante.
Además, para la ĺınea horizontal, existe una capa de agua borada adicional para reducir el número de
neutrones térmicos y fondo γ en el área experimental. Los neutrones viajan desde el bloque de espalación
hasta el área experimental y su enerǵıa es determinada por la técnica de tiempo de vuelo. En la ĺınea del
haz existen dos colimadores y un imán para desviar los neutrones fuera del haz y las part́ıculas cargadas
producidas en la reacción de espalación.

Esta instalación, cuyo principal proposito es proveer de datos nucleares inducidos por neutrones para
astrof́ısica y aplicaciones nucleares, ha sido usada para medir la captura y fisión en diferentes isótopos tal
y como se muestra en la referencia [69].

Durante la medida de 235U(n,γ), se han usado 5 detectores para diferentes propositos:

• Tres de ellos como monitorización del haz de neutrones: Wall current monitor [82], wall current
transformer [82] y los silicon monitor [73].

• Dos sistemas independientes para la determinación de la tasa de reacción en las muestras de 235U:

– El Total Absorption Calorimeter (TAC) [58], está formado por 40 BaF2 usados para la detección
de las cascadas electromagnéticas del proceso 235U(n,γ). Una visión esquemática de este detector
se encuentra en la figura G.2.

– Los Fission Tagging Micromegas detectors(FTMG) [59], detectores gaseosos usados para la de-
tección de los fragmentos de fisión producidos en la reacción 235U(n,f). Un dibujo esquemático
de este detector está en la figura G.3.

Entre la cámara de fisión y el TAC se colocó un absorbente neutrónico de 5cm de radio para reducir la
cantidad de neutrones detectados por el TAC.

Las señales de los detecotes fueron digitalizadas por el n TOF Digital Acquisition System [75] basado
en tarjetas Acquiris-DC270 operadas para las necesidades de cada detector. Los datos registados fueron
guardados para su posterior análisis con las rutinas de análisis [78, 84]. Para la medida se han usuado 41
mg de U3O8 distribuidas en 10 muestras sin encapsular de gran pureza en 235U (>99%). Se usaron dos
configuraciones experimentales:

• 2FTMG: Con una baja eficiencia de detección simultanea de las reacciones (n,f) por TAC-FTMG,
Esta configuración fué usada para la determinación de la sección eficaz de captura debido a su mejor
señal/fondo.

• 10 FTMG: En esta configuración, con 10 detectores FTMG, se obtiene una gran eficiencia para la
detección simultanea de los eventos (n,f). Sin embargo, esta configuración se usó para confirmar los
datos experimentales obtenidos a bajas enerǵıas del neutrón en la configuración 2FTMG debido a su
peor señal/fondo.
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Figure G.2: Geometria del TAC implementada en la aplicación GEANT4.

En total, se han usado mas de 4·1018 protones. Estos, fueron distribuidos en diferentes medidas y
configuraciones experimentales tal y como se muestra en Fig. G.4. Sin embargo, debido a problemas
experimentales, solo ∼2.5·1018 fueron útiles.
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Figure G.3: Dibujo esquemático de los detectores FTMG usados durante la medida de la sección eficaz 235U(n,γ) [59].

Figure G.4: Calendario detallado de la medida. El número total de protones y pulsos para cada periodo está indicado.
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G.3 Análisis de los datos

La sección eficaz es determinada experimentalmente en la aproximación del blanco delgado como:

σγ(En) =
Ctot(En)− Cbkg(En)

Nnormεγφ(En)
(G.1)

Donde Ctot(En) y Cbkg(En) son el número total de cuentas detectadas y fondo con las condiciones Esum

y mcr; εγ es la eficiencia de detección para los eventos 235U(n,γ); φ(En) es el flujo de neutrones; y Nnorm

es el factor de normalización que engloba la masa de las muestras y la fracción de haz interceptado por las
muestras.

El análsis realizado en este trabajo es similar a los análisis de medidas previas realizadas con el TAC [34,
77]. Sin embargo, para el análisis de las coincidencias entre distintos detectores se han desarrollado nuevas
herramientas. El fondo es suma de diferentes contribuciones:

• Fondo no relacionado con el haz de neutrones (CNB): Fondo ambiental, fondo debido a la desin-
tegración de las muestras de 235U y desintegración de de los contaminantes de los BaF2 [34, 77].
Esta componente ha sido obtenida de las medidas dedicadas sin haz, dejando la misma configuración
experimental.

• Fondo relacionado con el haz (CB): Fondo debido a la interacción de los neutrones con los diferentes
materiales. Esta componente se ha obtenido en medidas dedicadas reemplazando las muestras por
backings de aluminio y manteniendo la misma configuración experimental.

• Fondo de fisión prompt (CF ): Durante el proceso de fisión son emitidas, cascadas de γs y neutrones
de los altamente excitados fragmentos de fisión y detectados por el TAC [23, 32]. Esta componente es
dificil de sustraer debido al carácter resonante de las secciones eficaces. Esta componente es obtenida
por la coincidencia del TAC y los FTMG

• Otras componentes relacionadas con las muestras de 235U (COther): Componente inducida por los
neutrones en las muestras que no es el proceso de fisión, por ejemplo, elastic scattering. Esta compo-
nente ha sido determinada por simulaciones Monte Carlo.

Por lo tanto:

Cbkg(En) = CnoBeam(En) + CBeam(En) +
1

ε∗f
Ctagg(En) + COther(En) (G.2)

Donde ε∗f es la eficiencia de tagging. La figura G.5 muestra un ejemplo de las diferentes componentes
durante la medida.

La eficiencia de fisión y la eficiencia de tagging son cantidades ı́ntimamente relacionadas. Consideramos
que ambas no dependen de la enerǵıa del neutrón. Su definición viene dada por:

• Eficiencia de fisión, εf (Ath): Es la probabilidad de detectar una fisión en cualquiera de las 10
muestras de 235U por los FTMG. Esta magnitud depende solamente del corte en amplitudes aplicado,
Ath.

• Eficiencia de tagging, ε∗f (Ath,Esum,mcr): Este es el factor necesario para realizar la subtracción
del fondo de fisión. Por definción, es el cociente entre las reacciones (n,f) detectadas en coin-
cidencia, cTagg(Ath,Esum,mcr), y el número total de reacciones de fisión detectadas por el TAC
cFiss TAC(Esum,mcr):

ε∗f (Ath, Esum,mcr) =
cTagg(Ath, Esum,mcr)

cFiss TAC(Esum,mcr)
(G.3)
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Figure G.5: Enerǵıa depositada en el TAC para mcr >2 en el periodo de eneǵıas del neutrón desde 1.0 a 20 eV.

En el caso de que la probabilidad de detectar una fisión en uno de los detectores no dependa de lo que
ha sido detectado en el otro [23], entonces:

1. La eficiencia de fisión y la eficiencia de tagging son la misma cantidad, ε∗f (Ath)=εf (Ath).

2. Como consecuencia de 1, la eficiencia de tagging solo depende de Ath:

ε∗f (Ath, Esum,mcr) = ε∗f (Ath) (G.4)

La metodoloǵıa usada para el cálculo de estas dos magnitudes, la cual es más precisa que las simula-
ciones montecarlo, ha sido aplicada en las primeras resonancias desde 0.2 a 20 eV. Este está basado en la
ecuación G.3:

• Las cuentas de fisión taggeadas son obtenidas por la coincidencia de los detectores TAC y FTMG.

• El TAC detecta muchas componentes además de las reacciones 235U(n,γ). Sin embargo, el número
de componentes puede ser reducida a la componente instantanea de fisión y al fondo inducido por
material que intercepta el haz applicando restricciones a los eventos detectados por el TAC, mcr >5,
y Esum >Sn(

236U).

Cuanto más restrictivas sean las condiciones aplicadas al TAC, menos sensible es el cálculo a incer-
tidumbres sistemáticas. Sin embargo, la incertidumbre estad́ıstica se incrementa. Por lo tanto, el
cálculo debe adecuarse a un compromiso entre la incertidumbre estadistica y sistemática.

La eficiencia de tagging ha sido calculada para ambas configuraciones en las primeras resonancias. Para
el cálculo, los eventos del TAC fueron reducidos a eventos con mcr >5 y Esum >10 MeV. Para los detectores
FTMG, el threshold aplicado fué de Ath=40 ADC canales.

Sin embargo, debido a la complejidad del proceso, la mayoria de los observables de fisión están correla-
cionados. Por ejemplo, el número de neutrones emitidos y las cascadas γ están ı́ntimamente relacionadas
con el par de fragmentos de fisión producidos [101]. Esta correlación no permite la detección de forma
independendiente los eventos de fisión medidos por el TAC y los FTMG.

Para atajar esta correlación, se ha aplicado una pequeña corrección tál y como se explica en la
sección 3.5.4. Los resultados finales para estas cantidades en las dos configuraciones experimentales están
en la tabla G.3. La incertidumbre mostrada, es la suma de las componentes estad́ısticas y sistemáticas.

La eficiencia del TAC para las reacciones (n,γ) fueron determinadas por simulaciones Monte Carlo
como en trabajos previos [105, 34, 77]. Las cascadas γ fueron generadas mediante el código DICEBOX [47],
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Quantity 2FTMG 10FTMG
εf 0.1847(22) 0.842(5)
ε∗f 0.1847(22) 0.842(5)

Table G.3: Eficiencia de fissión y eficiencia de tagging para ambas configuraciones experimentales.

incluyendo un estado isomérico (T1/2 ∼100 ns) que distorsiona la señal de captura detectada por el TAC.
Las cascadas generadas fueron simuladas en la detallada geometŕıa que incluye el TAC, la cámara de fisión
y las muestras de 235U.
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Figure G.6: Espectros de enerǵıa depositada del proceso 235U(n,γ) simulados comparados con los experimentales para
diferentes condiciones aplicadas en mcr. En el panel izquierdo, para la configuración experimental con el absorbente
neutrónico. En el panel derecho, configuración experimental sin el absorbente neutrónico.

La buena reproducción de los datos experimentales por las cascadas Monte Carlo permiten la determi-
nación de eficiencia del TAC con una precisión del 1.7%.

La normalización de la sección eficaz 235U(n,γ) fué realizada al valor integral de la sección eficaz del
235U(n,f) en el rango de enerǵıas desde 7.8 a 11.0 eV, por lo tanto, reduciendo las incertidumbres sis-
temáticas. La incertidumbre en la normalización es ∆(Nnorm)=2.1%

La alta tasa de contaje registrada por los detectores BaF2 debida a la gran cantidad de material muerto
que intercepta el haz, introduce efectos de pile-up que distorsionan las cascadas γ detectadas en función
de la enerǵıa del neutrón, cambiando de este modo la eficiencia de detección (n,γ) en función de la enerǵıa
del neutrón. Para corregir estos efectos, se ha desarrollado un nuevo modelo de tiempo muerto, basado en
modelos anteriores [77, 34, 89, 112]. El modelo de tiempo muerto fué validado en las cascadas prompt de
fisión detectadas en coincidencia por el TAC y los FTMG. Los excelentes resultados están mostrados en el
panel izquierdo de la figura.G.7. En el panel derecho de la misma figura se encuentran las correcciones de
tiempo muerto aplicadas para el cálculo de la sección eficaz 235U(n,γ).
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G.4 Resultados

Se ha calculado y comparado la integral de las resonancias con ENDF/B-VII.1 para diferentes rangos de
enerǵıa del neutrón como se muestra en la tabla G.4. En la última columna, se muestra la incertidumbre
sistemática para cada rango de enerǵıa del neutrón.

Figure Neutron energy period I(This work)/I(ENDF/B-VII.1) Sys. uncertainty (%)
4.5 0.2 – 2.2 1.03±0.01 5.1
4.6 2.2 – 20.0 1.088±0.004 4.2
4.7 20.0 – 40.0 1.072±0.007 5.3
4.8 40.0 – 60.0 1.10±0.01 6.1
4.9 60.0 – 100.0 1.09±0.02 6.8
4.10 100.0 – 200.0 1.06±0.02 7.4

Table G.4: Cociente entre las integrales de este trabajo y ENDF/B-VII.1 para los diferentes rangos de enerǵıa del
neutrón.

Los datos de este trabajo son, en general, mayores que ENDF/B-VII.1. Sin embargo, tomando las
incertidumbres sistemáticas, nuestros datos son compatibles con la libreŕıas actuales. Los datos fueron
entregados a la colaboración CIELO [31, 12] para la reevaluación del 235U. Como resultado, ha salido a
la luz una nueva evaluación(ENDF/B-VIII.0), mejorando el acutal conocimento de las secciones eficaces
inducidas por neutrones para el 235U.

G.5 Conclusiones

Se ha medido la sección eficaz de captura neutrónica del 235U en la instalación n TOF del CERN en el
rango de enerǵıas del neutrón desde 0.2 a 200 eV.

Debido a la buena resolución de la instalación y el análsis realizado, los resultados han mejorado dicha
sección eficaz en la región de resonancias resueltas.

Los datos han sido usados por la colaboración cielo para la producción de una nueva libreŕıa evaluada
que será usada para el diseño de mejores reactores nucleares.
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